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%'e analyze the electronic structure of a superlattice in a magnetic field parallel to the layers us-

ing a tight-binding scheme where Wannier functions centered on each well are coupled-to their
nearest neighbors. Gauge and translational invariances impose the condition that, within a single
conduction miniband, electrons are subjected to a one-dimensional periodic potential of magnetic
origin whose overall amplitude equals the miniband width. Landau levels are thus nondispersive in

this energy range, and remain quasiparabolic at higher energies. The inhuence of interface disorder
is also studied. The valence dispersion curves of a superlattice are described in an original way
which leads to calculation schemes quite simpler than those already published: k-p expansion along
the layers, and k-dependent tight binding along the growth axis. The allowed energies when a
transverse magnetic field is applied are then computed, with particular emphasis on the numerous

anticrossings due to heavy- and light-hole coupling.

I. INTRODUCTION

Quite a few experiments show that, in short-period su-
perlattices (SL's), electrons and holes are delocalized
along the SL growth axis, and that their wave functions
present some coherence over a distance much larger than
the SL period. Although transport experiments (either
electric' or optic ) along the growth axis give an in-
direct rough estimate of this coherence length, the
clearest experiments, in our opinion, were performed us-
ing a magnetic field. ' The idea was to apply a magnetic
field parallel to the SL layers and thus force the electrons
to close a cyclotron orbit while tunneling through the
barriers, and to study the corresponding electronic struc-
ture. This was achieved for the first time by Belle, Maan,
and Weimann in an interband magnetoluminescence ex-
periment on a GaAs/Ga& „Al„As short-period SL: they
found discrete lines corresponding to electron Landau
levels whose energies lie within the energy range of the
first SL miniband, and no structure at higher energy.
These results were numerically understood on the basis of
an envelope-function model of the conduction-state struc-
ture. The net result is that, within the miniband-energy
width, the Landau-level energies hardly depend on the
position of the cyclotron-orbit center along the growth
axis: the electron tunnel across the barriers and do not
"feel" the positions of these barriers. On the contrary, at
higher energies, the effect of the SL periodic-potential
modulation is dominant, and the Landau levels are highly
dispersive. The same type of analysis has been recently
performed for hole states, with similar results.

Our aim in this paper is to get a better physical insight
into and a simpler treatment of this magnetotunneling
effect, using a model where the SL states are derived from
the single-quantum-well ones through a nearest-neighbor
tight-binding scheme. In Sec. II we shaH derive the elec-
tron states in the presence of a transverse magnetic field,
and show that the Landau-level characteristics are a

consequence of both gauge and magnetic translation-
al' '" invariance. Although much of the techniques used
in this derivation can be found in various classical pa-
pers, ' we found it useful for the sake of clarity to
bring them all together in one place and to apply them
carefully to our specific problem. The case of hole states,
which is far more complex, will be treated in Sec. III.
The valence structure of the superlattice, for a zero mag-
netic field, will be first described using an original scheme
which mixes tight-binding and k-p formalisms. The hole
states will be then defined according to the SL magnetic
symmetries, and the structure of the hole Landau levels
will be discussed. Our results will be summed up and

briefly commented on in the conclusion.

II. SUPKRLATTICE CONDUCTION STATES

Here we shall first precisely define the tight-binding
description of conduction states at zero magnetic field,
and then generalize it to the finite-field case.

A. The zero-field case

O if lzl ~L,./2,
V if L /2~ ~z~ d/~2 .

(la)

(lb)

Here, Vis assumed to be positive, and the origin z =0 lies
in the middle of a GaAs quantum well.

In absence of magnetic field the conduction states of
GaAs/Ga, „Al As SL's are traditionally described us-

ing a Kronig-Penney model. Denote by V the
conduction-band offset; L, , the well width; I.b, the bar-
rier width; z, the growth axis; and r~~, any vector parallel
to the layers. The electrons are subjected to a periodic
effective potential, which, within a period d =I. +L,b,
takes the form
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Assuming now that the electrons in the two com-
pounds have the same effective mass m*, the Kronig-
Penney Hamiltonian takes the familiar form

g2 f2 Q2

2m* lI 2m* c)z2
(2)

which are labeled by the miniband index b, the transverse
wave vector k~l, and the longitudinal wave vector q, which
ranges from —n. /d to m/d. The corresponding wave
functions are the product of transverse plane waves by
longitudinal Bloch waves:

