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Classical-trajectory calculations on Ar+ sputtering of a Si(001) surface
using an ab initio potential
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We describe classical-trajectory calculations of sputtering yields for Ar -ion collisions with a

Si{001)surface. The Ar -Si and short-ranged Si-Si interaction potentials were calculated using the

ab initio Hartree-Pock and configuration-interaction methods. The low-energy potential describing

the silicon solid is the two- and three-body form due to Stillinger and Weber. We compare the cal-

culated sputtering yields with experiment. The potential-energy surface strongly inAuences the cal-

culated sputtering yields, and it is found that the most reasonable agreement is obtained from our

potentials using the (2X1) Si(001) reconstructed surface rather than the bulk-terminated surface.

Analysis of the kinetic energy and angular distributions of the sputtered silicon atoms and of cluster

yields has provided a mechanism of ejection.

I. INTRODUCTION

The development of the electronics industry during the
last 2S years has seen a rapid growth in the complexity of
integrated circuits (IC's) from the small-scale integration
of the early 1960s to the very-large-scale integration
(VLSI) circuits of today. The most common material for
these circuits is silicon, though there is increasing interest
in the use of compound semiconductors such as gallium
arsenide. The fundamental problem in the manufactur-
ing process is that as the dimensions of the VLSI chip are
reduced, and the number of components per chip is in-
creased, the degree of control over the manufacturing
processes must be necessarily improved. '

In VLSI microfabrication, it is particularly desirable to
choose an anisotropic process, i.e, a process for which the
vertical etch rate is much greater than the lateral etch
rate, so that undercutting of the mask is minimized and
the features making up the circuits can be packed much
closer together. One way of achieving this is by dry etch-
ing, either by direct ion bombardment or by ion-
beam-assisted etching (IBAE) (Refs. 7—12) and plasma
etching. ' IBAE and plasma etching are particularly
anisotropic because, since the ion Aux is normal to the

substrate surface, the bottom of the feature being cut in

the substrate receives a much greater Aux of energetic

ions than the sidewalls. The chemistry of IBAE has re-

cently been reviewed by Mayer, Ameen, and Vitkavage.
Another important process is that of ion implanta-

tion, where silicon wafers are n-type and p-type doped

by 3—500-keV ion. beams of boron, phosphorus, and ar-

senic. Using this technique, precise control may be ob-

tained over the depth profile and concentration of the

dopants. However, there is a limit on the maximum con-

centration profile that may be achieved since the already

implanted atoms may be resputtered.
However, in spite of the technological importance of

these processes, there has been little theoretical investiga-

tion of the factors governing the sputtering of silicon. In

this paper, we present results of classical-trajectory calcu-
lations of argon-ion sputtering of silicon. While the
sputtering of metals has been intensively investigated by
classical-trajectory simulations, almost no attention
has been paid to the sputtering of silicon and other semi-
conductors. The reason for this is readily apparent:
two-body potentials stabilize closed-packed structures
and thus descriptions of the potential-energy surface of
an open crystal form such as the diamond cubic lattice of
silicon and germanium requires the use of computational-
ly expensive many-body potential functions. These fac-
tors make this system a benchmark for the use of many-

body potentials in a computer simulation.
Classical-trajectory calculations require the knowledge

of interatomic potentials, and in the literature there are
many potentials available for silicon, though not all of
them are suitable for sputtering simulations. The sim-

plest of the various proposed silicon potentials is that due
to Halicioglu et a/. , in which the two-body term is

a Lennard-Jones function and the three-body part is de-

rived from an Axilrod-Teller potential. A more accu-
rate description of the properties of si1icon was obtained
using the Keating-model potential, where interactions
are expressed in terms of bond stretches and bends, and
interactions between the stretches and bends. Unfor-
tunately, this potential is not suitable for describing
disordered systems. Biswas and Hamman ' have de-

vised potentials to describe the cohesive energies of sil-

icon clusters, and Tersolf ' has derived two-body po-
tentials which are dependent on the local environment.

The bulk silicon potential function which has gained
widest acceptance in recent years is that due to Stillinger
and Weber. Unlike other proposed potentials
which were fitted to ordered systems such as the perfect
diamond lattice, this potential was optimized to describe
the dynamics of both the solid and liquid phases. For
this reason, the Stillinger-Weber potential is considered
to be the best available for situations which may involve a
large amount of disorder or number of defects. The po-
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tential has been successfully applied to a variety of prob-
lems ranging from the dynamics of liquid and amor-
phous silicon, the properties of the crystal-melt inter-
face, and the fragmentation of silicon microclus-
ters. However phonon dispersion curves calculated us-
ing this potential are in poor agreement with experi-
ment, and the elastic constants of the perfect diamond
lattice are found to be 30—40% too high. The func-
tional form of this potential is especially suitable for
classical-trajectory simulations since the potential goes
smoothly to zero at a cutoff distance between the first-
and second-nearest-neighbor distances of the equilibrium
lattice structure, thus minimizing the number of interac-
tions that must be calculated at each time step.

Recently, Brenner and Garrison developed an alter-
native potential for silicon based on a modification of
Keating's valence-force field. Unlike the Stillinger-
Weber potential, this potential is able to accurately repro-
duce the phonon dispersion relations of the silicon lattice,
indicating that the true potential-energy surface is being
described very accurately at near equilibrium geometry.
Molecular-dynamics simulations of the solid state give
favorable results when compared with experiment, " but
the potential has not yet been used to study the dynamics
of the liquid and amorphous states which would provide
a better test of its suitability for sputtering calculations.
Simulations using this potential involve an increased ex-
pense in computer time compared to the Stillinger-Weber
potential because, although the Brenner-Garrison poten-
tial also goes smoothly to zero between the first- and
second-nearest-neighbor distances, the additional com-
plexity of the functional form means that the third-body
forces are very costly to evaluate.

We now consider the initial conditions of the trajectory
calculations. Sputtering calculations in the past have
generally neglected the small relaxations of surface atoms
away from the bulk equilibrium geometry, since they
were found to have a negligible inAuence on the dynam-
ics. ' However, for Si(001), the surface reconstruction
involves major displacements of selvage atoms from the
bulk geometry, and this might be expected to have an ap-
preciable effect on the calculated trajectories. Unfor-
tunately, the exact nature of the reconstruction of the
Si(001) surface remains in some doubt. It is now accepted
that the dimer pairing model of Schlier and Farnsworth
as deduced on the basis of the low-energy electron
diffraction (LEED) experiments is the correct basic
description of the reconstruction. In this model, one of
the two dangling bonds per surface atom forms a new
bond with a corresponding dangling bond of a neighbor-
ing atom. The consequence of this is that the two atoms
are displaced from their bulk geometries towards each
other, forming a (2 X 1) reconstructed surface. However,
higher-order LEED spots, such as the c(4X2) pattern
observed by Lander and Morrison, have long indicated
that this cannot be the complete description.

