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Quantum transport in the resonant-tunneling diode (RTD) is modeled here with the Wigner for-
malism including self-consistent potentials for the first time. We examine the computational aspects
of the Wigner-function approach and the boundary conditions for the model. The calculated I-V
characteristics show an intrinsic bistability in the negative-diferential-conductivity region of the
curve. Intrinsic bistability results from charge storage and the subsequent shifting of the internal
potential of the device. The cathode region of the RTD shows a strong depletion and quantization
of electrons in a deep triangular potential well, which reduces the barrier height to a ballistic elec-
tron injected from the cathode, enhancing the valley current and reducing the peak-to-valley ratio.
Undoped spacer layers prevent the formation of a deep quantum well at the cathode barrier, and the
distribution does not deplete as sharply as without the spacer layer. The I-V curve with the spacer
layers shows a much lower negative resistance, and a sharper bistable region. A finite relaxation
time for the electrons increases the negative resistance, reduces the peak-to-valley ratio of the
current, and causes a "soft" hysteresis in the bistable region. A zero-bias anomaly is found to result
from high-momentum tails in the distribution at the barrier interface. These high-momentum tails
contribute a small high-conductance current. The transient current during switching from the peak
to the valley of the I-V curve shows inductive behavior and negative resistance for frequencies
below 2 THz.

I. INTRODUCTION

Microfabrication technology has advanced rapidly
since the dawn of the semiconductor era, with each ad-
vance giving a sizable reduction in the size of individual
features. Where tens of micrometers were once the corn-
mon size, devices fabricated with metalorganic chemical-
vapor deposition (MOCVD) and molecular-beam epitaxy
(MBE) now have features as small as a few nanometers.
In addition, electron-beam lithography can now be used
to make working field-effect transistors (FET's) with
gates as short as 25 nm. ' On these spatial scales, quanti-
zation eQ'ects are quite evident; electrons in a high-
electron-mobility transistor (HEMT) travel in a two-
dimensional sheet, a result of perpendicular quantiza-
tion. Fabrication of a gridlike gate extends the quantiza-
tion to all three dimensions. In this structure, Bloch os-
cillations of the electrons are expected due to the quanti-
zation eCects.

One quantum structure that has been extensively stud-
ied recently is the resonant-tunneling diode (RTD). In
this structure, a thin GaAs quantum well is grown be-
tween two Al Ga, As barriers. Each barrier, and the
well, is a few nanometers thick. Thick GaAs bulk layers
are grown on either side of this barrier structure. Con-
tacts are made to the top and bottom bulklike layers.
The two Al Ga& „As barriers and the GaAs well consti-
tute a resonant-tunneling system, with a resonant energy
marked by preferential tunneling (Fig. 1). In this situa-
tion the existence of a resonant level in the GaAs well

provides a textbook example. The I-V characteristic of
this two-terminal device has a strong region of negative
differential conductivity (NDC), which results from quan-
turn tunneling in the device.

Despite the great strides made in fabrication technolo-
gy, the detailed theory behind these quantum devices has
not kept pace, although realization of simple quantum
device models is quite easy. The first attempts at model-
ing the tunneling structures incorporated simple quan-
tum tunneling. " For a given potential V(x), a tunnel-
ing probability can be calculated as a function of energy
T(E) using the WKB approximation or transfer ma-
trices. '" The current through the device is then calcu-
lated by integrating the charge density times the tunnel-
ing probability and the carrier velocity u (E). For a one-
dimensional system, the current (from left to right) is

J&„=qJ dE T,„(E)n(E)f(E)v(E), (1)

where f (E) is the Fermi-Dirac distribution function and
n (E) is the density of states. An analogous second equa-
tion is obtained for J„&, and the total current is then
di6'erence between the current from left to right and the
current from right to left. The current is a function of
the di6'erences in the distribution functions and Fermi en-
ergies in the two sides. '

A major criticism of this approach is that it requires
knowledge of the distribution of the electrons at each side
of the tunneling interface, rather than the bulklike distri-
bution far from the tunneling interface, although the
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FIG. 2. Experimental (solid) and theoretical (dashed) I-V
curves for a resonant-tunneling diode. The theoretical curve is
calculated by the simple tunneling model.

Energy

FIG. 1. Resonant-tunneling system. (a) The I -valley con-
duction band for the GaAs/Al„Gaj As resonant tunneling
system. E, is a resonant energy where the tunneling probability
approaches 1. (b) The tunneling probability for the resonant-
tunneling system.

latter is usually used. The distribution at the interface is
completely different from the bulk distribution due to
quantum repulsion from the barrier. ' ' Failure to ac-
count for this difference leads to erroneous results.

None of the above treatments have incorporated self-
consistent —potential effects. It is known that self-
consistent bending of the potentials within the device
may lead to the formation of bound states, or other types
of quantization in the interface region. ' Accumulation
or depletion layers, and their effects upon the potential
and, consequently, the tunneling probability, can drasti-
cally affect the local distributions and hence the tunneling
current.

The primary failure of the simple tunneling models,
though, lies in the extremely poor fit of the predicted I-V
curve to that observed experimentally. Figure 2 shows a
comparison of an I-V curve calculated by the tunneling
approach and the experimentally observed I-V curve for
a device with the same structural parameters. The
current predicted for the valley of the curve is far too
small. The model cannot account for barrier lowering or
ballistic injection over the barriers, both of which can be
important experimentally.

Despite the quantitative failures of the tunneling mod-
el, this simple theory provides tremendous insight into
the appropriate role for a contact. ' ' An "ideal" con-
tact has been defined as an infinite reservoir of thermally
distributed carriers, which are injected as needed into the

device. For carriers leaving the device, the "ideal" con-
tact acts as a perfect sink, absorbing all carriers incident
upon the contact without reQection. This contact serves
as a boundary for quantum correlation; all incoming car-
riers are randomly distributed, and outgoing carriers are
immediately randomized within the contact. Buttiker '

has used this role of the contact reservoir to introduce
dissipation into ballistic structures, and subsequently ad-
dressed the role of contact resistance, a point to which we
return below.

In this paper, we will present a fully-self-consistent
model of the RTD based upon the quantum-mechanical
Wigner function. Though the Wigner function has been
around for quite some time, and its properties have been
well investigated, it has only recently been applied to
electronic transport.

The Wigner formalism offers many advantages for
quantum modeling. First, it is a phase-space description,
similar to classical Boltzrnann distributions. In the
Wigner formalism, scattering is a local phenomenon.
Because of the phase-space nature of the distribution, it is
conceptually possible to use the correspondence principle
to determine where quantum corrections enter a problem.
At the boundaries the phase-space description permits
separation of incoming and outgoing components of the
distribution, which thus permits modeling an ideal con-
tact, and hence an open system. Still another advantage
is that the Wigner function is purely real, which
simplifies calculation and. interpretation of results. By
coupling the Wigner-function equation of motion to the
Poisson equation, we obtain a fully-self-consistent model
of the RTD. This then allows us to examine charge-
redistribution effects and many properties of the devices.

In the field of quantum optics, Wigner functions have
been widely used. The quantum phase-space distribution
has been used to describe coherence of optical fields and
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to describe polarization and transient superposition
efFects. Quite naturally, this description has been ap-
plied to 6nding quantum-mechanical solutions for a laser
master equation (the Fokker-Planck equation } and for
describing quantum noise in lasers. More recently,
%'igner functions have been applied to optical systems
and signals, where they provide a link between Fourier
optics and geometric optics. ' Two-dimensional
Vhgner optical distributions have been generated, ' as
well as slices of four-dimensional signer optical distribu-
tions. The Wigner-function description of optical sig-
nals has been investigated for use in elementary pattern
recognition. From this, we may easily recognize the
ability of the Wigner function to exhibit phase interfer-
ence and quantum resonances.

