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Two-dimensional excitons in magnetic fields
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We have obtained the energies and the wave functions for two-dimensional (2D) excitons in mag-
netic fields for the ground and several excited states, using an exact numerical integration of the
Schrodinger equation for 2D excitons in a magnetic field. The results of the exact calculation for
the ground-state energy and wave functions are in excellent agreement with those of variational and
perturbation calculations except at intermediate fields where y =(fico, /2R ) is of order 10. Here, R
is the exciton Rydberg unit and co, is the cyclotron frequency of the exciton. Results are presented
for the position of the exciton peak and the magnetoabsorption as a function of the field for 2D exci-
tons.

I. INTRODUCTION

With the development of sophisticated techniques of
crystal growth such as molecular-beam epitaxy (MBE),
interest has arisen in excitonic effects in semiconducting
quantum-well structures in which electrons and holes are
confined in their motion perpendicular to the plane of the
quantum well. ' When the width of the quantum well
becomes less than the exciton Bohr radius, the binding
energy of the excitons is considerably enhanced over its
value in bulk semiconductors and excitonic effects
persist at room temperature which makes these struc-
tures useful for many possible device applications. '

Magneto-optical studies of excitons in quantum-well
structures have been carried out by many authors to help
determine the binding energy of excitons in these struc-
tures and the exciton reduced mass. ' In addition to
the experimental investigations, theoretical calculations
have been performed on the exciton binding energies and
wave functions as a function of magnetic field in quasi-
two-dimensional structures. Because the problem of the
hydrogen atom in a square-well potential is not separable,
various approximation methods have been used to deter-
mine exciton energies and wave functions both in the ab-
sence and presence of magnetic fields. The simplest mod-
el for quantum-well excitons is that of two-dimensional
(2D) excitons. The energy levels and oscillator strengths
for 2D excitons in zero magnetic field were obtained by
Shinada and Sugano. ' The problem of 2D excitons in
magnetic fields was first treated by Akimoto and
Hasegawa' using the Wentzel-Kramers-Brillouin (WKB)
approximation to obtain the energy levels of the 2D exci-
ton. These results agree, within a numerical factor, with
those of a perturbation treatment in both the high- and
low-field limits. However, it is not clear from their treat-
ment how the excitonic energy levels shift with magnetic
field in the intermediate range of fie1ds, which is in fact
the range of fields of experimental interest in quantum-
well systems even though these results have been used to

correct the energies of interband transitions between Lan-
dau levels in recent experiments by Fasolino et al. ' The
authors were prevented from obtaining an exact solution
of the eigenvalue problem for 2D excitons in magnetic
fields because this problem with suitable boundary condi-
tions is beyond the analytic problem of conAuent hyper-
geometric equations.

An alternate approach is to use a variational method to
obtain an upper bound on the energy levels of the 2D ex-
citon as a function of magnetic field. In fact, such an ap-
proach has been used to calculate the binding energy of
excitons as a function of well width for actual quantum-
well systems in zero magnetic field. ' ' Such variational
methods have been extended to the problem of quantum-
well excitons in magnetic fields using variational wave
functions of the hydrogenic and Gaussian ' type. How-
ever, it is well known from calculations of the energy lev-
els of hydrogenic atoms in the 3D case, that the best vari-
ational wave functions change their nature from being a
set of hydrogenic functions at low fields to being a set of
Gaussian functions at high fields.

Because the variational calculations are very compli-
cated for actual quantum-well structures, calculations
were performed for 2D excitons using variational wave
functions which were hydrogenic at low magnetic fields
and Gaussian at high magnetic fields. These variational
calculations yield an upper bound on the exact energy ei-
genvalues of the Schrodinger equation for 2D excitons in
a magnetic field. Moreover, the shift in the exciton peak
predicted by such a variational calculation seems to be in
agreement with some experimental work. Such calcula-
tions are more dificult to perform for the excited exciton-
ic levels. Moreover, the variational method yields better
results for the energies of a system than it does for the
wave functions, and for excitons in magnetic fields the
latter is needed to calculate the behavior of the oscillator
strength for 2D excitons as a function of the magnetic
field. The magnetic-field dependence of the exciton oscil-
lator strength will enable us to see how the intensity of
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the exciton peak changes with increasing magnetic field.
Vhth the development of methods for numerically in-