Chadi and Yin and Cohen have performed tight-
binding total-energy calculations to determine the
minimum-energy structure of the reconstructed Si(001)
surface. These calculations predict that the surface di-
mers were both asymmetric (i.e., one atom within the di-

mer was displaced further from its bulk position than the
other) and buckled (i.e., one atom is raised upwards rela-
tive to the other). Variously proposed models of this sur-
face reconstruction have been reviewed recently by
Schluter. '

Since classical-trajectory simulations of sputtering de-
scribe the dynamics of the surface layers of the target, it
is essential that the potential-energy function chosen to
model the interactions between the solid atoms be able to
reproduce surface properties such as the equilibrium sur-
face geometry. This need not be the case since solid po-
tential functions are generally fitted to bulk properties
where the electron-density distribution may be very
different. Abraham and Batra . have used the
Stillinger-Weber potential to determine the equilibrium
geometry of the (2 X 1) Si(001) reconstructed surface and
found that buckled and twisted dimers were unstable
with respect to the symmetric dimer. However, since
buckling and twisting involves charge transfer between
the dimer atoms, which the Stillinger-Weber potential is
unable to describe, this result is not too unexpected.
Self-consistent tight-binding calculations by Bechstedt
and Reichardt indicate that the energy gain in forming
buckled and twisted dimers from the perfect (2X1)
reconstructed surface is only of the order of 0.04 eV and
that the amount of twisting and buckling is small. This is
in good agreement with scanning tunneling microscopy
studies by Tromp et al. , ' who find that the numbers
of buckled and nonbuckled dimers are roughly equal.
More recent molecular-dynamics calculations predict
that the Si(001) surface is composed of islands of (2X1)
dimer reconstruction separated by regions of disorder,
which is in good agreement with the results of Tromp
et al. The Stillinger-Weber potential has been used to
study the solid-liquid-melt interface, epitaxial growth
from the liquid phase ' and by use of molecular
beams, ' pulsed laser melting of the surface, and in
calculations of the adatom vibrations on the 'reconstruct-
ed surface. The Brenner-Garrison potential has been
less extensively tested but has been used with similar suc-
cess in surface simulations. '

The earliest application of classical-trajectory methods
to the sputtering of a semiconductor were by Ostry
et al. ~ ~ and Smith on the Ar bombardment of ger-
maniurn and silicon, respectively. These studies used the
metastable model of Harrison, Jr. et al. , in which the
pair-potential functions are eroded at the equilibrium in-
teratomic separation and the binding forces are modeled
by a planar barrier. This removed the need for many-
body potential functions to maintain the lattice structure.
Ostry et al. used an Abrahamson Born-Mayer potential
at high energy matched to a Morse potential at low ener-

gy to describe the Ge-Ge interaction while Smith calcu-
lated a new silicon potential using the modified Wedepohl
method. ' These calculations examined various
sputtering mechanisms within the diamond cubic lattice
and comparisons of the angular distributions of the sput-
tered atoms and the relative sputtering yields between the
different crystal faces with experiment were genera11y
favorable.

Calculations using the full classical-trajectory method
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have been relatively few. Park and Clary have per-
formed calculations on the sputtering of silicon by Ar+
ions in the presence of a chlorine overlayer, but they
neglected the third-body terms in the potential surface,
relying on clamped atoms at the edge of the lattice to
maintain the stability of the lattice for the duration of
each trajectory. More recently, Lampinen et al. and
Brenner and Garrison ' have studied the molecular-
beam epitaxy of silicon using many-body potentials.
However, no studies of the sputtering of silicon using a
many-body potential have previously been performed.

The great difhculty encountered when comparing ex-
perimental sputtering yields with those determined by
computer simulation is that the latter are an average of
many ion collisions with an undamaged surface, while the
former are the average of many ion collisions with the
same surface. Blank and Wittmaack and Kempf have
investigated the variation of the sputtering yields of sil-
icon bombarded by argon and xenon ions with dosage
and found that the sputtering yield increased with in-
creasing dosage until steady-state conditions were
achieved. This was found to correlate with the amount of
implanted rare-gas atoms in the surface region, and the
consequential reduction in the surface binding energy. In
addition, semiconductors are readily amorphized under
ion bombardment, so that the influence of the lattice
structure on the sputtering yield may be easily lost.
Consequently, direct comparison between experiment
and theory is only possible provided the experiments are
performed in "low-dose" mode under which cir-
cumstances the amount of damage to and implantation in
the surface will be minimal.

Recently, Winograd et al. have developed a new
method which enables the determination of low-dose
sputtering yields, and energy and angle-resolved distribu-
tions of neutral atoms (EARN) desorbed from surfaces.
However, the only experimental data presently available
are for argon-ion sputtering of rhodium surfaces, ' and
for other systems it remains necessary to rely on unsuit-
able experimental sputtering yields for the purpose of
comparison of theory with experiment.

In a previous paper, we showed that a satisfactory
agreement between calculated and experimental sputter-
ing yields for Ar+-Cu(100) is obtained when using pair
potentials calculated using ab initio electronic-structure
theory, rather than analytic potentials. It was found that
the inclusion of electron correlation eA'ects is necessary to
obtain an accuracy of +0. 1 eV. A similar method is
adopted in this paper for the calculation of Ar+-Si and
Si-Si potentials.

In the following section, the new Si-Si and Ar -Si po-
tentials are described and compared to previously pro-
posed potentials. In Sec. III, the classical-trajectory
simulations of the sputtering of the Si(001) surface by
Ar+ ions will be described. Section IV contains the re-
sults and discussion. Conclusions are presented in Sec. V.