Numerous works have expounded on the virtues of the
Vhgner-function formalism for quantum electronic trans-
port, with an eye toward the advantages ofFered by a
phase-space representation. ' ' Some early at-
tempts at modeling transport in the RTD used the
%'igner formalism, ' * while other models advocated use
of the density matrix. The density-matrix approach,
though quantum-mechanically correct, possesses some
serious drawbacks. The density matrix is complex, and
except for the diagonal terms which yield the particle
density n(x) the density matrix does not correspond to
any well-known classical distribution function. Addition-
ally, scattering is nonlocal in the density-matrix forrnal-
ism, which complicates the inclusion of scattering in the
transport model.

In the next section we will review the development of
the signer function and its equation of motion. The
roles of nonlocality and correlation in the Vhgner func-
tion will be discussed. The critical nature of a quantum-
mechanically correct initial distribution, and its subse-
quent temporal development, will be examined.

Major concerns in modeling are the stability and the
convergence of the numerical techniques used in the
model, which will then be discussed. Because the model
is one of an open system, the nature of the boundaries
will be treated at length. Poisson's equation will be cou-
pled with the signer-function equation of motion to in-
clude fully-self-consistent potentials, and simple scatter-
ing will be added to the model.

Finally, the self-consistent signer-function model will
be applied to the RTD, and the steady-state and transient
behavior will be examined. Bistability, a source of' con-
troversy in the RTD, is shown to occur, and the condi-
tions for this will be explored with the model. A zero-
bias anomaly, observed previously in tunneling struc-
tures, is found to occur primarily as a result of the distri-
bution functions near the barriers. Finally, the effect of
variations in doping of the RTD structure will be ex-
plored.

II. THE WIGNKR DISTRIBUTION
FUNtmK)N

A. Nonlocshty of the %'igner function

Suppose a system is in a general state described by the
density matrix. If we use a set of position eigenstates, the
density matrix is

C= f)
R= (r

& r2 ~/2

FIG. 3. Illustration of the nonloeal nature of the Wigner
function (Ref. 47). Outside the shaded region, the wave func-

tion is zero. In center-of-mass coordinates, a distribution may
be nonzero in regions that are forbidden.

p(x„x, )=&x, ipix, &,

where p is the density operator. The density matrix is
clearly a function of the two positions x, and x~. If we
use a relative vector x between the points x, and xz,

X =x) X2

and a "center-of-mass" vector X to the mean of the posi-
tions x& and x2,

X=
—,'(x&+xz), (4)

then the density matrix may be described in terms of
these two new coordinates as p(X+ —,'x,X —

—,'x). The is-

sue of the "locality*' of the chosen coordinates must be
examined. ' In Fig. 3 it is evident that a distribution
de6ned in terms of the "center-of-mass" coordinates may
be nonzero at positions X where the wave functions are
zero.

The Vhgner function may be defined in terms of
momentum eigenstates and the density matrix. In a de-

vice such a definition is useful, since the device is usually
described by a mixed state. The density matrix p(x „xz )

may be written in terms of the new coordinates as

p(X,x)=p(X+ —,'x, X—
—,'x) .

The relative vector x is a natural choice for transforma-
tion to the momentum representation (the transformation
used is the Wigner-Weyl transformation), which leads to
the definition of the %'igner function,

f~(X,p)= dx e'~"~"p(X+—,'x, X —
—,'x) .1

It is easily seen that there is no requirement in the
definition of the Wigner function, (6), which requires it to
be a positive quantity. For this reason, the %'igner func-
tion interpretation as a probability distribution function
must be handled carefully; nevertheless, the signer
function is quite useful.

In order to use the signer function to study devices,
an equation describing the response of the V)t'igner func-
tion to changing conditions is required. The equation of
motion of the signer function is derived from the quan-
tum Liouville equation by applying the Wigner-Weyl
transformation. For a general noninteracting Harniltoni-
an,
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where

M(x,y, P)= f dy e' ~ "[V(x +—,'y) —V(x —
—,'y)] . (9)

The kinetic term is identical ta the kinetic term of the
Boltzmann equation. The potential term in (9), however,

l

A. 2
H= +V(x),

2m

application of the Wigner-Weyl transformation gives the
equation of motion for the Wigner function:

fw(x, p, t) — fw(x, p, t)
8 p 8
dt m Bx

I fdPM(x, y, P)fw(x, p+P, t),

is nonlocal in the position of the potential and in the
momentum of the distribution function. These nonlocali-
ties give rise to the quantum corrections in the equation
of motion.

For a density matrix represented by one set of the con-
jugate coordinates of position and momentum, evaluating
the Wigner-Weyl transform is at the very least tedious
when dealing with Hamiltonian terms which involve the
other set of coordinates, i.e., evaluating the kinetic term
when the density matrix is in the position representation.
For terms which are mixed, as when working with a mag-
netic field in the Landau gauge, evaluation of the
Wigner-Weyl transform is quite involved. The contribu-
tion of a term from the Hamiltonian to the equation of
motion may be found by means of another formalism.
For a general Hamiltonian H, the equation of motion is

f ( p r) — f d& f

deaf

d~ fdr e'(&v s~+ —~k ~)f (g rl r)[H(p & fir p+ & F8) H{p+ & Br p & AB)]

Using this powerful equation, otherwise dif5cult terms of
a Hamiltonian are relatively easily transformed.

The Wigner function is closely related to the correla-
tion Green's function G of the quantum Boltzmarin
equation. ' The difference between the two lies in the
fact that the Wigner function is defined as a one-time,
two-position function, whereas the Green's function
6 is a two-time, two-position function, i.e.,
6 (x„t,,x2 t2), or 6 (X,Tx, r) in terms of the
center-of-mass coordinates. The relative coordinates x
and ~ may be Fouriei transformed into momentum and
frequency variables, giving 6 (X, Tp, co). The single-
time limit of 6 is found by integrating over the frequen-
cy co, giving the Wigner function. Since 6 is explicitly
a correlation function, the single-time limit of 6 is also
a correlation function; the Wigner function thus au-
tomatically incorporates spatial correlations. Earlier, it
was shown that the Wigner function may be nonzero in
nonphysical regions; this component of the Wigner func-
tion exhibits the correlation between the allowed wave
functions. (See Fig. 3.)

B. Operators

In a quantum-mechanical system desired information
is often found by evaluating expectation values of opera-
tors. Since the Wigner formalism is a fully quantum for-
malism, expectation values of operators contain much
useful information. The use of Wigner functions permits
easy evaluation of expectation values. For an operator
A, the expectation value is

( A ) =f dx A p(X +—'x X ——'x) (11)

By introducing

(12)

Eq. {11)becomes

( 2 ) = f dx f dp Af w(x, p) . (13)

j=ePlm . (14)

Within a quantum device, however, the properties of the
Wigner distribution function require care in interpreting
current. In a classical system a local current density J(x)
may be exactly defined, since the distribution is a true
probability distribution, and both position and momen-
tum are exactly known. As dictated by the Heisenberg
uncertainty principle, however, exact knowledge of both
position and momentum in a quantum system is impossi-
ble. This manifests itself in the Wigner function as
negative-valued distribution, which may be thought of as
negative probability. While we can use (14) in many
cases, we must be cautious that its use is limited.

C. Sensitivity to initial condition

A serious consideration of the Wigner-function equa-
tion of motion (8) is the entry of quantum-mechanical
effects through the nonlocal potential term. It is a trivial
exercise to show that, for a potential which is quadratic,
the potential term of (8) reduces to

[Vp]ww=«'~ fw{x p

which is exactly the classical term from the Boltzmann
equation. ' The source of quantum corrections has
vanished, and the equation of motion is classical. The
quadratic potential, however, could describe a purely
quantum harmonic oscillator. Using the Wigner-function
equation of motion alone to determine the state of this

It his been demonstrated that (13) holds for powers of
operators which are linear functions of the operators x
and p.

An operator of extreme importance in device modeling
is the current operator. The current may be defined
through the operator
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system will not reproduce the required quantum-
mechanical eigenstates of the system.