tegrating difFerential equations, it has become possible to
numerically integrate the Schrodinger equation with ap-
propriate boundary conditions to obtain exact energy ei-
genvalues and eigenfunctions for 2D excitons in a mag-
netic field. Moreover, these numerical methods can be
applied to yield the eigenfunctions and eigenvalues for
both the ground and excited states of the exciton as a
function of magnetic field. In this paper, we wish to
present the results of such an exact numerical integration
of the Schrodinger equation for 2D excitons in a magnet-
ic field using a program called SLEIGN which was written
by Bailey et aI. for solving Sturm-Liouville eigenvalue
equations. %'e obtain the exact energy eigenvalues and
eigenfunctions of the 2D exciton as a function of the
magnetic 6eld and use this information to calculate the
absorption of light as a function of photon frequency and
magnetic field for such 2D excitons. In our calculations,
we will neglect complications connected with the energy
levels of real quantum-well excitons such as those due to
the finite width of the quantum well, the nonparabolicity
of the valence bands, and the mixing of the heavy- and
light-hole bands even though they are important in real
materials such as GaAs. Andreani and Pasquarello
have taken account of valence-band mixing in calculating
the binding energies, wave functions, and oscillator
strengths of quantum-well excitons in the absence of
magnetic fields, while Yang and Sham and Bauer and
Ando take account of the efFeet of magnetic fields to-
gether with the valence-band mixing. These authors have
shown that the mixing of the valence-band structure is
important in interpreting the experimental magneto-
optical results. Bauer and Ando use as their set of basis
functions to calculate the exciton energies, hydrogenic
wave functions which limits the validity of their calcula-
tions to low magnetic fields, while Yang and Sham have
performed their calculations using as basis functions a set
of Landau-level wave functions. As in the case of earlier
variational calculations neglecting band mixing, it is not
clear whether the use of either hydrogenic or Gaussian
basis functions will yield good results at intermediate
fields where the regime of transition between the two
kinds of basis functions occurs. Therefore, exact calcula-
tions of the exciton energy levels and oscillator strengths,
using the simplified model of two-dimensional excitons
with the neglect of band nonparabolicity and valence
band mixing, will increase our understanding of the tran-
sition in magnetic fields between hydrogenic and free
Landau-level behavior of the electron-hole states.

II. THEGRY

For a 2D exciton in a magnetic field we have axial sym-
metry, and the angular and center-of-mass coordinate
dependence of the wave function can be separated ofF, so
that the Schrodinger equation reduces to a second-order
ordinary difFerential equation of the form

where E is in Rydberg units, R =(e /2aa ) is the exciton
Rydberg unit, p is in units of exciton Bohr radii,
o =(~Pi /e p) is the exciton Bohr radius, y = (fico, /2R ) is
a dimensionless magnetic field, co, = (e8 /pc ) is the cyclo-
tron frequency, sc is the relative dielectric constant of the
material, m is the quantum number specifying the orbital
angular momentum along the magnetic-field direction,
and p=(m, mh/(m, +mi, ) is the reduced mass of the
electron-hole pair, which are bound together into the ex-
clton.

In the hmit of zero magnetic field, the energy eigenval-
ues and eigenfunctions of Eq. (1) can be obtained exactly
and are'
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respectively, where Lg(p) is the associated Laguerre poly-
nomial. In the limit of zero Coulomb interaction, the ex-
act energy eigenvalues and eigenfunctions of Eq. (1) can
also be obtained exactly and are
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respectively.
To obtain the eigenvalues and eigenfunctions for the

2D exciton in a magnetic field for the general case, Eq. (1)
is numerically integrated using SLEIGN. The eigenvalue
problem given by Eq. (1) is singular in two senses. First,
the interval (0, ao ) in which it is defined is semi-infinite.
Second, several of its coefBcient functions have a singu-
larity at the origin. These facts governed our choice of
SLEIGN, since it is the only Sturm-Liouville code we know
of which can handle such problems. The SLEIGN ap-
proach is to assume that the n th eigenvalue of a singular
problem can be approximated arbitrarily closely by the
nth eigenvalue of a nonsingular problem obtained by
truncating the original interval. In order to solve the
nonsingular problem, the classic Prufer substitution is
used to transform from a second-order linear equation to
a first-order nonlinear equation in the phase. This substi-
tution also allows the boundary conditions at each end to
be converted to initial conditions. Initial-value problems
are then solved inwardly from each end point and
matched at the center of the interval to obtain the correct
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FIG. 2. The exciton binding energy in Rydbergs units is shown as a function of y for the is, 2s, 3s, and 4s exciton states.
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FKx. 3. The ground-state exciton energy as a. function of normalized magnetic field calculated using sLEIGN (a) is shown in com-

parison with the results of variational calculations using Gaussian (b }and hydrogenic (e }variational wave functions.
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is shown as a function of y for the ls and 2s exciton states

tional wave function yields ground-state energies which
agree with the results of the exact calculations to less
than a few percent. Therefore, except for intermediate
values of the magnetic 6eld, simple hydrogenic or Gauss-
ian variational wave functions will give very good results
for the ground-state exciton energy.