1
& rll, z lb, kll, q &

= », exp(ikll. r„))1/2

1X —exp( iqz) @i, (z),
N

One easily finds the miniband energies E (q), either by
solving the Kronig-Penney equations' or simply by di-
agonalizing H when written on a plane-wave basis, and
gets the dispersion curves

g2
(kll, q) =E"(q)+ k

where the hopping integrals

fi k.+

+ b'kll'" lil b'kll n+ll+c. c. (4)

where t
~&~

can be understood as the tunneling integral be-
tween two successive single-quantum-wc11 states. After
performing a Fourier transform along the transverse
direction, this Hamiltonian takes the simple form

tl„l =(1/N)g cos(qnd)E "(q)
q

are real. As shown by Bastard, ' the dispersion curves
along z are extremely well fitted by the approximation
E (q)=to+2tl, cos(qd), and the conduction states are
thus modeled by the nearest-neighbor tight-binding Ham-
iltonian

where L and L are the transverse dimensions of the lay-
er area S, Nd is the length of the sample along z, and 4b
is a periodic function of z fulfilling the normalization con-
dition,

df @i*,d(z)@i, q(z)dz= 1 .

~=yf d'rl lb, r„,n& „~ll+tt &b, r„,nlb„s 2m*

+I»rll n &till &»rll n+ll+c c
J

(5)

The periodic part of the Bloch function, 4b, is defined

up to an overall phase factor. However, as the potential
V is even, it can be chosen real, and fulfilling the symme-
try relation Nt, ~(z)=+&i, ( —z), where the sign
remains constant within a given miniband. Finally, it is
unambiguously defined if one imposes that 4&i, &(z) is a
continuous function of q. With these prescriptions, let us
now define longitudinal Wannier wave functions as

1
Wi, „(z)= —g exp[iq(z —nd)]C&i, q(z) .

One evidently gets 8'i, „(z)=wi, o(z —nd), and one can
easily show that, with these definitions, the Wannier
functions are localized' in each well, have a given parity
relative to the center of the well, are orthogonal to each
other, and are very similar to single-quantum-well eigen-
states (for an example, see the hole case in Sec. III). We
now choose the generalized Wannier orthogonal basis
Ib, kll, n & for the conduction states:

1
Ib, kll'n & —exp(ikll rll)tob

In this basis the conduction Hamiltonian takes a tight
binding form

&b, , kll, i nil~lb@, kll 2, n2 &

fi k Ilia
bl, b2

klan
I, kll 2 2m + I n2 l~P &I I

where the bands are clearly decoupled.

B. Gauge invariance

. eU= f d rll f dz lrll' e p (6)

the transformed Hamiltonian H' = U HU is obtained
from (2) by the standard substitution iRV~ —iRV-
+e A, where A(rll, z)=Vy is the vector potential. This
transformation appears more difficult to perform directly
on Eq. (5). However, as the Wannier functions are local-
ized and orthogonal, we choose a discrete approximation
of U(Ref. 9) as

e= &f "'rll lb rll n &exp i X(rll nd) &b rll nl, (7)
b S

which has the virtue of remaining unitary while not mix-
ing the band indices. This approximation is clearly valid
as long as g varies slowly on the scale of the period. The
gauge-transformed version of (5), reduced to a single
band b, becomes

The standard gauge principle implies that physics is
unchanged when the wave functions are multiplied by a
position depende-nt phase factor y(rll, z). Denoting U this
unitary transform, the electron charge being —e,
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[—iAV+e A, (rll, n )]
H, =yf d'rl Irlln)

' ' +, (
I,
,

tl j.

+ Irll, n )t, exp —i —dA, (rll, (n + —,')d) (rll, +1I+c c. (8)

Thus the gauge transform introduces phase factors in the
hopping term. Applying now the minimal coupling prin-
ciple, ' we shall assume (8) to be valid even when the mag
netic field B is nonzero; that is, when A is not a gradient.
Note that the approximation of (6) by (7) drops any inter-
band coupling due to the magnetic field. ' It is actually a
coarse-grained approximation where the averaging length
is of the order of the Wannier functions' extent, i.e., at
least the well width L . Consequently, local effects like
single-quantum-well diamagnetic shifts' ' and interface
effects are totally neglected.

C. Magnetic translational invariance

I

gauge phase factor. Let us compute the commutator:

[ R 0, 0 y]= f d rll QIlll, n )C „(rll Rll, n I
I

n

where

. e
P g [XRII,O II

X
II, II II

]

. e
P g [Xoll, 1

II
) XRII,O(

II
)]

This generic matrix element vanishes provided the two
phase factors are equal; that is, if

. e
exP & pXR uII'~ II'~

X (ril RII'n —p (1O)

Both gauge and translational invariances require that the
Hamiltonian commutes with all the magnetic translation
operators. These operators, however, do not form a
group, and do not commute with each other, due to the

I

In the case we shall discuss, where the magnetic field is
homogeneous, physics must remain unchanged when
translating the gauge origin:

A'(rll, z) = A(rll —
Rll, z —pd ) .