II. THE Si-Si and Ar+-Si REPULSIVE POTENTIALS

The Stillinger-Weber and Brenner-Garrison potentials
were both developed for the purpose of modeling the
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FIG. l. A comparison of the SCF and empirical Ar+-Si po-
tentials. { ) denotes the SCF potential, { -) denotes
the Smith modified Wedepohl potential, (

———) denotes the
Biersack-Ziegler universal potential, and ( ——.—) denotes the
Abrahamson potential.

low-energy dynamical properties of silicon. Neither pro-
vides an acceptable description of the potential-energy
surface at energies above a few eV. At short interatomic
separations, the Stillinger-Weber two-body term varies as
r while Brenner and Garrison originally employed a
Gaussian function. Recently, Brenner replaced the
Gaussian term with a high-energy potential function
which appears to be that of Smith.

Since none of these, nor the previously used Morse and
Abrahamson potentials, are expected to provide an accu-
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FIG. 2. A comparison of the SDCI and empirical Si-Si po-
tentials. ( ) denotes the SDCI potential, ( ~ . ) denotes
the Smith modified Wedepohl potential, ( ———) denotes the
Biersack-Ziegler universal potential, and ( —.——- ) denotes the
Abraharnson potential.
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rate description of the potential-energy surface at high
energies, we have calculated new potentials using
electronic-structure theory in a similar way to our previ-
ous study of argon-ion sputtering of copper. Each sil-
icon atom within the perfect solid forms a single bond to
each of its four neighboring atoms. Since the ground
state of the Si2 dimer is the inappropriate double-bonded

Xg state, the tetrahedrally disposed single bonds of the
bulk silicon were imposed by performing the calculations
on the Si2H6 molecule. The hydrogens were kept fixed at
the exact tetrahedral geometry over the range of Si-Si in-
teratomic separations considered, and a staggered confor-
mation was maintained throughout. The Si—H bond
length was kept const;ant throughout the calculations at
the experimental value for SiH& (Ref. 90) (1.4798 A) as
used by Rothenberg et aL ' Similarly, the SiH3Ar+ mol-
ecule was used for the Ar+-Si potential. For the Ar and

Si basis sets we used triple-g contractions of those of Veil-
lard with two d polarization functions added from the
set in Huzinaga's compilation, i.e., (12s9p2d/9s6p2d),
while for H the basis set of Dunning ' was used with
one p-polarization function added of exponent of 1.0, i.e.,
(4s Ip/2s Ip). The basis sets are shown in Table I.

For the Si-Si potential, our calculations show that
correlation has an appreciable eft'ect on the shape of the
calculated potential. At short interatomic separations
there is about 0.5 eV less correlation energy than at bond-
ing distances, and the variation in correlation energy was
not smooth, the maximum being 0.8 eV, so this poten-
tial was calculated using the singles and doubles
configuration-interaction (SDCI) method involving all
electrons in the full molecular-orbital basis set. Although
the molecule had full D3& symmetry, the CI calculations
were carried out in C21, symmetry for technical reasons.

Si

TABLE I. Unnormalized contracted Gaussian-type orbital t,'GTO) basis sets.

Exponents

699 89.3
103 80.2

2330.00
657.466

214.004

77.6064

Coefficients

0.000 31
0.002 49
0.01303
0.052 27

1.00000

1.00000

Exponents

118 186.0
17 688.8

4027,30
1144.96

376.954

138.070

Coefficients

0.000 30
0.002 38
0.012 33
0.049 08

1.00000

1.00000

Exponents

19.2406
2.8992
0.6534

0.1776

1.0000

CoefBcients

0.032 828
0.231 208
0.817 238

1.00000

1.00000

30.6395

12.8156

54.9540

23.1650

1.00000

1.000 00

3.927 14

1.452 21

0.257 644

0.094 404

1.000 00

1.00000

1.00000

1.00000

7.376 88

2.923 69

0.650 663

0.232 877

1.00000

1.00000

1.000 00

1.000 00

337.495
78.6871
24.9351
9.215 15

0.003 54
0.027 54
0.11649
0.293 30

660.901
157.219
50.0639
18.6119

0.002 99
0.023 64
0.105 89
0.285 67

3.615 26

1.451 99

0.503 992

0.186040

0.065 432

0.25

0.75

1.00000

1.00000

1.00000

1.00000

1.00000

1.000 00

1.000 00

7.436 92

3,088 57

1.102 67

0.414 763

0.145 449

0.263

0.950

1.000 00

1.00000

1.00000

1.00000

1.000 00

1.000 00
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TABLE II. The fit of the potential function for the self-consistent-field (SCF) Ar -Si potential-energy curve.

Internuclear
0

separation (A)

0.200
0.203
0.207
0.210
0.213
0.217
0.220
0.230
0.240
0.250
0.260
0.270
0.280
0.290
0.300
0.310
0.320
0.330
0.340
0.350
0.360
0.370
0.380
0.390
0.400
0.420
0.440
0.450
0.470
0.480
0.500
0.520
0.540
0.550
0.570
0.600
0.620
0.650
0.670
0.700
0.720
0.750
0.770
0.800
0.820
0.850
0.870
0.900
0.920
0.9SO
0.970
1.000
1.050
1.100
1.150
1.200
1.250
1 ~ 300
1.350

SCF'

5524.9750
5366.5450
5164.9430
5020.5970
4881.8250
4705.0280
4578.2940
4189.1470
3845.6850
3541.6330
3271.6920
3031.3720
2816.8410
2624.8090
2452.4240
2297.1780
2157.7800
2028.8610
1909.4720
1791.6940
1677.7010
1570.3740
1470.1270
1376.7990
1290.0690
1134.8550
1001.3170
941.7162
835.0968
787.4402
702.0038
628.0732
563.9253
535.0373
482.8672
416.5320
378.8974
330.4290
302.5399
266.0987
244.8225
216.6498
199.9969
177.7010
164.3785
146.3497
135.4598
120.5753
111.5072
99.0400
91.4202
80.9412
6S.7839
53.1902
42.8123
34.3184
27.4016
21.7894
17.2476

Base function

5474.7984
5324.7689
5133.5581
4996.4137
4864.3513
4695.7575
4574.6372
4201.0753
3868.8196
3572.1416
3306.2593
3067.1557
2851.4376
2656.2233
2479.0538
2317.8212
2170.7110
2036.1 S48

961.0811
915.0575
829.5165
789.7932
715.9622
649.0330
588.3604
560.1854
507.8184
438.3020
397.3289
342.9376
310.8793
268.3223
243.2392
209.9416
190.3160
164.2632
148.9076
128.5233
116.5088
100.5596
91.1592
78.6802
71.3250
61.5612
48.1669
37.6869
29.4871
23.0714
18.0516
14.1240
11.0509