A correct quantum-mechanical steady-state solution to
the problem may be found by specifying the correct
boundary conditions and solving (8}with the time deriva-
tive set to zero. The fallacy in this procedure is subtle.
The correct quantum-mechanical boundary conditions
presuppose knowledge of the state of the system at the
boundaries, which are a function of the internal potential.
Thus, knowledge of the boundary conditions implies
knowledge of the solution without the Wigner-function
equation of motion.

In order to include all orders of quantum corrections,
one of two things can be done. The first is to extend the
computational domain su%ciently far from the source of
quantum e8'ects that the system is classical. A classical
distribution may then be used as the boundary. It has
been demonstrated that quantum corrections "heal" over
several thermal wavelengths. ' In a reasonable GaAs de-
vice at 300 K, this length is nearly 100 nm.

The second approach to incorporate quantum e6'ects is
to use an adjoint equation to determine the initial Wigner
function. The adj oint equation must be quantum
mechanically correct to give a proper initial Wigner func-
tion. Equation (8) may then be numerically integrated to
find steady-state solutions which are certain to include all
orders of quantum corrections. This is the approach we
will take.

for x (x . The density matrix is then defined by

p(x, x') =—g g„(x)P„*(x')f (E„)1

n

+ d g x g x E k (20)

where Z is the partition function, the sum over n is over
bound states with energies E„, E(k} is the energy of a
scattering state, and f (E) is the distribution function
(Boltzmann or Fermi-Dirac).

From an unn or malized basis function, and using
translation matrices, an unnorm. alized state may be com-
puted on the entire domain. These states are normalized
by applying scattering theory, in which wave functions in
the presence of a scatterer are compared to those in a
reference space. These are related through the
Lippmann-Schwinger equation. A useful consequence of
this equation is thai the scattering states satisfy precisely
the same orthonormality relations as unperturbed
states. ' Each state contributes to the density matrix ac-
cording to the thermal distribution function f (E). The
partition function is found by considering the limit of
x —+x, also a consequence of the normalization condi-
tions. It is defined by

D. Computation of the initial state
Z '=e~ 2&rrP lim p(x) . (21)

One method of finding a quantum-mechanically
correct initial distribution is to Fourier transform the
density matrix p(x, x'). The density matrix, in turn, may
be calculated using a scattering-state basis. ' If the po-
tential approaches a constant as x ~+~, i.e., V(x) = V
for x (x and V(x)= V+ for x &x+, the basis states
are plane waves, i.e., recce

—'" . For equilibrium, where
V = V+, this gives, for states incident from the left with
k&0,

14k«}=
2m

1/2
ikx+ ( k) ikx]—

for x &x, and

1/2
1

2' r (k) ikx

for x )x+, and

1

2'

' 1/2

r (k) ikx (19)

for x & x +, where r ( k } is the transmission coefficient and
r(k) is the reliection coefficient for wave vector k. In a
similar manner, states incident from the right are defined
by

]/2
1 [e '" + r (k)e'""]

2m'

An algorithm for computing the density matrix is thus
available. ' A set of points jx J is chosen at which the
density matrix is desired. The potential is taken to be
piecewise constant betmeen the points. Energies are ran-
domly sampled according to the distribution function.
Each energy gives a wave vector k for a left-incident state
and a right-incident state. The states are translated and
normalized and their contributions added to the density
matrix. The density matrix is normalized with the parti-
tion function, and the resultant density matrix is Fourier
transformed to the Wigner function. The computational
region of the density matrix satisfies the conditions out-
lined above.

The density matrix and the resultant Wigner distribu-
tion are calculated for the resonant-tunneling diode.
Figure 3 shows the Wigner distribution function. The
Wigner function calculated by scattering states is charac-
terized by a thermal distribution far from the barriers.
Oscillations in the distribution near the barrier are evi-
dent. These oscillations are a result of quantum repulsion
from the barrier. ' '" The quantum repulsion causes the
density of carriers to deplete, although this depletion is
not a depletion layer in the classical sense. The depletion
is caused by the quantum repulsion rather than by band
bending. The quantum repulsion is, in a sense, comple-
mentary to barrier penetration: just as a nonzero density
penetrates a finite distance into a classically forbidden re-
gion, a density deficit extends a finite distance into a clas-
sically allowed region. This charge then accumulates a
short distance from the barrier, and overall charge neu-
trality in the device is maintained (see Fig. 4).
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hx & U (22)

0.1 5

um (nm ')

FIG. 4. Self-consistent equilibrium Wigner function for a
resonant-tunneling diode, calculated from a scattering-state
basis. Depletion at the barrier interface stems from quantum
repulsion; this is compensated by an accumulation further from
the barrier.

III. NUMERICAL TECHNIQUES

The validity of a numerical solution to an equation de-
pends to a large extent upon the choice of numerical ap-
proximations, discretization, and the boundary condi-
tions. %'e discuss these effects in this section.

A. Discretization

The %'igner-function equation of motion is evaluated
on a two-dimensional discretized grid for the position
and momentum variables x and p. The modeled region is
a domain from x=0 to x =I., and is divided into a spatial
mesh, with a mesh size Ax chosen so that features of in-
terest, such as potential barriers, are adequately
represented. Since the potential in a RTD varies over a
distance of a few atomic monolayers, an appropriate spa-
tial mesh Ax is of the order of a unit cell of the GaAs lat-
tice, and we approximate that with Ax=0.25 nm. The
mesh size for the momentum variable is found by consid-
ering the Fourier transform in (3) which defines the
signer function. The discrete Wigner function is period-
ic in momentum, with a period of A'n/b, x. (For conveni-
ence, the momentum is expressed in terms of the wave
vector k =p hrt. ) This period in momentum is discretized
into a convenient number of meshes, and ranges from

n/2hx to—n. /2hx. The discretized grid may con-
veniently be split into two regions, one half with positive
momentum and the other half with negative momen-
tum. ' This will become important in the following
discussion.

B. Stability and convergence

where v is the velocity of the fastest component of the
solution. For a time step b, t which satisfies (22) for the
maximum velocity, convergence and stability of the solu-
tion is assured for linear problems.

Equation (8) is discretized using Lax-Wendroff explicit
time differencing. The Lax-%'endroff method retains
the second-order terms in the Taylor expansion of
f (t +b, t). This introduces a second-order spatial
difference term into the equation of motion. This
second-order term represents an artificial diffusion, which
acts to counteract spurious numerical diffusion that al-
ways arises from the first-order teims. The Lax-%'endroff
scheme has proven to be the technique of choice of nu-
merical solutions of the Schrodinger equation. ' '

Each point in a discretized equation has a characteris-
tic direction, which is to say that each point has a direc-
tion of propagation. For a phase-space representation,
the velocity which defines propagation is directly propor-
tional to the momentum. For positive momentum, prop-
agation is in the positive x direction, while negative
momentum causes propagation in the negative x direc-
tion. For any given point, the characteristic direction is
defined by the local momentum. In the discretized
%igner function, there is a "slice" of the mesh over
which the momentum is constant. These slices of the
mesh can be viewed as systems of equations which are
coupled through the potential term of (8). Each "slice"
of the mesh is characterized by the same characteristic
velocity; for positive momentum, information Aows into
the domain from the boundary at x=0, and moves to-
ward the boundary at x =L„where it leaves the domain.
For negative momentum the characteristic direction and
the roles of the incoming and outgoing boundaries are re-
versed. Recognition of these characteristics directions
solves an inherent problem.

A difFiculty with the Lax-Wendroff discretization in-
volves the boundaries. A second-order finite-difference
term at a point x,. involves the points x;, and x,. +i. In
the interior of the device this creates no problem, nor
does it cause diSculty with the incoming boundary,
where the distribution is specified. The problem occurs
on the outgoing boundaries. The function is not known
beyond the boundary, making the definition of a second-
order diffeience at the boundary impossible. The solution
to this dilemma is to use first-order upwind differencing
to propagate the function to the outgoing boundary along
the characteristic direction, which is

A common numerical technique for solving discretized
temporal equations is explicit differencing. Stability of an
explicit scheme requires that error in the discretized
equation remains bounded. Fourier analysis of the
growth of error in these schemes has led to the Courant-
Friedrichs-Lewy stability criterion (CFL condition) for
explicit finite-difference approximation schemes: for a
mesh size Ax and a time step At a necessary and sufhcient
condition for stability is that

f (x;) f(x;,)—
if p(x, ))0,

b,x

ax f (x;+» f (x;)—
if p(x, ) &0 .