This corresponds to the gauge change

A'(rll, z) = A(rll, z)+ VXRII i, (rll, z) .

Let us define the magnetic translation operator as the
product of the geometric translation by the gauge

(n —1)d Q
exp i— XR 0( rll, z)dz

fi nd BZ II'

. e 'll II

or, using (9), if the magnetic Ilux through the oriented
plaquette defined by the four vertices (rll, nd),
(rll Rll nd) (III Rll nd —d), (rll, nd —d) is an integer
multiple of the Aux quantum No= h /e. Consequently, as-
suming the magnetic field B is parallel to the x axis, we
find that the magnetic translations form a commutative
group if the translations along y (perpendicular to the
growth axis and to B) are integer multiples of the length
Ro =2ma 0/d, where ao is the magnetic length
ao =(fi/eB)' . The presence of the magnetic field, due to
flux quantization, induces a new periodicity along the y
axis.

One can now construct a symmetry-adapted orthogo-
nal basis:

Ik,K, q, s) = g exp(iK mRO+iqnd)IIO z „dIk„,K +2sm. /R, on=0),1

XM „
where MRO is the SI spatial extent along y, s any integer, and K a new magnetic wave vector along y, whose length is
limited to the first magnetic Brillouin zone

[—vr/Ro, m/Ro]=[ —d/2ao, d/2ao] .
From the commutation of H with the whole magnetic group, we deduce that H is diagonal in k„,K, and q, and mixes
only the s quantum numbers.

D. Energy spectrum

Let us now specialize to the Landau gauge parallel to the growth axis: 2 =(O, O, By) The single-ban. d Hamiltonian
(8) takes the simple form

f2 .+dHb=g f d rll Irll'n ~ll+ o (rll' I+ Irll' ) [il P ' ( ll'n+1I+c c.
n 2fPl ao

(12)
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and the magnetic Bloch states may be written, using (8)—(11), as
1/2

ik. ,K„q;s ) = M f dx dye exp iqnd+ik x+i K — 2s y ~x„y, n ),
S ao

where s is any integer; that is, comparing with the eigenstates at zero field:

~k, Ky, q;s ) = ~k„,K +sd/ao, q )

where the plane wave along y is now normalized to the magnetic unit cell. In this basis, the matrix elements of the
Hamiltonian (12) take the simple form

(k„,Ky, q;s, lab lk„,K,q;s, ) = . r, +
2&i

2

K +s, +k„.5, , +t~, ~[exp(iqd)5, , +, + exp( iqd)—5. . .],
ao

(13)

which, after a Fourier transform along y, becomes

iri
Hb= f dy f dk g~k„,y, q) to+, k~ — +2t~,

~

cos
„2m * 3y

d
y qd &k yql.

ao
(14)

One sees that'the energy does not depend on the longitudi-
nal waue uector q and that the motion along y is described
by the Mathieu equation (one-dimensional motion in a
cosine potential). The form of the dispersion relations is
then obvious.

(i) No dispersion along the growth axis z.
(ii) Normal kinetic energy along the magnetic field axis

(iii) Concerning the motion along the third direction y,
(a) bound quasinondispersive states for energies between—2t ~, ~

and +2t I, I

that are within the original miniband
width, and (b) scattering states at higher energies, with
small gaps at K =0 and +d/2ao and an energy essen-
tially equal to the normal kinetic one.

This agrees with the main results obtained experimen-
tally and numerically. To get a quantitative analysis,
let us define the quantities F=yd/ao, fico, =eBd(W/
2m*)'~, which is the small-field cyclotron frequency,
and W= —

4t~&~, which is the miniband width. If we
define the energy origin as the bottom of the miniband,
the Mathieu equation becomes, in reduced units,

2
%co ——'cos Y +=

aY' W 2

gauge transforms U [see Eq. (7)].
The lack of dispersion along the growth axis is not an

artifact of. the nearest-neighbor approximation. Had we
taken all of the couplings derived from the exact mini-
band dispersion relation E (q), the same derivation
would have led to a Hamiltonian similar to (14):

IIb = f dy dk„y I k. ,y, q )
2m

2

By

+E" q
— y (k,y q~,

ao

1.5

which is simply obtained from the single-band dispersion
curve (3) by the substitution' '

We plot in Fig. 1 the Landau-level energies and band-
widths as a function of the magnetic field in these re-
duced units. One sees on this fan diagram that, at low
field, the energies scale on the magnetic field and that the
level becomes dispersive for energies of the order of the
rniniband width. However, for high fields, even the first
level becomes dispersive. The crossover corresponds to
W=(vari /2m')(d /ao); that is, to the case where the

magnetic length becomes of the order of magnitude of the
period, a point where our discrete approximation of the
gauge transform breaks down.