The optical-absorption coefficient can be related to the
imaginary part of the dielectric function. For a trvo-
dimensional gas of free carriers and excitons, Lederrnan
and Dow2s have shown that the imaginary part of the
dielectric function is given by
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Fl~. 5. The dependence of ~f(())~2 on y calculated using st.aroN (a ) is shown in comparison with the results of variational calcula-

tions using Gaussian (b ) and hydrogt:nic (c ) variational ~ave functions.
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e (ci) ) =C„,If (0)I'~«»
where S(E) is the density of states for the relevant parti-
cles, If(0)I is the square of the envelope function for
vanishing separation of the electron-hole pair,
E=A~ —E, co is the photon frequency, E is the band
gap of the semiconductor, and

c„=(4~e'Im'co'Ra')I & c Imp I
U ) I'

for a two-dimensional system. Here e is a unit vector in
the direction of polarization of the light and p is the
momentum operator. Therefore the oscillator strength
for the optical transition and the intensity of the exciton
peak are proportional to the factor

If(0)I . The intensity
of the exciton absorption peak, therefore, depends upon
the value of the wave function f(p) at the origin, i.e., on
the probability of the electron and hole being found at
the same point in space. For excitons in zero magnetic
fields, If(0)I =2/(n —

—,') while for a free-electron-hole
pair in the presence of the magnetic field but in the ab-
sence of the Coulomb interaction between them,
If(0)

I

=y. SLFIr N also enables us to obtain the value of
the wave function at the origin for arbitrary magnetic
fields since we are able to obtain numerically the eigen-
functions of Eq. (1) as well as its eigenvalues. In Fig. 4
If(0)

I
is shown as a function of the normalized magnetic

field y for the is and 2s states. The value of If(0)I is
larger for the ground state than it is for the excited states,
and for both the ground and excited states, If(0)I in-
creases with magnetic field. This means that the intensity
at the exciton peaks should also increase with magnetic
field. In Fig. 5 we compare the value of

I f(0)I obtained
here to those obtained as a result of the simple variational
calculations using hydrogenic and Gaussian wave func-
tions. The value of If(0)I as a function of magnetic field
obtained using SLEIGN starts out at the value obtained us-
ing a hydrogenic variational wave function at low mag-
netic fields. At high magnetic fields, its value tends to ap-
proach the value obtained using the Gaussian variational
wave function although it never quite reaches that value
for finite magnetic field. However, it can be seen from
Figs. 3 and 5, that the variational method yields better
agreement with the exact numerical results obtained us-
ing sLEiGN for the exciton energies than for If(0)I and
that this agreement exists over a wider range of fields.
For the states for which m is not equal to zero, If(0)I
vanishes and therefore such states would not contribute
to the intensity at the exciton peaks for allowed transi-
tions in direct-band-gap semiconductors.

The magnetoabsorption coefficient which is related to
e2(co) depends upon the density of states. For a system
having discrete energies, the density of states is given by a
sum of 5 functions whose arguments are related to these
discrete energies. To obtain values for the magnetoab-
sorption coefficient as a function of photon energy at
fixed magnetic field, we replace the 5 functions by
Lorentzians which give an absorption coefficient K of the
form

K (co)= 3
If(0)

I
[(E+E,„) + I ]

where A is a coefficient which contains the parameters of
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FIG. 6. The normalized optical-absorption coe%cient is
shown as a function of E for y =0 (a), y = 1 (b}, and y = 10 (c},
respectively. Only the 1s and 2s states have been taken into ac-
count in this calculation.

the material and I is the exciton linewidth. In Fig. 6 the
normalized absorption coefficient is shown as a function
of E for various values of the magnetic field. The value
used for I is 0.5 in exciton Rydberg units and is assumed
in our calculations to be independent of the magnetic
field. From Fig. 6 we see that the exciton peak shifts to
higher energies E with increasing magnetic field and that
the intensity of the exciton peak, assuming a Lorentzian
for'the exciton linewidth, also increases with increasing
magnetic field. In our calculations, the contribution of
both the 1s and 2s exciton states to the exciton peak are
taken into account. From Fig. 6 we see that the absorp-
tion peak due to the 2s state is barely observable in zero
magnetic field, but that the height of this peak relative to
that of the 1s absorption peak increases dramatically with
increasing magnetic fields. Even for the case where y =1,
when there is a negligible shift in energy of the 1s absorp-
tion peak, the 2s absorption peak clearly stands out. Al-
though we have not shown the peaks arising from the
higher-excited exciton s states, which would be almost
unobservable in the absence of the magnetic field, they
should behave similarly. In fact, in the strong-field re-
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gime, the intensity of the peaks due to the higher exciton-
ic levels should approach the same value as the peaks
arising from the free Landau levels.