(23a)

(23b)

Stability of the first-order terms is also dependent upon
satisfying the CFL condition. The discretization is illus-
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1 1 ~2~4g2 —4(k —ko) a
jii x, K 8 8

2m% gV'2m
(24)

This distribution is Gaussian in both position and
momentum. A further property of the resulting distri-
bution is that it satisfies the Heisenberg uncertainty prin-
ciple. For a Gaussian distribution in position, the uncer-
tainty is the spread in position. In (24), b,x is 2a. The un-
certainty in momentum is similar'ly the momentum
spread, which is b, k =1/2a. This gives

1
Ax Ak =2a =1 .

2Q
(25)

With this analytic expression for the Wigner function of a
Gaussian wave packet, the properties of the equation of
motion may be investigated.

A GWP in free space spreads as it evolves in time.
Further, when a wave packet is defined with some initial
nonzero wave vector ko, the centroid of the wave packet
moves with a velocity Ako/m, the group velocity of the
packet. In the absence of a potential, (8) becomes

K vs X discretization

Qo ~ ~

00 ~ ~

Qe ~ o

00 0 0

X ~ ~

X. ~

e e ~ ~ ~ e e

~ ~ ~ ~ ~ ~ ~

~ ~ ~ e e ~ e

~ e e ~ ~ ~ ~

~ ~ e ~ e ~ ~

~ ~ ~ e e e e

~ ~ ~ ~ ~ ~ ~

~ e e ~ ~ ~ ~

~ X
X

~ X
~ X

X

~ 00

0 00

~ 00

~ 00

Interior mesh point discretized with Lax-Wendroff

Outgoing mesh point with forward differencing

OS Incoming mesh point with fixed values

Characteristic direction

FIG. 5. Phase-space discretization for the Wigner function.
Each row of the grid has a uniform velocity, and can be thought
of as a subsystem, or slice, of the distribution.

trated in Fig. 5. The characteristic directions on the
mesh are indicated, as are the incoming and outgoing
boundaries on the regions of the mesh and the type of
discretization used for each mesh point.

Since virtually every elementary quantum-mechanics
textbook studies the evolution of a Gaussian wave packet
(GWP), convergence of the equation of motion is tested
using this reference. " ' The Wigner-function descrip-
tion of a Gaussian wave packet is

f~(x,p, t) —V„f„,(x,p, t)=0 .a
Bt

''
m

(26)

A Wigner function of a GWP may be used as the initial
condition for (8), which is numerically stepped forward in
time. The resulting Wigner functions are integrated over
momentum, giving a distribution in position only. The
wave function spreads in position, as expected, and the
centroid of the wave packet moves with the group veloci-
ty, Ako/m. The Wigner function is integrated over both
position and momentum at all time steps. Any variance
in the value of this integral is solely due to numerical er-
rors in the algorithm, since the analytic solution con-
serves distribution. The GWP can be used to evaluate
this stability. After 200 time steps, the Lax-WendroF
scheme shows less than 1% numerical error. As a com-
parison, simple first-order finite differencing of (8) shows
more than 10% error after the same number of time
steps. The hybrid discretization demonstrates good sta-
bility and convergence.

Next, the GWP is allowed to interact with a pair of
quantum barriers separated by a quantum we11." The
barriers are each 3 nm thick and 0.3 eV high, while the
well is 5 nm wide. Figure 6(a) shows the initial wave
packet as it begins to interact with the barriers, with the
positions of the barriers indicated by the dark lines. In
Fig. 6(b) the majority of the wave packet has reAected
from the barrier, while a small portion has tunneled
through. Finally, in Fig. 6(c) most of the wave packet has
reAected from the barrier. Some of the wave packet has
tunneled through the barriers, and is leaving the region of
simulation.

Of particular note in Fig. 6(c) is the rapidly oscillating
structure along the k=0 axis. This structure contains the
important correlation between the transmitted and
rejected wave packets. As long as this information is re-
tained, the system has time-reversal symmetry. When the
correlation is removed, the original wave packet can no
longer be recovered. ' Any dissipative processes will
act to remove this correlation, and thus destroy reversi-
bility.

Equation (8) may readily be used to check the correct-
ness of an initial distribution. The initial potential and
distribution are inserted into (8), and the system is
stepped forward in time. The correct equilibrium distri-
bution will not vary under the equation of motion. Be-
cause the numerical scheme is stable and convergent, no
errors will be introduced through the equation. The only
source of error, therefore, is from an incorrect initial dis-
tribution. We check this by using the initial distribution
calculated in the preceding section. The system is
stepped 500 fsec in time, or 5000 time steps, with zero ap-
plied bias, after which the state of the system is compared
to the initial state. For an initial Wigner function with a
maximum value of 1.0, the maximum error in the tirne-
evolved Wigner function was 2.18 X 10, and the L
norm of the error was less than 10 ' . As a further
check on the temporal stability of the initial Wigner func-
tion, the current at the contacts was calculated. With
zero applied bias, the current calculated at the left con-
tact was 0.038 pA/cm, while the current at the right
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contact was —0.013 pA/cm, in comparison to the nor-
mal operating currents of milliamperes/cm . Thus, the
integrated error in current is about 10 of the actual
current.

C. Contacts

Simulation of a real device includes some model of the
interface between the device and an external circuit. At
the very minimum, the external circuit consists of a "bat-
tery" which fixes a potential across the device, and
"wires" which carry current from the "battery" to the
device. These circuit parameters are usually included in
device simulations as boundary conditions. In many
models, the contact serves as an infinite reservoir of
thermally distributed carriers. ' ' This reservoir main-
tains a fixed distribution at the contact where the parti-
cles enter the simulation domain.

Conditions at the contact must be consistent with
physical reality. If a current is flowing through the de-
vice, current continuity requires that an identical current
be fa.owing through the external circuit. This implies that
the external circuit, and thus the contact, must be
characterized by some distribution which reAects current
Aow, such as a shifted thermal distribution. '

In (8), we have left and right boundaries, at x=0 and
x =I., respectively. Mathematical constraints permit us
to specify only one boundary, however. As discussed ear-
lier, the model may be thought of as a coupled set of sys-
tems, each of which is a slice of constant momentum (see
Fig. 5). Each of these momentum slices has a boundary,
or contact, from which electrons enter the slice, and they
leave the slice from the opposite boundary.

The "entering" contact is constrained by the current.
Just inside the device a current exists. Because an identi-
cal current must be present in the contact, and the distri-
bution within the contact is assumed to be a shifted
thermal distribution, the amount of shift and therefore
the distribution within the contact are known. The dis-
tribution within the contact is then matched to the corre-
sponding momentum slice of the model. This procedure
must be self-consistently carried out, since the current
within the device is a function of the boundary condi-
tions, and the boundary conditions are functions of the
current within the device. ' Because each momentum
slice has only one boundary prescribed, the boundary
conditions are mathematically consistent with (8).

A second consideration of the contact is that it remove
all carriers which are leaving the device. ' ' This
defines the "leaving" contact. In the so-called "ideal"
contact the carriers are perfectly extracted from the de-
vice without reflection. Studies of (8) with a Gaussian
wave packet have shown that the momentum nonlocality
in the equation couples the incoming and outgoing boun-
daries at the contacts, and serves as a source of artificial
numerical rejections. Such phenomena have been ob-
served in other well-posed numerical systems, and arise
strictly from the coupling at the boundaries. Such
artificial rejections mar the concept of an ideal contact.