We should like to underline two important points.
The magnetic coupling between difFerent minibands is

not taken into account, due to the discrete form of the

0.5

0
0.5

h~, /W

FIG. 1. Allowed energies (in black) for k, =0 as a function of
the transverse magnetic field for a single conduction miniband.
The energy and magnetic field are in reduced units.
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2m'(k,y, n, ~k„m, n;8) = exp iy(n, —n)
Rp

X g exp[i% (y —mR o ) ]
1

K

XQp x (n, n—),

-2 0 2
ENERGY (t) H= fdk, ~k, m, , n8)

where

0 —i(2m /R 0 )sy
R

M~ x (s)= f e M~ x. (y)dy
Rp 0

is the Fourier transform of the periodic Mathieu func-
tion. In this magnetic Wannier basis, the Hamiltonian
takes the new tight-binding form:

FIG. 2. Conduction density of states for difFerent values of
the magnetic field.

ml, m2, n, d

Rk +r (k„,m~, n;E~,
2m

(k~~, q) (k„—'(B/By), q fi 'A—, ) .

The effective potential along y is again periodic with
period Ro, and the conclusions (i)—(iii) remain valid.

As a consequence of the particular form of Hb, the
density of states (DOS) displays, within the miniband
width, a series of one-dimensional singularities corre-
sponding to Landau levels. The DOS remains essentially
constant at higher energies (two-dimensional dispersion
curves along x and y) with small accidents due to tiny
gaps at the center edges of the magnetic Brillouin zone.
These results are illustrated in Fig. 2, where the conduc-
tion DOS is plotted at various magnetic fields for the
sample studied in Ref. 5 (miniband 4t~,

~

=116 meV,
period d =50.4 A, m "=0.078mo).

Wl'th

QEp(E )e
K

This means that, due to the lack of q dispersion, Wannier
states with different n indices are uncoupled. Further-
more, the low-8 Landau levels are quasinondispersive;
this implies that the corresponding couplings constants
r, are vanishing for s&0, and that the magnetic Wannier
states can be considered as localized eigenstates. In the
latter case, for the first Landau level, the Mathieu wave
functions can be approximately computed, by modeling
the cosine potential as a periodic array of parabolic wells.
One then finds the energy Ei (E ) =irido, /2, and the local-
ized eigenstates,

E. Kigenstates

Although the Landau energies do not depend on the
quantum number q, the corresponding eigenfunctions are
q dependent. Using the Bloch theorem, the eigenfunc-
tions of Eq. (14) can be labeled ~k„E~,q;8)i, where 8 is
the Landau-level index, with

(,y, „~k„,K,q;P ) = M (y —qao)
1 2

(MNI..)'"
X exp [i (k„x+K~y+qnd )],

and where the Mathieu functions M& z are periodic and

normalized on the period Rp. One can then define mag-
netic Wannier functions in the y-z plane as

~k„,m, n;8)
1

exp( iKymRo iqnd)~k Ky q;8)
NM x.

One gets

2'(k,y, n, ~k, m, n;8=1) —exp iy(n, n)—
0

sin(my /Ro )
X

PER p

flCO
X exp (n, n)——

This means that, in the first Landau level, the electrons
tunnel through the barriers, and that the cyclotron orbit
embraces (2W/A'co, )' successive quantum wells.

Let us now discuss the high-energy Landau eigenstates.
In that case the solution of the Mathieu equation is
straightforward. The kinetic energy is dominant as com-
pared with the cosine potential one. We thus get

AK exp[i 8(2my /R o )]Ep(Ky)= and Mqx. (y)=2' y (R )1/2

which leads to the following form of the magnetic Wan-
nier states:
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(k,y, n, ~k„,m, n;8) =5„„+z is roughly modeled by adding a random potential

2iry sin( iry /R 0 )
X exp iZ

Ro y —mRO

This means that the dispersive Landau levels (at energies
higher than the miniband maximum) remain essentially
localized in a single quantum well: there is no tunneling
along the SL growth direction.