Potential functions (eV)
CP'

—S0.1766
—41.7761
—31.3849
—24. 1833
—17.4737
—9.2705
—3.6568
11.9283
23.1346
30.5086
34.5673
35.7837
34.5966
31.4143
26.6298
20.6432
12.9310
7.2938

—40.2358
—26.6591
—5.5801

2.3535
13.9581
20.9575
24.4403
25.1454
24.9501
21.7705
18.4319
12.5083
8.3391
2.2239

—1.5829
—6.7082
—9.6814

—13.4381
—15.4708
—17.8259
—18.9506
—20.0160
—20.3486
—20.3602
—20.0949
—19.3792
—17.6174
—15.5038
—13.3243
—11.2479
—9.3495
—7.6656
—6.1966

Fitted function

5524.9750
5366.5450
5164.9430
5020.5970
4881.8250
4705.0280
4578.2940
4189.1470
3845.6850
3541.6330
3271.6920
3031.3720
2816.8410
2624.8090
2452.4240
2297.1780
2157.7800
2028.8610
1909.4720
1791.6940
1677.7010
1570.3740
1470.1270
1376.7990
1290.0690
1134.8550
1001.3169
941.7166
835.0967
787.4397
702.0041
628.07S4
563.9201
535.0399
482.8683
416.5315
378.8970
330.4293
302.5402
266.0984
244.8221
216.6498
199.9974
177.7013
164.3784
146.3492
135.4594
120.S756
111.5078
99.0404
91.4200
80.9404
65.7843
53.1907
42.8114
34.3193
27.4011
21.7896
17.2475

Residual'

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—0.0001
0.0004

—0.0001
—0.0005

0.0003
0.0022

—0.0052
0.0026
0.0011

—0.0005
—0.0004

0.0003
0.0003

—0.0003
—0.0004

0.0000
0.0005
0.0003

—0.0001
—0.0005
—0.0004

0.0003
0.0006
0.0003

—0.0003
—0.0008

0.0004
0.0005

—0.0010
0.0009

—0.0005
0.0002
0.0000
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TABLE II. (Continued).

Internuclear
separation (A)

&.400
1.450

SCF'

13.5788
10.6201

Base function"

8.6465
6.7652

Potential functions (eV)
CP'

—4.9324
—3.8549

Fitted function

13.5789
10.6201

Residual'

0.0000
0.0000

'Hartree-Pock self-consistent-field potential.
0

The base function to which the SCF potential is fitted is a Moliere function at r &0.330 A and a Born-Mayer function at
r ~0.440 A.
'Chebyshev-polynomial (CP) contribution.
Born-Mayer —Chebyshev polynomial.

'Fitted function —SCF.
Absolute energy = —614.090 95 hartrees. Energy at internuclear separation 100 A = —817.128 35 hartrees.

For the Ar+-Si potential, however, the correlation energy
was found to be roughly constant for the full range of in-
teratomic separations considered, indicating that the
self-consistent-field (SCF) description of the system pro-
vides an adequate calculated potential-energy surface. In
all these calculations, the ground-state potential-energy
surface was followed throughout, i.e., the 'A, states for
Si2H6 and SiH3Ar . For the Si-Si potential, an avoided
crossing in the region 1350—800 eV made convergence of
the calculations difBcult so that we have fitted across this
region having very few points. The high-energy region of
the Si-Ar+ potential also contained avoided crossings,
but points could still be obtained because the SCF calcu-
lations did converge. These observations suggest a possi-
ble need for multireference CI calculations, but such

refinements would not be expected to significantly alter
the results.

All the electronic-structure calculations were per-
formed using the Cambridge Analytic Derivatives Pack-
age (CADpAc), and the SDCI calculations were per-
formed using the CI program of Saxe et al. interfaced
to c&DPAc.

The Si-Si and Ar+-Si potentials were fitted to a Born-
Mayer function at low energy and a Moliere function at
high energy, as described in our previous paper, using
routines from the Numerical Analysis Group library
NAG Mark 11. The residuals were fitted to Chebyshev
polynomials of the first type so that the maximum error
between the fitted function and the calculated data points
was less than 0.1 eV (see Tables II and III). At low ener-

TABLE III. The fit of the potential function for the SDCI Si-Si potential-energy curve.

Internuclear
0

separation (A) SDCI'
Potential functions (eV)

Base function" CP' Fitted function Residual'

0.300
0.320
0.350
0.450
0.470
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
1.000
1.100
1.200
1.300
1.400

1916.2200
1666.3410
1373.6910
796.5832
707.1355
591.5873
441.6504
337.0257
260.5732
204.8009
163.5368
132.5646
108.9442
90.5883
64.1227
45.6898
31.7548
20.9415
12.7084

1899.2480
1662.3255
1377.1707
794.3918
719.3739
623.1438

327.3642
263.4351
211.9904
170.5920
137.2780
110.4698
88.8968
57.5667
37.2783
24.1402
15.6324
10.1230

—16.9720
—4.0155

3.4797
—2.1914

12.2384
31.5565

—9.6615
2.8618
7.1896
7.0550
4.7134
1.5260

—1.6918
—6.5560
—8.4115
—7.6146
—5 ~ 3091
—2.5854

1916.2200
1666.3410
1373.6910
796.5832
707.1355
591.5873
441.6504
337.0257
260.5733
204.8007
163.5370
132.5647
108.9438
90.5886
64.1226
45.6898
31.7548
20.9415
12.7084

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001

—0.0002
0.0002
0.0001

—0.0004
0.0003

—0.0001
0.0000
0.0000
0.0000
0.0000

'Configuration interaction potential.
The base function to which the SDCI potential is fitted is a Moliere function at r ~0.500 A and a Born-Mayer function at

r ~0.600 A.
'Chebyshev polynomial contribution.
Born-Mayer-Chebyshev polynomial.

'Fitted function —SDCI.
'Absolute energy = —511.205 84 hartrees. Energy at internuclear 100 A = —581 ~ 628 06 hartrees.
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TABLE!V. Potential parameters for the SCF Ar+-Si potential. Numbers in square brackets are powers of ten.