III. SUMMARY

Exact numerical integration of the Schrodinger equa-
tion for 2D excitons in a magnetic field yields the energy
eigenvalues and eigenfunctions of the excitons which en-
ables us to obtain the optical absorption due to such 2D
excitons as a function of magnetic field. The results of
this numerical integration yield ground-state exciton en-
ergies which are in excellent agreement with those ob-
tained using a variational approach except at intermedi-
ate values of magnetic field, such that y is of order 10. 1n
low 6elds our results for both the exciton energies and os-
cillator strengths agree with those for 2D excitons in zero
magnetic field, while in high 6elds they agree with those
for the free Landau levels both for the ground and excit-
ed states. With increasing magnetic field, the exciton
states go over to the free Landau states. The exciton en-
ergies are found to shift almost linearly with field for high
magnetic fields, while the oscillator strengths are also
found to increase linearly with field for high fie1ds. Our
calculations predict a shift-of the exciton peak with in-
creasing field together with an increase in the intensity at
the peak. We also predict that the intensity of exciton
peaks due to excited exciton states also will increase with
6eld so that these peaks will become more prominent as
the field increases. Our predictions seem to be in good
agreement with the experiments of Davis et al. in which
the shift in the exciton peak was observed in a
r-.-aAs/GaA1As multiple-quantum-well system in magnet-
ic fields up to 27 T. The only deviations between our
theoretical calculations and the experiments occurred at
the highest magnetic fields where nonparabolicities due
to valence-band mixing would be expected to be impor-
tant.

Our results agree with the general behavior at low
and high magnetic field predicted by Akimoto and
Hasegawa. ' However, the exact numerical values of the
exciton energy, which they predict using the WKB
method, are in disagreement with the exact numerical re-
sults at both low and higher magnetic 6elds. In both the
low- and high-field limits, their use of the %KB approxi-
mation leads to results which overestimate the exciton
binding energy. In the low-field hmit, their predicted di-
amagnetic shift of the exciton energy in the ground state

is a factor of 2 smaller than the predictions of a perturba-
tion calculation and our results arising from an exact nu-
merical integration of the wave equation. In the high-
6eld limit, their calculations predict a binding energy&
which is 20% larger than our exact results and those of a
perturbation calculation which treats the Coulomb in-
teraction between the electron-hole pair as a perturbation
on the free Landau levels in the magnetic field. Their
values of ' the exciton oscillator strength are also in
disagreement with our exact results since we obtain a
stronger variation of the oscillator strength as a function
of field for the ground state than do they.

Finally, we have presented our result~ in terms of di-
mensionless quantities, i.e., the exciton and cyclotron en-
ergies are given in terms of exciton Rydberg units.
Therefore, our results are applicable to excitons in any
semiconducting quantum-well structures independent of
the material parameters as long as the approximations of
our simple model hold, i.e., neglect of the finite width of
the well and of the mixing of the light- and heavy-hole
valence bands. The material parameters in this case
come in only in determining the value of the exciton Ryd-
berg units and the cyclotron frequency ~, . In
GaAs/Ga, „Al„As quantum-well structures, where the
light- and heavy-hole exciton reduced masses are
0.051m 0 and 0.041m 0, respectively and the relative
dielectric constant is 11.6, the exciton Rydberg unit is 3.8
meV for the heavy-hole exciton and 4.85 meV for the
light-hole exciton. Therefore y =1 corresponds to a mag-
netic field of 2.7 T, while y = 10 corresponds to a magnet-
ic field of 27 T for the heavy-hole exciton. Therefore in
GaAs/Ga, „Al„As quantum-well systems, the energy of
the heavy-hole exciton increases almost linearly with
magnetic fields for magnetic fields above 10 T. However,
even at much higher fields, the exciton energy still differs
by quite a bit for the ground state from the lowest free
Landau level. On the other hand, at fields of only a few
Tesla, the energies of the excited exciton states have al-
ready approached the energies of their related free Lan-
dau levels. This is due to the decrease of the exciton
binding energy of the higher states which is shown in Fig.
2.
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