F. In8uence of disorder

Let us assume now that there exists some randomness
in the confinement energy of the quantum wells, due, for
instance, to Auctuations in the quantum-we11 width. This

I

k)), n

where the 5V„are independent random variables with a
vanishing average and a common mean square root o.v.
This potential clearly neglects the interface roughness
(disorder in the transverse direction), whose effect is rath-
er diScult to account for. ' Adding this random poten-
tial clearly breaks the translational symmetry along z,
and thus the magnetic periodicity along y. However,
averaging over the disorder will restore these symmetries.
We thus assume that the average electron propagator
takes the form

G(z) =
k, K,q, d

[k„,K„q;r)
A' k„

z — E~(Ky—
)
—Xk x p(z)

Pl

(k. ,K„q;r(,

where we introduced a self-energy X which we shall estimate using second-order renormalized perturbation theory:

Xk x,(z) = (,k„,K„q;r ~
v+ VG(z) v ~k„K,, q; r )t,

where the overbar denotes averaging. Noting that the random potential can be rewritten in the magnetic eigenbasis as

V= g ~k, K,q, ;t', )5v„e ' ' 1A't. (s)19'p (s)(k„,Ky, q2,'Z2~,
q), q2, 8l, 82

and using the orthogonality of the Mathieu functions, one gets the miraculously simple result

1
Xk k 8( )z=DV

z Ak, /2m—" E~(K ) —X—k x ~(z)

Ak
~k.K„q,e)t, z E,(K, )——

2o v
" 2mk,K, q, E

Each level is broadened with a semielliptic shape of total width 4o v. The average propagator takes the form
' 2 I/2

G(z) = z E~(K )
—— — 4cri—

and the imaginary part of its trace provides the average
density of states. To account for the disappearance of the
Landau structures at fields lower than 5 T in the sample
studied, we draw in Fig. 3 the average DOS at B =5 T
for different values of the random-potential rms o.v. The
Landau-level structure is washed out around
o i, /t~,

~

=0.1; that is, for o i, =2.9 meV, which corre-
sponds to Auctuations of the well width roughly amount-
ing to one-half atomic monolayer. Furthermore, this
value of the magnetic field leads to fico, /W'-SX10
that is, to a ground-state wave function which extends
over at least five successive quantum wells. This provides
a lower bound for the coherence length. Another esti-
mate of this quantity can be derived from the number of
different Landau levels experimentally observed: ' The
seven observed excited states are orthogonal to each oth-
er and to the ground states, a fact which imposes on the
latter to remain coherent over eight successive quantum
wells. Thus the experiment gives altogether an estimate

-2 0 2
ENERGY (t)

FIG. 3. Conduction density of states at a magnetic field B =5
I, for difTerent values of the random-potential root mean
square.
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of the quality of the sample and of the coherence length
along the growth axis.

III. SUPKRLATTICE VALENCE STATES

%"e shall use the same approach as before to compute
the SL valence eigenstates; namely, first build up a tight-
binding Hamiltonian of the valence states in absence of
magnetic field and, second, work out the spectrum at a
finite transverse magnetic field, by applying at length,
translational and gauge invariance.

A. The zero-field case

Neglecting the inversion asymmetry splitting, and as-
suming the two bulk materials to have the same effective
mass, the envelope-function effective Hamiltonian for the
first four valence states takes the form derived from the
Luttinger Hamiltonian:

b 0

0 b

heavy holes and H& for light holes. Let us now define, as
we did for conduction states, heavy- and light-hole longi-
tudinal Wannier functions Wz b(z) and W& b(z), centered
on the zeroth well. Here, b is the miniband index. For
describing the valence states in the sample studied in Ref.
5, we used y& =6.85, y2=2. 1, y3=2. 9, and a valence-
band offset AE, =192 meV. One then finds, within the
well energy, three minibands: a first heavy-hole band h

&

with a rather small width (4tz =16 meV), and two

broader overlapping bands, a light-hole one (4tI =130
meV) and a second heavy-hole one (4tI, = —64 meV).

The associated Wannier functions are drawn in Fig. 4.
They are essentially localized into a given well with a
given parity, and spread only to the two adjacent wells.
This justifies modeling the Kronig-Penney Hamiltonian
by a nearest-neighbor tight-binding one. When the wave
vector parallel to the layers is nonvanishing, we shall as-
sume that the SL eigenstates remain linear combination
of products of longitudinal Wannier states by transverse
plane waves. In other words, we shall expand the SL
eigenstates in the basis

H~ =
b* 0 H( C

0 b* —c* Hh

This matrix operator is written in the ordered basis

ikllr
Ig (z)e

I p™I m =3/2, I/2, —j/2, —3/2 ~

In the axial approximation, which neglects the band
warping in the x-y plane, the matrix elements are

W~ (z —nd)l 3, —,')
WI(z —nd)l —„——,

' )