V (eV) Moliere' —CP CP A exp( —Br)—CP CP

2.740& r & 3.7800.831 (r &2.7400.624& r &0.8310.378 & I" &0.624
0.240 38

Range (bohr)
a» (bohr)
A (hartree)
B (bohr
CP order
CP limits (bohr)
CP coe%cients

18
0.378 to 0.624

0.513 30[0]
0.846 11[0]—0.105 66[1]
0.19099[0]—0.389 49[—2]
0.804 57[—2]
0.920 69[—2]
0.815 70[—2]
0.676 31[—2]
0.438 49[—2]
0.198 55[—2]
0.11899[—3]—0.927 92[—3]—0.11931[—2]
0.959 54[—3]—0.555 23[—3]—0.217 14[—3]—0.597 50[—4]

3.780 bohrs (r ( ~ V=O

'The Moliere potential function is of the
+0.55 exp( —1.2x)+0. 10exp( —6.0x).

306.0
2.5967

18
0.831 to 2.740

—0.468 75 [0]—0.108 68[0]
0.967 97[—1]
0.404 84[0)—0.534 70[0]
0.330 91[0]—0.128 98[0]
0.376 99[—1]—0.108 49[ —1]
0.253 03[—2]
0.125 60[—2]
0.152 96[—3]—0.16900[—3]
0.839 09[—3]
0.602 27[—3]—0.102 54[—4]
0.274 15[—3]
0.202 30[—3]

16
0.605 to 0.850

0.109 34[3]—0.223 74[2]
0.230 77[1]
0.170 89[—1]—0.425 10[—1]
0.217 94[—1]
0.337 86[—1]—0.31970[—1]—0.229 31[—1]
0.164 99[—2]
0.826 94[—3]
0.417 18[—1]
0.15341[—1]—0.185 65[—2]—0.851 01[—2]—0.18928[—1]

6
1.740 to 3.780

0.254 28[0]—0.17671[0]
0.571 73[—1]—0.147 25[—1]
0.108 26[—1]—0.370 67[—2]

form V(r» ) =(Z& Z2/r» )N(r»/a» ), where N(x) =0.35 exp( —0.3x)

gy the Si-Si potential was connected to the two-body part
of the Stillinger-Weber potential by means of a Che-
byshev polynomial, while the Ar+-Si potential was set to
zero at the separation where the electronic-structure po-
tential crosses 0 (i.e., 3.78 bohrs). The final Si-Si and

Ar+-Si potentials are given in Tables IV and V.
A range of alternative repulsive potentials was also

used in the simulations. Apart from our new potentials,
the Abrahamson potentials of Born-Mayer form, the
universal potentials of Siersack and Ziegler, ' the

TABLE V. Potential parameters for the SDCI Si-Si potential. Numbers in square brackets are powers of ten.

V (eV)

Range (bohr)
a» {bohr)
A (hartree)
B (bohr ')

CP order
CP limits (bohr)
CP coefficients

Moliere' —CP

0.567 & r &0.945
0.236 94

6
0.567 to 0.945

0.210 22[0]
0.611 38[0]
0.294 54[0]
0.366 70[0]—0.131 67[0]—0.863 92[—1]

0.945 & r &1.339

9 I

0.888 to 1.228
0.331 11[2]

—0.811 54[1]
0.11755[1]—0.630 27[—1]
0.141 64[—1]—0.293 64[—1]
0.796 28[—1]
0.246 12[—2]—0.435 99[—1]

A exp( —Br)—CP

1.339&r &2.457

163.1
2.2994

10
1.339 to 2.457

—0.19921[0]—0.11132[0]
0.188 94[—1]
0.19408[0]—0.132 60[0]
0.432 62[—1]—0.10946[—1]
0.372 86[—2]—0.774 62[—3]
0.275 24[—3]

CP

2.457 & r &2.844

9
2.268 to 3.024

0.11432[1]—0.494 48[0]
0.964 45[—1]—0.661 90[—2]—0.387 27[—2]
0.119 19[—5]
0.298 92[—2]
0.288 35[—4]—0.12943[—2]

3.780 bohrs & r & ~ V=Stilliriger-Weber potential

'The Moliere potential function is of the form V{r» ) = (Z& Zp /~ » )0 (T» /a» ) where N(x) =0.35 exp( —0.3x)
+0.55 exp{ —1.2x)+0. 10exp( —6.0x).
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TABLE VI ~ Comparison of various Ar+-Si potentials.

Internuclear
Separation (A)

0.200
0.220
0.250
0.280
0.300
0.330
0.350
0.380
0.400
0.420
0.450
0.480
0.500
0.520
0.550
0.570
0.600
0.650
0.670
0.700
0.750
0.800
0.850
0.900
0.950
1.000
1.100
1.200
1.300
1.400
1.500
1.700
1.900

SCF'
(eV)

5524.97
4578.29
3541.63
2816.84
2452.42
2028.86
1791.69
1470.13
1290.07
1134.85
941.72
787.44
702.00
628.07
535.04
482.87
416.53
330.43
302.54
266.10
216.65
177.70
146.35
120.58
99.04
80.94
53.19
34.32
21.79
13.58
8.24
2.58
0.32

Smith
(eV)

5707.63
4731.71
3648.78
2877.33
2482. 11
2007.40
1753.19
1443.56
1275.24
1131.29
952.17
807.81
726.82
655.82
564.80
512.70
445.06
354.43
324.32
284.47
229.64
186.14
151.33
123.29
100.59
82.16
54.92
36.77
24.64
16.51
11.07
4.98
2.24

Moliere'
(eV)

4392.95
3633.36
2798.99
2207.28
1904.32
1546.49
1356.36
1124.75
998.21
889.26
752.36
640.59
577.22
521.23
448.88
407.18
352.77
279.59
255.26
223.11
179.06
144.40
116.94
95.04
77.49
63.36
42.67
28.98
19.82
13.64
9.43
4.57
2.24

Universal
(eV)

5065.23
4175.89
3188.02
2481.70
2119.29
1692.24
1466.67
1194.40
1047.40
922.20
767.20
643.08
573.88
513.56
436.88

- 393.42
337.58
264.20
240.28
209.04
166.97
134.49
109.12
89.12
73.21
60.46
41.83
29.43
21.01
15.20
11.13
6.18
3.56

Abrahamson'
(eV)

2859.99
2657.92
2381.27
2133.41
1982.68
1776.31
1650.81
1478.98
1374.49
1277.37
1144.42
1025.30
952.86
885.53
793.36
737.31
660.56
550.00
511.14
457.93
381.28
317.46
264.32
220.08
183.24
152.57
105.77
73.32
50.83
35.24
24.43
11.74
5.64

'Hartree-Fock-self-consistent field potential.
G. L. Smith (Ref. 76) using the modified %'edepohl method (Refs. 79—81).