A mathematical decoupling algorithm has been
adapted for (8). Artificial reflections are eff'ectively re-

moved, and the ideality of the contacts is restored. In the
model of an ideal contact, electrons which leave the de-
vice are instantly scattered within the contact into a
thermal distribution. ' The scattering removes correla-
tion and introduces irreversibility. In an actual device
ideal contacts are not physically realizable, and this
decoupling procedure may not be the best choice from a
physical standpoint; nevertheless, modeling ideal contacts
is useful in that it removes size dependencies by breaking
up correlation at the boundaries. This is important, since
Fig. 5(c) illustrates that correlation can extend over a
long range. In the contact scheme used here, the correla-
tion length is limited to the device length.

D. Se1f-consistent potentials

Fully-self-consistent potentials are introduced by add-
ing Poisson s equation to the system. A self-consistent in-
itial Wigner distribution is calculated which includes the
background charge from the ionized donors. Knowledge
of the temperature and doping level establishes the Fermi
level within the bulk GaAs, and thus specifies the
ionized-donor concentration and the electron concentra-
tion far from the barriers. Since the electron density is a
function of the potential, and the ionized-donor charge
and potentials are interdependent, an iterative procedure
is required to find the correct initial distribution. A guess
is made for the potential, which is used to calculate the
density n(x), which is the trace of the density matrix
found from the scattering states. The potential is also
used to calculate the ionized charge density N„+(x). The
total charge is then used to solve Poisson's equation to
get a new potential. Because the ionized charge density is
exponentially dependent upon the potential, the two
quantities must be iteratively made consistent for the
electron charge n (x). The new potential is then used to
calculate the density. The entire process is iterated until
full consistency between n (x), V(x), and Nd+(x) is
achieved. The density matrix is then transformed into
the Wigner function, which together with the back-
ground charge Nd+(x) and the self-consistent potential
V(x) is input into (8) and Poisson's equation. Solution
proceeds by stepping (8) forward, then adjusting the po-
tential via Poisson s equation. In addition to an unchang-
ing Wigner distribution, steady-state conditions may be
tested by examining the time-variant Auctuations in the
internal potentials. When both the Wigner function and
the potentials become invariant, steady-state conditions
have been reached.

K. Scattering

In a quantum-mechanical system proper inclusion of
dissipation is nontrivial. The simplest possible approach
is the relaxation-time approximation. A second approach
is the use of the classical scattering rates, such as are
used in Monte Carlo calculations. The most difticult ap-
proach is the use of Levinson's formalism, which is the
Wigner-Weyl transformation of the interaction terms of
the Hamiltonian. Although this method properly intro-
duces the intracollisional field effect, the transformation
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is entirely nontrivial, even for simple interactions. The
quantum Boltzmann equation ' includes scattering
terms in its formulation, which could be transformed into
the Wigner formalism with some diSculty. A major
drawback of this approach is that the scattering terms in-
volve a second function, which is not clearly related to
the Wigner function, so that another equation would be
necessary with this approach.

We choose to model scattering with the relaxation-time
approximation, which lumps all dissipation processes into
one macroscopic parameter. The relaxation-time ap-
proximation is expressed as

I g„y~ 015

::Ig:;., i

e&
yO~

Bt collision

(27)

0.15

where f is the distribution function, f0 is the equilibrium
distribution, and ~ is the relaxation time. Although
crude in comparison to the other formalisms, the result-
ing expression is trivially evaluated. This approach has
been shown to e6'ectively remove correlation and to shift
the I- V characteristics of earlier models of the RTD.

(b)
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IV. APPLICATION
TO THE RESONANT-TUNNELING DIODE

OI5

A. Structure to be simulated

The self-consistent Wigner-function model has been
applied to a resonant-tunneling diode (RTD). The struc-
ture under consideration has two Al„Ga& „As quantum
barriers which are 0.3 eV high and 5 nm thick. These
barriers are separated by a 5-nm GaAs quantum well.
Outside the barriers, the device is GaAs, doped with 10'
donors cm . The barriers and the quantum well are un-

doped. The structure is illustrated in Fig. 6. The relaxa-
tion time used to model scattering is chosen to corre-
spond to a mobility of 3000 cm /V sec.

B. I-V characteristics

-0 I5

FIG. 6. Gaussian wave packet interacting with resonant
quantum potential barriers. The barriers are indicated by the
dark bands. (a) The incident wave packet, moving from left to
right, is just beginning to interact with the barriers. (b) Gauss-
ian wave packet during reflection. The incident and reflected
components are visible, as is the correlation centered around
k=O. Part of the packet is tunneling through the barrier. (c)
Gaussian wave packet after reflection. Most of the wave packet
has been reflected. The tunneling packet is visible to the right
of the barriers.

The steady-state I-V curve of the device is calculated
by applying an incremental bias potential to the cathode
contact, then stepping (8) and Poisson's equation until
steady-state conditions are reached. Earlier work with
the Wigner-function model of the RTD showed that
large-signal transients decay exponentially, and that
steady-state conditions are achieved in a few hundred
femtoseconds. ' We step the system to a time of 1.5
psec to ensure that steady state has been achieved, while
checking for invariance of the distribution function and
the potential. A transient analysis (to be discussed in de-
tail later) with the self-consistent model shows that tran-
sients have essentially vanished within 700 fsec. From
the steady-state conditions, the current in the device is
calculated, and the bias potential is again incremented.
After the bias has been increased to its maximum, the po-
tential is decremented toward zero, with the current be-
ing calculated along the way. The resultant I-V curve,
shown in Fig. 7, shows a peak-to-valley ratio of approxi-
mately 2:1 at 300 K.
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FIG. 7. Self-consistent I-V curve for the RTD. The potential
is increased to a maximum, then decreased. The I-V curve
shows a hysteresis resulting from redistribution of the potential
and charges.
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Early modes of the RTD assumed that all potential
was dropped across the barrier-well structure.
The self-consistent internal potential of the device, for an
applied bias near the peak of the I-V curve, illustrated in
Fig. 8, shows that only about one-third of the potential is
dropped across the barriers. Of the remaining potential,
a majority is dropped across the cathode end of the de-
vice. At the cathode end of the device the Wigner distri-
bution shows heavy depletion, as seen in Fig. 9. As bias
is applied, this region is pulled down, and would be ex-
pected to show accumulation of electrons. In fact, at
very low biases, this region does accumulate slightly. As
the bias is increased, however, the cathode-bar-
rier —interface region is lowered in energy even more, un-
til it forms a shallow triangular quantum well with quant-
ization of electrons, similar to the quantization in an
enhancement metal-oxide semiconductor field-effect
transistor' ' (MOSFET) or a HEMT. An overall de-
pletion of electrons in the cathode occurs. As the bias in-
creases further, the quantum state becomes evident in the
Wigner distribution illustrated in Fig. 10. Quantization
causes the formation of the ring structure to the left of
the barriers. In a phase-space representation, the struc-
ture of the quantized state and the oscillatory nature of
electrons in the state are quite evident.

The deep triangular well at the cathode is a physical
result of cathode fields and an inherent contact resis-
tance. It h'as implications for the I —V curve as well. At
the valley of the I-V curve, where the quantized state is
plainly evident, Fig. 8 shows the potential within the de-
vice. Because the well is very deep, the top of the barrier
is at nearly the same energy as the cathode contact. Elec-
trons which are injected from the cathode and travel to
the barrier without scattering are able to travel over the
quantum barriers. This process leads to a greatly
enhanced valley current, and reduces the peak-to-valley
ratio of the device.

C. Bistability

A controversial aspect of the RTD is the source of ob-
served bistability in the I- V curve in the negative-

0.15

Position
Momentum (nm ~)

-0.15

FIG. 9. Steady-state Wigner distribution at the peak of the
I-V curve. Depletion in the cathode region is evident. At the
left contact the incoming distribution appears as a shifted
Fermi-Dirac distribution.

differential-conductivity (NDC) regime. Intrinsic bista-
bility is thought to result from charge storage within the
quantum well, which changes the potential and field near
the barriers. This modifies the positions of the
conduction-band edges on either side of the barriers and
of the resonant level in the well. Since the current is
strongly affected by the positions of these bands and the
resonant level, subtle shifts in stored charge can greatly
affect the current tunneling through the resonant level
between the barriers. Extrinsic bistability, on the other
hand, results from the external circuit and may either
cause, or be a result of, the device oscillating at very high
frequency about the bias point. Such bistability is then a
function of the external circuit rather than the quantum-
well structure.