W (z —nd)l —', ——')
h~ ik .r

X
W~ (z —nd)lT~, —

z ) (I I
W (z nd)l-,', —

—,
' )

W, (z —nd)l-'„-,')

(16)

Hh (yl 21 2) + V(z) (y1+y2)
2mp Bz 2mo

A'k
HI = (yt+2yz) + V(z) — (yi —yz),

2mp Bz 2mp

b = (y~+y3)(k ik )—
4 mp

g2 ac= —i&3 y (k ik )—
m ' " ~ Bz'

p

where V(z) is the effective valence potential profile, and
the y's are the Luttinger parameters, which we assume to
be identical in the two materials. The off-diagonal terms
in HI- vanish for

klan
=0, and the problem reduces to solv-

ing two independent Kronig-Penney problems: Hh for

where n labels the quantum-well position. In this approx-
imation we neglect the effects of the scattering states (SL
bands at energies smaller than hE, ). Applying —Hr on

8

this basis will generate intrawell couplings, similar to the
"mini-k p" expansion already used to describe single-
quantum-well valence states, ' and nearest-neighbor
kIl-dependent tight-binding couplings. Denoting P„ the
projection on the nth quantum-mell basis, the SL Hamil-
tonian takes the form

Hst. g P»Ho(k~~ )P» +P», T(k~~ )P» +P„+,T(k~~ )P» ~

kll, n

where Ho(k~~), T(k~~), and T(k~~) are 6 X 6 matrices:

Eh —yhk

yk+s

yk s

Ei —yI

~yk+p

0

0

0

yk+s

0

0

0

0

0 0

0

yk s EI yI k E yk+p

iyk p Eh —yhk



39 GAUGE-INVARIANT TIGHT-BINDING APPROACH TO. . . 7783

yk+s,2

0

0

yk s,

lyk+p2

'y k+p I

0

—iyk p2

0

l yk p)
0

l yk s)

0

yk+s2

yk'+si

—yk+s2

0

0

lyk+pi
0

0

yk s2

—yk s2

0

yk s,
0 —lyk p2

iyk+p2

(20)

with the notations

k+ =k +ik, k =k —ik

yi, =(fi /2mo)(yi+y2) yi=(fi /2mo)(y, —y2),

y=(iii /2mo)&3/2(y2+y3), y=(fi /2mo)&3y3,

s = ( Wi, (z)
~ W& (z) ), s

&

= ( 8'i, (z)
~
Wi(z —d) ), s2 = ( 8'i, (z)

~
Wi(z d) ),—

p= WI z WI, z, p&= W& z W~ z —d, p2= W& z Wl z —d
az 1 2 hi

The parity of the Wannier functions has been used repetitively when writing down the form of the 6X6 matrices. The
matrix elements between Wannier functions are easily computed. We found, in our specific cases, the following.

Wave-function overlaps: s =0.97, s, =4X 10,s2 =0.12.
Momentum matrix elements (in units of 2m. /d): p =0.20, pi =0.12, p2 =0.08.

Translational invariance along the growth axis implies that the q-dependent projector P~ =(1/&N )g„e'~" P„com-
mutes with Hsz. The dispersion curves are thus obtained through diagonalization of the 6 X 6 matrix,

B
I'q~sLI'q= Bt

with

PI
I

\ I
'\ I

I
i

I

z/d

-50

E
-100

~ -150

FIG. 4. Valence Wannier wave functions in the superlattice
studied in Ref. 5. Dotted-dashed line, first heavy-hole mini-
band; solid line, light-hole miniband; dashed line, second
heavy-hole miniband. The conduction-band profile is also
drawn in arbitrary units, as a guide to the eyes.

(m/d0) k (00} q (Om/d)

WAVE VECTOR

k«(m/d, m/d}

FIG. 5. Valence-subband dispersion curves for the superlat-
tice studied in Ref. 5, whose associated Wannier wave functions
are drawn in Fig. 4.
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Eh y—hk +2tt, cos(qd)

yk+ [s +2s, cos(qd)]

yk [s+2s, cos(qd)]

E& y&—k~+2tI cos(qd) iyk [p —2p2 cos(qd)]
—iyk+ [p —2p2 cos(qd)] E~ —y&k +2t& cos(qd)

—2yk p& sin(qd)

2yk p, sin(qd)

2iyk+s2 sin(qd)

0

2i y—k+s2 sin(qd)

Due to the axial approximation, the dispersion curves depend only on the modulus of k~~, and can be computed for
k„=O. In that case, A becomes real and B pure imaginary. Furthermore, time-reversal (Kramers) invariance implies
that the eigenvalues are twice degenerate. They are easily found by diagonalizing the 3 X 3 matrix A +8. The resulting
dispersion curves for our specific case are drawn in Fig. 5.