'Moliere potential (Refs. 101 and 102): Z, = 18; Z2 = 14; a» =0.10006 A.
Universal Potential (Ref. 100): Z& = 18; Z2 = 14; a» =0.123 97 A.

'Abrahamson Potential (Ref. 78): A =5.95 keV; B =3.66 A.

Moliere potentials' ' with screening lengths calculated
using the formula of O' Connor and Biersack, ' and the
Smith potentials were also used, i.e., pairs of potentials
were constructed from each functional form, the Si-Si po-
tential was splined to the Stillinger-Weber potential, and
the pair was tested in the classical-trajectory calculations.
Figures 1 and 2 and Tables VI and VII show a compar-
ison of the variously proposed Ar -Si and Si-Si potentials
over a range of interatomic separations.

III. THE CLASSICAL-TRAJECTORY CALCULATIONS

The classical-trajectory method was used to simulate
the collision of an ion or molecule with a semi-infinite
solid. The first priority in such calculations is to choose
the most suitable coordinate system in which to describe
the dynamics. Unlike atom-diatom scattering, ' no
benefit is to be gained by choosing a barycentric coordi-
nate because the position vector of the center of mass is

essentially unchanged throughout the calculation. The
position vectors of the atoms are consequently best de-
scribed by reference to a Cartesian set of axes defined
with the Z axis fixed in space in the [0011 direction (i.e.,
normal to the surface and directed out of the solid), and
with the X and Y axes lying in the plane of the solid sur-
face along suitable symmetry directions. The coordinate
system for the simulation of Ar+-Si(001) is shown in Fig.
3.

The sampling scheme adopted is that of Harrison Jr.
et al. ' Provided that the microcrystallite is derived
from a monocrystal with the solid atoms placed on the
lattice sites with zero momentum, each impact point on
the target surface may be mapped onto an equivalent
point within an irreducible symmetry zone. By sampling
impact points uniformly over this irreducible symmetry
zone, an ensemble of trajectories is generated which is
representative of the set of all possible trajectories which
may be generated from a given ion initial rnomenturn vec-
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TABLE VII. Comparison of various Si-Si potentials.

Internuclear
0

separation {A)

0.300
0.320
0.350
0.450
0.470
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
1.000
1.100
1.200
1.300
1.400

SDCI'
(eV)

1916.22
1666.34
1373.69
796.58
707.14
591.59
441.65
337.03
260.57
204.80
163.54
132.56
108.94
90.59
64.12
45.69
31.75
20.94
12.71

Smith
(eV)

2066.18
1769.57
1417.36
731.07
648.51
545.63
416.34
324.07
256.80
206.74
168.78
139.47
116.46
98.12
71.13
52.67
39.57
30.02
22.93

Moliere'
(eV)

1513.93
1316.53
1080.13
601.48
540.46
462.49
360.52
284.04
225.70
180.58
145.32
117.52
95.43
77.78
52.14
35.32
24. 12
16.59
11.48

Universal
(eV)

1712.65
1474.39
1190.11
626.97
557.66
470.47
359.24
278.40
218.49
173.36
138.86
112.16
91.25
74.73
50.97
35.45
25.06
17.98
13.07

Abrahamson'
(eV)

1670.52
1551.31
1388.25
958.74
890.32
796.74
662.12
550.24
457.26
380.00
315.79
262.43
218.09
181.24
125.16
86.44
59.70
41.23
28.47

'Configuration interaction potential.
G. L. Smith (Ref. 76) using the modified Wedepohl method (Refs. 79—81).
Moliere potential (Refs. 101 and 102): Z, = 14; Z, = 14; a &p

=0.101 98 A.
Universal Potential (Ref. 100): Z& =14 Zp =14' Q&p =0.12766 A.

'Abrahamson Potential (Ref. 78): A =5.07 keV; B=3.70 A.

tor. Tests with increasing ensemble size indicate that
sputtering yields have converged to within S%%uo after
150—250 individual trajectories. Similarly, Harrison Jr.
finds that difFerent ensembles of 80—100 trajectories
chosen in this way reproduce the calculated sputtering
yield to better than 10%.' Figure 4 shows the irreduc-
ible symmetry zone and the sample impact points for a
normally incident ion on the Si(001) unreconstructed and

(2X 1) reconstructed surfaces.
Classical-trajectory calculations have been performed

on the sputtering of the Si(001) surface by Ar ions using
the new, and some of the previously proposed, potentials.
It was found that a minimum of eight layers of atoms was
required to develop the bulk yield at all the energies con-
sidered. Two sets of calculations were performed, one on
the bulk terminated (001) surface, the other on a model of
the (2X 1) reconstructed surface. For the calculations on
the unreconstructed surface, all of the atoms were initial-
ly placed at the bulk position vectors of the solid. A mi-
crocrystallite of 842 atoms was found to ensure adequate
containment, except at 200 eV where a 442-atom micro-

(b)

FIG. 3. The coordinate system for the Ar++Si(001) calcula-
tions. The X axis lies in the {110)direction, the Y axis in the
(110) direction, and the Z axis perpendicular to and out of the
surface.

FIG. 4. Sampling over the irreducible symmetry zone of the
Si(001) (a) unreconstructed and (b) (2X1) reconstructed sur-
faces. Each point within the rectangles denoting the irreducible
symmetry zones corresponds to one of the impact points of the
argon ion in the set of trajectories. IRZ, irreducible symmetry
zone; C, channel.
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crystallite proved to be sufhcient. For the calculations on
the reconstructed surface, bulk position vectors were
adopted for the atoms below layer 4. The position vec-
tors of the upper layers were set to those of Abraham and
Batra, which describe the perfect (2X1) reconstructed
surface. A 1058-atom lattice was adopted at energies of
1000 eV and above, with smaller lattices being used at
lower energies. The employment of larger lattices to irn-
prove the lattice containment' did not significantly alter
the calculated sputtering yield. A total of 144 trajectories
was run sampling over the irreducible symmetry zone of
the unreconstructed surface, while for the reconstructed
surface calculations 288 were run at low energies and 190
at higher energies. These calculations proved to be very
expensive in computer time because the third-body forces
are very costly to evaluate. One trajectory using a 1058-
atom lattice took an average of 40 central-processing-unit
(CPU) minutes on a CONVEX Cl vector computer and
20 CPU minutes on an IBM 3084 computer. Integration
of Hamilton's equations of motion was carried out using
the variable-order, variable-step predictor-corrector in-
tegrator D02QAF from the NAG (Ref. 98) subroutine li-
brary.