While experiments have observed bistability in the
operation of RTD's, there is general disagreement as to
its source. ' ' ' If all oscillations of the device could
be suppressed, any observed bistability would have to be
intrinsic. Because the negative resistance 8„ is low, how-
ever, debate centers around whether all oscillation has, in
fact, been suppressed, and intrinsic bistability observed.

In earlier studies the potential was dropped uniformly
across the barrier structure. ' ' ' Treatments which
specify a fixed electrostatic potential cannot account for
the effects of charge storage or self-consistent —potential
shifts outside the barriers. Since intrinsic bistability is
thought to result from changes in internal potentials, it is
not surprising that rigid-potential modes do not show bi-
stability.
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FIG. 8. Potential for the RTD for an applied bias of 0.22 V,

the peak of the I-V curve. Much of the potential is dropped
across the cathode end of the device, forming a triangular po-
tential well. Depletion due to contact resistance causes the up-
ward bending of the potential.

FIG. 10. Steady-state Wigner distribution at the valley of the
I-V curve. Depletion is strongly evident in the cathode region.
The distribution in the cathode-barrier —interface region forms a
quantized state, the ring structure to the left of the barriers.
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The calculation of the I-V curve does not include exter-
nal circuit effects. Any bistability which is found, there-
fore, must be intrinsic in nature. In fact, one theoretical
approach has shown that an intrinsic bistability does ex-
ist. Scattering is modeled by a relaxation-time approxi-
mation, and its primary effect is in determining the po-
tential drop in the resistive regions outside the barriers.
This resistive load also influences the slope of the NDC
region, which is proportional to 1/R„. Since the mobility
at 300 K is density dependent, the carrier concentration
in the device is critical to R„.

Earlier work, without self-consistent potentials,
showed a shoulder in the NDC region of the curve.
With the addition of fully-self-consistent potentials, the
shoulder is not seen, but a soft bistability, similar to fer-
romagnetic hysteresis, is found in the same region of the
I-V curve. This model shows one region of bistability
with a finite R„, resulting strictly from differences in the
self-consistent potentials and the distributions on either
side of the bistable region. Both effects are related to the
charge stored in the quantum well. The maximum
difference in current in the bistable region is found at an
applied potential of 0.36 V. In Fig. 11 the difference be-
tween the steady-state Wigner distribution for increasing
potential and the steady-state distribution for decreasing
potential in t;he bistable region is plotted. For decreasing
potential, less current Rows through the resonant struc-
ture, and the injected carriers accumulate on the cathode
side of the structure, shown as the peak in Fig. 11. Since
less current is Rowing in the entire device, the anode end
shows a slight depletion of current-carrying distribution.

In an experimental circuit the RTD is loaded, which
changes the slope of the NDC region. Experiments have
shown two bistable regions of the I-V curve, each of
which has a very large R„. What may be observed exper-
imentally is the intrinsic bistability being heavily
modified by the external circuit parameters.

The self-consistent potential within the RTD is shown
in Fig. 12. Two potentials are shown, corresponding to
the two stable values of current for an applied bias of 0.36
V. The difference in the potentials is indicative of a
difference in the charge distributions and currents.

D. Zero-bias anomaly

Some experimental work with tunneling devices has
observed an increased conductivity near zero bias. This
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FIG. 11. Difference between the bistable Wigner distribu-
tions at a bias of 0.36 V. The quantized state in the cathode well
has more carriers. More current is flowing, indicated by the
"ridge" in the distribution.
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FIG. 12. Potentials corresponding to the two bistable states
for an applied bias of 0.36 V. The upper curve corresponds to
the upper branch of the bistable region.

"zero-bias anomaly" was believed to arise from
impurity-assisted tunneling, in which the spin interaction
of the tunneling electron with the impurity leads to
several conducting channels. ' In this model the s-d in-
teraction in third- and higher-order perturbation theory
shows a peak in the conductivity at zero bias, which re-
sults from the combined effects of spin-Hip scattering in
the barrier and the exclusion principle in the contacts.
Enhanced conductivity is also seen near zero bias in
MBE-grown tunneling structures. Here, we find that an
increased conductivity at zero bias results from high-
momentum tails in the distribution at the barriers which
have a nonthermal character.

Near a quantum barrier the electron density is reduced
as a result of quantum interaction with the barrier. ' This
is not a depletion layer in the classical sense. It is not
caused by band bending; this phenomenon occurs even
when there are no electromagnetic fields. The wave func-
tion at a particular momentum k is repelled by the tunnel
barrier. The first peak in the standing wave occurs ap-
proximately at m/k from the barrier, and is much closer
for high momentum. This leads to a broadened distribu-
tion for the density, with a length scale of about A, ,h. The
quantum repulsion is, in a sense, complementary to bar-
rier penetration: just as a oonzero density penetrates a
finite distance into a classically forbidden region, a densi-
ty deficit penetrates a finite distance into a classically al-
lowed region. Figure 13 illustrates the momentum spread
which results from this quantum repulsion. This momen-
tum spread of the distribution highlights two components
of current at extremely low biases. The high-momentum
tails of the distribution in Fig. 13 extend above the bar-
rier in energy. A slight perturbation of the potential is
sufficient to radically alter the nature of this distribution
and force a current Aow. Because the distribution tails
are characterized by a high momentum, the current
which results may be characterized by extremely high
conductance. After the momentum tails have depleted,
the only remaining source of current is tunnehng from
the main thermal distribution, which is characterized by
a much lower conductance. Thus, near zero bias we see a
dramatic change in f (E) that appears in (l).
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FIG'. 13. Wigner distribution near an infinite barrier. This
plot demonstrates the quantum repulsion by the barrier and the
high-momentum tails in the distribution.
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FIG. 14. I-V curve of the RTD for low biases. The current
displays two difterent conductances. The exponential depen-
dence above 0.1 mV does not extrapolate to zero.

Early models of tunneling were unable to show this
eA'ect, since it was assumed that the distribution at the in-
terface between the barriers and the bulk region is essen-
tially thermal. In fact, the distribution at the interface
possesses a momentum spread which is best characterized
by an effective temperature" much larger than that of
the bath. Failure to account for the proper distribution
at the interface neglects the contributions these momen-
tum tails make to the current at low biases.

The I-V curve calculated for Wigner functions shows
the zero-bias anomaly below 0.1 mV, as shown in Fig. 14.
Above 0.1 mV the current begins to show an exponential
dependence, but does not extrapolate to zero. Below 20
pV the current is characterized by a conductivity much
higher than that above 0.1 mV. Between these regions
the conductivity changes with the applied bias.

In Fig. 15(a) the difference between the steady-state
distribution with 20 pV applied bias and the equilibrium
distribution is plotted (the amplitude is magnified by 15).
Point 3 on this figure indicates a loss of carrier density
from the high-momentum tails. Quantum repulsion near
the barriers is still present, but has been reduced by the
small applied bias, leading to the positive peak D Point.
8, the location of the accumulation in equilibrium, shows
some slight reduction as carriers begin to tunnel through

FIG. 15. Difference between the steady-state distribution and
the low-bias distributions (magnified 15 X ). (a) Applied bias is
20 pV. Point A shows the depletion of the high-momentum
tails. B and D show a shift of the accumulation layer toward
the barriers, while C shows a slight enhancement of the distri-
bution within the quantum well. (b) Applied bias is 100 pV.
Point A shows the same loss of tails as the 20-pV distribution,
while B and D show the accumulation layer shifted clearly into
the barriers. The distribution within the well, point C, is greatly
enhanced.

the barriers. Within the quantum well, at point C, the
distribution is enhanced by the tunneling carriers. At
this small bias nearly all of the current in the barrier re™
gion comes from the high-momentum carriers. These
carriers have sufficient energy to tunnel easily through (or
over) the quantum barriers. Tunneling from the thermal
distribution does not yet contribute significantly to the
current.