B. Hole states in a transverse magnetic field

Before introducing a nonvanishing magnetic field, let us first study the inAuence of a gauge transform on the SL
Hamiltonian. We choose here also a discrete form of the gauge transforms, similar to (7), but where the phase is
changed into its opposite to account for the positive charge of the holes:

U=yf d"„b, „, )-p —
~
—'X „,«) (b, r~, ,

b, n

where b is the band index, running from 1 to 6 according to the convention (16). The gauge-transformed version of (17)
becomes

U HsLU= d ri~ P„H„P„+P„
S

expi —dA, (r~~, nd —d/2)T„+T„, exp i dA, (r~~, n—d —d/2)

P„

+P, +]

exp i dA, (r~~, nd +—d/2) T„+T„+&exp i—dA, (rii, nd +d/2)
P„, (21)

where H„, T„, and T„are deduced from Ho(k~~), T(k~~), and T(k~~) by substituting in (18), (19), and (2O) k~~ by—
t'&~~

—(e/&) A~~(r~~~, nd). Note that the hoping terms have been symmetrized in order that the Hamiltonian remains
Hermitian even if the vector potential is not a gradient. To get the SL Hamiltonian in the presence of a nonvanishing
magnetic field, we must add to (21) the Zeeman term (Ae/mo)~J B—:KJ, B. J is the angular-momentum operator for
spin —„and lr is a new Luttinger coefficient whose value for GaAs is 1.2. This extra term, written in the basis (16), gen-
erates, for a magnetic field along x, intrawell terms,

0 0 0 0

Jdiag
X

O O
~',2'

0

0 0

0 00

~',
O O2'

32' 1 0 0 0

0 0 0 0

1 0

0 0

0 0

0 0

0 0
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and hopping terms,

0 0 0 0 3
s) 0

0 0
v'3 v'3
2'2 2'1 0

0

vp
s)

0

3
$2

3
S]

0

0

0

0

0

0

0

0

0

0

0

0

3
2

s2

0

3
2 '2

0

J —J 4

Choosing again the gauge A= (O, O, By ), taking advantage of the magnetic translation symmetry along y, and assum-
ing k =0, we get the q-dependent magnetic Hamiltonian:

H (8) V (8)
V (8) H (8) (22)

q q

a) b 0 0 e 0

H~(B)= b c d, V (8)= et f g
0 d a2 0 g~ 0

and

B2 yda 2 =Ez +yI, +2tz cos +qd
1,2 By 1,2 ao

b =ys, cos +qd + cos +qd +ysB yd yd B B

By ao a o By By

B2 ydc =EI+yl +2ti cos +qd
By ao

B
1PP

By
—iv'3s2RB sin +qd +iyp2 cos +qd + cos +qdB yd yd B

a By a ao

3 yd B . yd . yd BKsB+&3s,RB cos +qd —yp, sin
2 +qd + sin

2 +qd
2 ao By ao ao

yd . yd B
2 2 +qd + sin

2 +qd
By ao ao2

From the particular form of Hq(8) [Eq. (22)], one sees
that the eigensystem

V (8) H (8) y q&
=Eq(8)

can be split into two independent 3 X 3 problems,
amounting to the diagonalization of either H (8)+ V~(8)
(with g&, =qr2) or Hq(B) V~(B) (with —p, = —g2). Note
that these two families of eigenstates interchange when 8

I

is changed into —8, as the first family combines states
carrying the angular-momentum projections S„=—,

' and
—

—,', while the second one mixes S = ——', with —,
'

As for the conduction states, we find that the e6'ective
Hamiltonian (22) is periodic in the y direction, with the
magnetic period R0=2mao/d, and that the eigenvalues
do not depend on q. The eigenstates are thus labeled by
the two wave vectors q and K (we assumed k„=O), and
the 3 X 3 eigenproblem is easily solved by expanding the
magnetic Bloch states in Fourier series. This leads to di-
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agonalize an infinite block-tridiagonal matrix. This was
easily performed after checking that convergence was
achieved when using only 31 plane waves [from—15(2'/Ro ) to 15(2m /R o ) ]. The results are summa-
rized in Fig. 6 where we draw, for k„=0, the allowed en-
ergies as a function of the magnetic field. The first Lan-
dau level originates from the first heavy-hole miniband.
Its energy varies quasilinearly with the magnetic field,
and displays no dispersion up to 20 T. The higher Lan-
dau levels are repulsed by or anticross with levels origi-
nating from the light-hole miniband, and thus behave
sublinearly with the field. Furthermore, they become
dispersive as soon as their energy reaches the top of the
light-hole miniband. For lower energies the hole struc-
ture is very complex, as one gets an infinite number of an-
ticrossing between levels issued from the top of the two
minibands. The point noted by a star on Fig. 6, which
corresponds to a vanishing field and to the light-
hole —band edge, is actually an accumulation point for an-
ticrossings, and the allowed energies define, in its sur-
rounding, a set which looks like a fractal. The fan dia-
gram drawn on Fig. 6 is not symmetric, as we plotted one
level family for positive fields and the other for negative
fields. This asymmetry is only due to the Zeeman term,
which breaks the time-reversal invariance.