IV. RESULTS AND DISCUSSION

Figure 5 and Table VIII show the variation of the cal-
culated sputtering yields with beam kinetic energy. As
for Ar+-Cu(001), the calculated sputtering yields are
found to be very sensitive to the choice of potential. For
the calculations on the unreconstructed Si(001) surface,
all the potentials give a sputtering-yield curve which,
when compared to experiment, is initially too low and
then rises too steeply at larger kinetic energies. A num-
ber of experimental sputtering-yield curves for the Ar+-
ion sputtering of silicon have been published.
However, some studies' '"'" were performed before
ultrahigh-vacuum techniques became available and these
sputtering yields have since been shown to be too low, "
while other determinations ' have been at ion-beam
energies greater than those considered in these sirnula-
tions. The experimental sputtering yields given in the
Table VIII and Fig. 5 are those of Zalm, " which are in
agreement with earlier determinations by Coburn' and
Harper et al. " One difFiculty in comparing the calculat-
ed sputterings yields with experiment is that Zalm's re-
sults were obtained using a total ion fluence of 10' cm
Blank and Wittmaack and Kempf find that the
sputtering yield for Ar+-ion sputtering of silicon rises to
some steady-state value with increasing ion fluence as Ar
is implanted in the surface. In addition, the silicon sur-
face is amorphized at ion doses as low as 0.1 ion per sur-
face atom. " Since each trajectory in these calculations
begins with an undamaged surface, a direct comparison
with these experiments is not possible. Unfortunately, no
low-dose sputtering yields for Ar+-Si(001) are currently
available. However, Zalm's results do provide a limit
above which any predicted sputtering yield must be in er-
ror.

Figure 5 and Table VIII also give the calculated varia-
tion of the sputtering yield with ion-beam kinetic energy

1.5—

0.5—

0.0
I

500
I

1000

K E (eV)

I

1500

FIG. 5. Experimental and calculated Ar++Si(001) sputter-
ing yields. X, Experiment (Ref. 110) (steady-state yield); , the
SDCI and SCF potentials (unreconstructed surface); $, the
Smith modified Wedepohl potentials (unreconstructed surface);
~, the Biersack-Ziegler universal potentials (unreconstructed
surface); *, the SDCI and SCF potentials (reconstructed sur-
face).

for the reconstructed Si(001) surface when using the
electronic-structure potentials. The predicted yields are
very different from those for the unreconstructed surface,
and, as expected, lie consistently below experiment. This
large change in the calculated sputtering yield on surface
reconstruction is well predicted by theory. Using the
Stillinger-Weber potential, the Si(001) reconstructed
surface has a calculated increased surface binding energy
of 0.83 eV per atom over the unreconstructed surface.
Both Sigmund's formula' and previous classical-
trajectory calculations by Harrison, Jr. and Webb' ' and
Garrison predict that the sputtering yield should de-
crease with an increase in the surface binding energy.
From Fig. 5 it appears that the Smith potential might
give a better agreement with experiment when using the
reconstructed surface than the new potential. However,
as discussed above, comparison with experiment is not
really valid till low-dose data become available.

Table IX presents the calculated-layer sputtering-yield
ratios at 500 and 1500 eV for the reconstructed and un-
reconstructed surfaces when using the new Si-Si and
Ar+-Si potentials. The quantity L„ is defined as the ratio
of the sputtering yield arising from layer n to the total
sputtering yield. In this case, the values are very different
from that observed for metals where L, )0.85, L2 & 0. 13,
and L3 0.02, with a negligible contribution to the
sputtering yield from the lower layers. ' ' ' ' The
reason for this difference is found in the very open struc-
ture of the Si lattice: the first-layer atoms are su%ciently
separated for there to be room for lower-layer atoms to
eject without undergoing strong collisions with first-layer
atoms. For metals such as copper, second-layer atoms
generally only eject through vacancies in the surface from
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TABLE VIII. Calculated etching yields for Ar+-Si(001) for various Ar+-Si and Si-Si potentials.

Beam kinetic
energy (eV)

100
200
300
500
700

1000
1500

Experiment
(Zalm)'

0.19+0.03
0.33+0.03
0.45+0.04
0.65+0.05
0.81+0.05
0.93+0.06
1.03+0.06

Universal
potentialb

0.19+0.04

0.56+0.10

0.98+0.14
1.11+0.14

Smith
potential"

0.32+0.03

0.84+0.11

1.33+0.15
1.69+0.18

SDCI/SCF
potential

0.17+0.04

0.70+0.08

1.10+0.12
1.40+0.19

SDCI/SCF
potential'

0.08+0.02

0.48+0.05

0.82+0.08
0.82+0.08

'Steady-state yield.
Simulation on the unreconstructed surface.

'Simulation on the (2X 1) reconstructed surface using the position vectors of Abraham and Batra (Ref.
63).

where a first-layer atom has been displaced. '

On surface reconstruction, the layer ejection yields
change appreciably. The absolute sputtering yield of the
reconstructed first layer is about 40% of that of the un-
reconstructed first layer. This is because of the increased
surface binding energy of each first-layer atom as de-
scribed above. The sputtering yield of the second layer is

not so severely affected, decreasing only to 70% of its
former value. The sputtering yields of the lower layers
are essentially unchanged within statistical error. In
consequence the first- and second-layer yield ratios be-
come very sixnilar for the reconstructed surface.

Figure 6 gives the atoms per single ion (ASI) distribu-
tions for the unreconstructed and reconstructed surfaces

1.0— 1 0—

o.a— 0.8—

O.s—
Q

V
CO

0.4—

O.e—

04-

0.2— 0.2—

0.0 I

10
I

15
0.0 J

I

10
I

15

1.0

0.8— 0.8—

0 p.e—0
O
c0

0.4

— o.e—

0.4—

0.2— 0.2—

0.0

ASI

I

10
0.0

ASI

I
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I

15

FIG. 6. A comparison of the atom per single ion (ASI) distributions for the unreconstructed and reconstructed surfaces at different
energies. (a) 200 eV unreconstructed surface; (b) 1500 eV unreconstructed surface; (c) 200 eV reconstructed surface; (d) 1500 eV
reconstructed surface.
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TABLE IX. Layer ejection ratios for the SDCI-SCF poten-
tials.