In Fig. 15(b) the difference between the distribution at
a higher applied bias of 100 pV and the equilibrium one
is shown. Comparison between Figs. 15(a) and 15(b) re-
veals that there is little di6'erence at point 3, as the
high-momentum tails have been completely depleted.
The differences between Figs. 15(a) and 15(b) show clearly
at point 8. The accumulation layer is moved consider-
ably nearer the barrier, from point 8 to point D. The dis-
tribution at point D clearly reflects the presence of a
thermal distribution right up to the barriers. In fact, it
extends well into the barriers, and a large distribution
within the well, at point C, is evident. Calculation of the
current in the barrier region reveals that most of the
current now results from carriers at lower energies which
tunnel through the barriers.

E. Transient behavior

The transient behavior of the RTD may be studied us-
ing Wigner functions. ' ' In this particular study, the
system for t (0 is biased at the peak of the I-V curve of
Fig. 7. At t =0+ the bias is raised instantaneously to a
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sition between negative and positive conductance occurs
is independent of the relaxation time. We note that the
peak of the reactance in Fig. 18(a) occurs at the point at
which the real part is zero, as required by the Kramers-
Kronig relations.

o.5-
without spacer
with opc oor )oyer

F. Modification of the RID structure

Resonant-tunneling diodes are often fabricated with
undoped spacer layers at the interface between the bar-
riers and the bulklike contact regions. The effects which
result from these spacer layers may easily be examined
with the Wigner-function model. The self-consistent
equilibrium Wigner-function, potential, and ionized-
donor concentrations are again calculated, with the
spacer layer built into the donor distribution Ãd(x).
While the difference in the equilibrium distributions is
only slight, and concentrated at the interface between the
carriers and the contacts, the fundamental difference may
be easily seen in the potentials V(x). The self-consistent
potentials for the basic structure and the RTD with a
spacer layer are plotted in Fig. 19. Without a spacer lay-
er, the potential at the barrier tends toward a triangular
potential well, leading to a slight accumulation of elec-
trons near the barrier. With a spacer layer, the potential
is shifted upward, causing a much smaller tendency to-
ward depletion of electrons. In fact, there is a small ac-
cumulation in the spacer layer. It is apparent that the
spacer layer concentrates the potential near the barrier.
This both reduces the contact resistance and reduces the
ballistic injection so that the peak-to-valley ratio is im-
proved.

A second difference results from the effect of the spacer
.'ayers on the scattering. Without ionized donors the
electron mean free path is longer, and the relaxation time
is correspondingly increased. More of the potential is
dropped across the barriers, causing a higher barrier to
the ballistic electrons, which reduces the valley current.
The self-consistent potential for a bias at the valley is
plotted in Fig. 20, showing how the potential differs from
that in the RTD without the buffer layer. The efFect on
the valley current is clearly evident in the calculated IV-
curve of Fig. 21. Another major difference caused by the
buffer layer and reduced scattering is the reduced R„,
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which increases the slope of the NDC region of the
curve. Finally, the bistability of the NDC region of the
I-V curve is found to be much sharper, again a conse-
quence of the reduced 8„. We note, however, that the bi-
stability still appears to be intrinsic. The curves are now
much closer to the simpler model of Shear d and
Toombs.

V. SUMMARY AND CONCLUSIONS

We have presented a fully-self-consistent model of the
resonant-tunneling diode based upon the quantum-
mechanical Wigner function. The Wigner formalism
offers the particular benefits that "ideal" boundaries are
easily implemented, the transport equation is similar to
the Boltzmann equation, and the nonlocal correlation
effects are included. In the Wigner-function model,
scattering is a local phenomenon. An adjoint equation
must be used to determine the initial Wigner distribution
to ensure inclusion of all orders of quantum-mechanical
corrections.

0.20-

FIG. 20. Self-consistent potentials for an applied potential of
0.4 V for the RTD with and without the spacer. Without the
spacer a large depletion region and triangular potential well
form between the cathode contact and the barrier. The spacer
layer controls the depth of the well.
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FIG. 19. Self-consistent equilibrium potentials for the RTD
with and without an undoped spacer layer.

FIG. 21. I-V curve of the RTD with the spacer layer. The
negative differential resistance is lower, and the bistable region
is more pronounced than without the spacer layer. Peak-to-
valley ratio is nearly 3:1.
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The conditions on stability and convergence of the
Wigner-function equation of motion have been reviewed.
Lax-Wendroff explicit time differencing improves the
temporal stability of the solution by including higher-
order terms in the discretized equation. The time-
evolution equation is unconditionally stable and conver-
gent if the choices of space mesh Ax and the time step AI;

satisfy the CFL stability criterion for the entire discre-
tized mesh. Self-consistency is included by coupling
Poisson's equation to the Wigner equation. The model
includes the calculation of a self-consistent initial Wigner
function, an initial potential function, and the corre-
sponding ionized-donor distribution. Scattering is added
to the model through the relaxation-time approximation,
where all the scattering is combined into one relaxation-
time parameter. Though admittedly crude, this
efFectively removes correlation and introduces irreversi-
bility.

The model incorporates the concept of "ideal" con-
tacts, whereby the contact serves as a reservoir of
thermally distributed carriers at the boundaries where
carriers enter the device, and perfectly absorbs any car-
riers which leave the device. The distribution within the
contact must refiect the physical reality of current Aow,
so we enforce current continuity by using a drifted
Fermi-Dirac distribution within the contacts. An algo-
rithm has been developed to remove artificial numerical
rejections from the boundaries. These rejections result
from the nonlocality of the temporal equation. Removal
of the reAection effectively prevents correlation from ex-
tending from the device into the contact, removing size
dependencies from the model.

The self-consistent model is applied to the RTD. The
calculated I-V curve shows a peak-to-valley ratio of 2:1
and, more importantly, shows an intrinsic bistability in
the NDC region of the curve. This bistability results
from charge-storage effects within the quantum well,
which changes the internal potentials. Bistabili&y has
been observed experimentally, and a recent theoretical
model predicted that the bistability is intrinsic. When
we mode1 a modified structure with undoped spacer lay-
ers adjacent to the quantum barriers, we find a peak-to-
valley ratio of nearly 3:1 and a sharp decrease in the neg-
ative resistance. The bistable region is correspondingly
enhanced. A deep triangular quantum well forms be-

tween the cathode contact and the quantum barrier. This
well is sufficiently deep to give rise to a quantized state.
Approximately half of the applied bias is found in the
cathode well. At the valley of the I-V curve, the barriers
are pulled down in energy, permitting ballistic electrons
from the cathode to travel over the barriers, leading to an
enhanced valley current and a degraded peak-to-valley
ratio. A net depletion in the cathode region stems from
the contact resistance of the "ideal" contact model. In-
clusion of spacer layers inhibits formation of the cathode
well. The spacer layer causes an upward bending of the
conduction band at the barrier interface, which resists
the downward bending of the deep quantum well as bias
is applied. More of the potential is dropped across the
barriers. The peak-to-valley ratio is enhanced by the
reduction of ballistic electrons traveling over the barriers.

The transient behavior of the RTD is analyzed using
the temporal equation. The device is switched from a
bias at the peak of the I-V curve to the valley. Currents
are calculated as the system evolves to its new steady
state. The current initially increases greatly, resulting
from the discharging of the quantum well. The current
oscillates in response to the adjusting potentials within
the device, until it decays to its new steady-state value.
Fourier analysis of the current transient shows a peak in
the conductance neap 2 THz.