Let us note that the coupling between different mini-
bands comes only from the form of the Luttinger Hamil-
tonian: that is, from the SL axial symmetry; the discrete
form of the gauge transforms we used still does not cou-
ple states with different symmetries. We also find here an
Hamiltonian which is periodic in the y direction, with
period Ro. This is again the consequence of the magnetic
translational invariance. The absence of dispersion along
z again implies that one can construct states localized (in
the growth direction only) around a given well which
remain eigenstates. Furthermore, the lack of dispersion
in K at low fields for low-index Landau states implies
that the associated magnetic Wannier functions (localized
in both z and y directions) are bona fide eigenstates.

Our approximation, which consists of neglecting the
coupling with the deeper hole-scattering states, seems to
be correct, as we discussed only the Landau states which

) -30
E

&- -35-
L3
Ck

g -i 0-

hh1

lh1

-10 0 10 20
MAGNETIC FIELD (T}

FIG. 6. Allowed energies (in black) for k =0 as a function of
the transverse magnetic field, for the valence states of the super-
lattice studied in Ref. 5. The star points out the edge of the first
light-hole (lh&) miniband, which partially overlaps the first
heavy-hole (hh &) miniband.

lie at least 60 meV higher than the maximum of the mini-
band issued from the second heavy-hole states (see Fig. 5)
and 130 meV higher than the barrier bottom. However,
the details of the anticrossings between high-Landau lev-
els is so complex that they must be model dependent.
Indeed, for a 19-T magnetic field, our simple calculation
leads, for the first six levels, to energies which coincide,
within an error of 1 meV, to the values computed by
Fasolino and Altarelli, who solved numerically the ex-
act Luttinger Hamiltonian for the same superlattice using
rather heavy finite-difference techniques, although our es-
timation quantitatively differs from their results in the
anticrossing region. Finally, let us note that, due to these
numerous anticrossings, the index of the Landau levels
no longer labels the numbers of zeros in the wave func-
tions. The approximate selection rules commonly used
for optical transitions (same Landau-level index for the
involved valence and conduction states) are thus no
longer valid.

IV. CONCLUSION

The main result of this paper was to show that both
gauge and translational invariance impose that, within a
single miniband, electrons in a superlattice with a trans-
verse magnetic field "feel" a one-dimensional periodic po-
tential whose overall amplitude is equal to the miniband
width. This simple result explains why nondispersive
Landau levels exist only within the miniband-energy
range. Due to the high degeneracy of these states, many
different representations of the eigenstates can be found.
The most useful ones seem to be magnetic Wannier
states, which are localized in the two directions perpen-
dicular to the magnetic field. We found that the ground
state described in such a way embraces, for low fields, a
large number of adjacent quantum wells, and is localized
in the transverse direction on a distance of the order of
2~(ao/d ), where ao is the magnetic length and d the su-

perlattice period. We studied the inhuence of interface
disorder on the conduction states, and found that the
magnetotunneling experiments show that the conduction
wave functions are coherent, at least on a distance of

0
more than 400 A (eight successive quantum wells).

These results were generalized to the case of valence
states. We first modeled the superlattice dispersion
curves in the absence of magnetic field by combining lon-
gitudinal tight-binding and transverse k-p techniques.
This provided, with a minimum of computations, the su-
perlattice dispersion curves which account for the cou-
pling between heavy and light holes. The valence
Landau-level structure was then easily found using the
same magnetic translation arguments. Due to the in-
teraction between heavy and light holes, the Landau-level
energies do not vary linearly with the field. The high-
index Landau-level structure appeared extremely com-
plex, but was qualitatively understood as coming fmm
the accumulation of anticrossings between two fan dia-
grams associated with the first heavy- and light-hole sub-
bands.
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Finally, we think our model of the SL valence states
should be useful for calculating the excitonic states, and
perhaps also the magnetoexciton, in short-period super-
lattices, without leading to overly cumbersome computa-
tions (all the numerical calculations we performed in this
paper were implemented on a personal computer).
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