The Wigner-function model shows an anomaly in the
I-V curve for very low applied bias. This zero-bias anom-
aly has been observed experimentally in tunneling struc-
tures, and results from quantum repulsion from the bar-
rier. The quantum interaction leads to high-momentum
tails in the distribution. The symmetry of these high-
momentum tails is easily disrupted by low applied bias.
Since these tails extend to energies above the barrier, they
contribute to a current with high conductance. After
these tails have depleted, the current comes from the
thermal distribution, which is characterized by a much
lower conductance.

ACKNOWI. EDGMENTS

The authors would like to acknowledge helpful discus-
sions with L. Eaves, R. Landauer, and J. Sinkonnen.
Support for this work was provided by the U.S. Once of
Naval Research, and one author (C.R.) was supported by
the U.S. Air Force OfBce of Scientific Research.

iG. Bernstein and D. K. Ferry, IEEE Trans. Electron. Dev.
ED-35, 887 (1988).

R. Dingle et al. , Appl. Phys. Lett. 33, 665 (1978).
G. Bernstein and D. K. Ferry, Z. Phys. 8 67, 449 (1987).

4T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D.
Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1983); T.
C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, and W. D.
Goodhue, ibid. 45, 1319 (1984).

5V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev.
Lett. 58, 1256 (1987); V. J. Goldman, D. C. Tsui, and J. E.
Cunningham, ibid. 59, 1623 (1987).

L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593

(1974).
7See, for example, E. Merzbacher, Quantum Mechanics lWiley,

New York, 1970).
88. Ricoh and M. Azbel, Phys. Rev. 8 29, 1970 (1984).
R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).

' R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
W. W. Lui and M. Fukuma, J. Appl. Phys. 60, 1555 {1986).
R. Landauer, Z. Phys. 8 21, 247 (1975).
A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, Phys. Rev.
8 36, 5953 (1987).
U. Ravaioli, M. A. Osman, W. Potz, N. C. Kluksdahl, and D.
K. Ferry, Physica 8+C 1348, 36 (1985).



39 SELF-CONSISTENT STUDY OF THE RESONANT-TUNNELING DIODE

~5S. M. Goodnick and D. K. Ferry, in Physics and Chemistry of
III V-Compound Semiconductor Interfaces, edited by C. W.
Wilunson (Plenum, New York, 1985).

~ M. Buttiker, Phys. Rev. 8 33, 3020 (1986).
' R. Landauer, Philos. Mag. 21, 863 (1970}.
~8R. Landauer and M. Buttiker, Phys. Rev. Lett. 54, 2049

(1985).
M. Buttiker, Phys. Rev. B 32, 1846 (1985).

2oM. Biittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev.
8 31, 6207 (1985).

~~M. Biittiker, Phys. Rev. B 35, 4123 (1987).
2~E. Wigner, Phys. Rev. 40, 749 (1932).

J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 {1949).
2~1. B. Levinson, Zh. Eksp. Teor. Fiz. 57, 660 (1969) [Sov.

Phys. —JETP 30, 362 (1970)].
~5G. J. Iafrate, H. L. Grubin, and D. K. Ferry, Phys. Lett. 87A,

145 (1982).
L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
H. Haken, H. Risken, and W. Weidlich, Z. Phys. 206, 355
(1967).

&sM. Lax and W. H. Louisell, IEEE J. Quantum Electron. QE-
3, 47 (1967).
M. J. Bastiaans, Opt. Commun. 25, 26 (1978).
K. H. Brenner and J. Ojeda-Castaneda, Opt. Acta 31, 213
(1984).

3IM. J. Bastiaans, Appl. Opt. 19, 192 (1980).
M. Conner and Y. Li, Appl. Opt. 24, 3825 (1985).
BVK Vijaya Kumar and C. W. Carroll, Opt. Eng. 23, 732
(1984).
J. R. Barker, J. Phys. C 6, 2663 (1973).
J. R. Barker and S. Murray, Phys. Lett. 93A, 271 (1983).
N. C. Kluksdahl, W. Potz, U. Ravaioli, and D. K. Ferry, Su-

perlatt. Microstruct. 3, 41 {1987)~
W. R. Frensley, J. Vac. Sci. Technol. B 3, 1261 (1985)~

-"R. P. Feynman, in Quantum Implications; Essays in Honor of
David Bohm, edited by B. J. Hiley and F. David Peat
(Routledge and Kegan Paul, London, 1987).

ssL. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(Benjamin, New York, 1962).

4oW. Hansch and G. D. Mahan, Phys. Rev. B 28, 1902 {1983);
G. Mahan, J. Phys. F 13, L257 (1983); G. Mahan and W.
Hansch, ibid. 13, L47 (1983).
A. P. Jauho and J. W. Wilkins, Phys. Rev. B 29, 1919{1984).

4zJ. R. Barker, in Physics of Nonlinear Transport in Semiconduc
tors, edited by D. K. Ferry, J. R. Barker, and C. Jacoboni
(Plenum, New York, 1979).

43N. C. Kluksdahl, A. M. Kriman, C. Ringhofer, and D. K.
Ferry, Solid-State Electron. 31, 743 (1988).

44W. R. Frensley, Phys. Rev. B 36, 1570 (1987).

4~R. Courant, K. Friedrichs, and H. Lewy, Math. Ann. 100, 32
(1928).

46Y. I. Shokin, The Method of Dtfferentia/ Approximation
(Springer-Verlag, Berlin, 1983).

~7J. R. Barker, in Proceedings of the I987 Workshop on Quan
turn Transport in Semiconductors, San Miniato, edited by C.
Jacoboni and D. K. Ferry (to be published).

48N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Superlatt.
Microstruct. 4, 127 (1988).
P. Carruthers and F. Zachariason, Rev. Mod. Phys. 55, 245
(1983).

50N. C. Kluksdahl, C. Ringhofer, and D. K. Ferry {unpub-
lished).

5 ~W. Potz (unpublished).
B.Engquist and A. Majda, Math. Comput. 31, 629 (1977).

~3J. S. Blakemore, Semiconductor Statistics (Pergamon, New
York, 1962).

54E. M. Conwell, High Field Transport in Semiconductors,
Suppl. 9 of Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic, New York, 1967).
See, for example, K. Seeger, Semiconductor Physics (Springer-
Verlag, Berlin, 1985).
W. R. Frensley, Solid State Electron. 31, 739 (1988}.
N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, IEEE Elec-
tron. Dev. Lett. 9, 457 (1988). -

~8W. R. Frensley, Phys. Rev. Lett. 57, 2853 (1986).
A. Many, Y. Goldstein, and N. B.Grover, Semiconductor Sur-
faces (Wiley, New York, 1965).

oD. Delagebeaudeuf and N. T. Linh, IEEE Trans. Electron.
Dev. ED-29, 955 (1982).
V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev.
B 35, 9387 (1987).
T. C. L. G. Sollner, Phys. Rev. Lett. 59, 1622 (1987).
L. Eaves, E. S. Alves, T. J. Foster, M. Henini, O. H. Hughes,
M. L. Leadbeater, F. W. Sheard, G. A. Toombs, K. Chan, A.
Celeste, J. C. Portal, G. Hill, and M. A. Pate, in Technology
of Submicron Structures, edited by H. Heinrich, G. Bauer,
and F. Kucher (Springer-Verlag, Berlin, 1989).
F. W. Sheard and G. A. Toombs, Appl. Phys. Lett. 52, 1228
(1988}.

6~L. Y. L. Shen and J. M. Rowell, Phys. Rev. 165, 566 (1968).
C. B. Duke, Tunneling in Solids, Suppl. 10 of Solid State Phys-
ics, edited by F. Seitz and D. Turnbull (Academic, New York,
1969).

67J. A. Appelbaum, Phys. Rev. 154, 633 (1967).
68D. E. Lacklison, B. Duggan, J. J. Harris, C. T. B. Foxon, D.

Hilgon, C. Roberts, and C. M. Hellon, Appl. Phys. Lett. 52,
305 (1988).
N. C. Kluksdahl and D. K. Ferry (unpublished).