KE {eV)

500'
SOOb

1500'
1SOOb

Li

0.46
0.36
0.51
0.36

L2

0.26
0.34
0.23
0.28

L3

0.19
0.24
0.14
0.22

0.09
0.00
0.07
0.10

'Unreconstructed surface.
Reconstructed surface.
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FIG. 7. Channeling in the Si{001)surface at 1500 eV. Each
plotted number corresponds to the ASI of the trajectory whose
impact point is at the center of the number. {a) The unrecon-
structed surface; {b) the reconstructed surface. The data for the
unreconstructed surface cover two irreducible symmetry zones
to enable a direct comparison with the data for the reconstruct-
ed surface.

at two different energies using the new Ar -Si and Si-Si
potentials. The efFect of the surface reconstruction is evi-
dent in reducing the number of high-yield ejection events.
The large number of zero-yield trajectories emphasizes
the importance of the channel in the Si(001) face. Figure
7 plots the sputtering yield of individual trajectories at
1500 eV against the impact point of the ion within the ir-
reducible symmetry zone. For the unreconstructed sur-
face, the channeling of the ion is evident from the zero
ASl's at the center of each irreducible symmetry zone.
Other zero ASI's are to be found where the ion is able to
penetrate to the fourth layer without undergoing any
strong collisions confirming that sputtering mechanisms,
as for metals, are predominantly confined to the surface
layers. Qn surface reconstruction, half the channels are
closed by the surface dimers. However, the large holes
left in the surface by this process, and the increased size
of the channel in the uppermost four layers, provides
another reason for the decreased sputtering yield: a large
proportion of the incident ions undergo a primary impact
with the third or fourth layers, thus causing radiation
damage without sputtering.

It is expected that the calculated sputtering yields for
the (2X1) reconstructed Si(001) surface will compare
favorably with low-dose experiments when such data be-
come available. However, some uncertainties do remain
within the model. Firstly, the exact nature of the surface
reconstruction of the Si(001) surface is unknown. The
Abraham-Batra structure is a close approximation, but
the omission of the dimer buckling and twisting and the

surface defects may inhuence the calculated sputtering
yield. Further, while the Stillinger-Weber potential pro-
vides a reasonable representation of the low-energy sil-
icon potential-energy surface, it is unknown how impor-
tant the deficiencies described in the introduction may be.
The Brenner-Garrison potential gives a better description
of the potential-energy surface for small displacements
from the perfect diamond lattice, but there is no evidence
as to which potential is best suited for sputtering calcula-
tions. A further source of error is the omission of elec-
tronic effects. Since dimer buckling involves a charge
transfer of 0.4e, it is possible that charge transfers may
be important in describing low-energy collisions within
the solid. This effect is more important here than within
a metal, since electronic perturbations will be more local-
ized within silicon. Energy losses through phonon modes
have additionally been neglected.

We now discuss parameters we have calculated using
the new Ar -Si and Si-Si potentials which are amenable
to experimental investigation. The sputtering yield for
Ar+ bombardment of silicon is very low, making it
diScult to generate statistically viable distribution func-
tions. Since the only effect of increasing the beam kinetic
energy is expected to be an extension of the tail of the
kinetic-energy distribution to higher energies, '

the data for the four energies have been combined. Fig-
ure 8 gives the kinetic-energy distributions for the sput-
tered atoms. The general shape of the distributions are of
the usual sputtering type which has been observed for
other systems, both in experiment' 'zs ' ' and in
theoretical calculations 27& 77, 105, 108, 12 1 —123, 125 —129, 1 32, 133

Unfortunately, the only available kinetic-energy distribu-
tion data for Si do not extend to energies below 20 eV. ' '

For both the unreconstructed and reconstructed sur-
faces, the maximum in the kinetic-energy distribution is
observed to be at 4—6 eV (Fig. 8). Statistical
theories' ' ' predict that the maximum should be
near U, /2, where U, is the surface binding energy. Con-
ventionally, this has been taken to be at half the sublima-
tion energy of silicon, i.e., at 2.2 eV. However, recent ex-
periments indicate that the maximum might be expected
to be found at about 0.7-0.8U, . This is in agreement
with calculations by Garrison et al. ' ' on the Ar+
sputtering of rhodium. The energy distributions obtained
here peak at an energy greater than this, but it is uncer-
tain whether this is statistically significant. On surface
reconstruction it appears that there might be a shift in
the maximum of the distribution to higher energy. This
would be in agreement with statistical theories, since the
surface binding energy has increased by 0.83 eV per sur-
face atom, but again it is uncertain whether the shift is
statistically significant.

Several experimental studies of the polar-angular dis-
tribution of the sputtered atoms exist in the litera-
ture, ' ' but, as for the sputtering-yield experiments,
they are performed in the high-dose mode in which the
silicon surface is quickly amorphized. It is found that the
polar-angle distribution is less than cosine at 500 eV (Ref.
136) and cosine at ion beam energies of 1000 eV and
greater. ' ' The distribution found in the simulations
is very different, as might be expected for a crystalline
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surface, with a broad maxima at 40'-70. However, as
for the kinetic-energy distributions, the statistics for the
individual energies is very poor, and given that experi-
ment indicates that the distribution may change with en-
ergy, it is inappropriate to combine the data for the
di6'erent ion beam kinetic energies.

Very little experimental data are available for the az-
imuthal angular distribution for the sputtering of silicon.
This is because when the surface is amorphized under ex-
perimental conditions, the structure in the azimuthal an-
gular distribution is destroyed. Nelson and Mazey'
have studied the variation of the ion dosage required to
amorphize the surface with temperature and find the re-
quired dosage for amorphization is 2 orders of magnitude
greater at 200' than at room temperature. MacDonald
et al. have found structure in the azimuthal angular dis-
tributions of Ar+-ion sputtering of Si(001) above a transi-
tion temperature of 400+5'C (Ref. 85) and for Cxe(001)
above 330'+5 'C. ' ' ' ' These transitions corre-
spond to the annealing of regions of the surface between
ion impacts so that the crystallographic structure is re-
tained throughout the experiment. These experiments
find maxima at 0', 90, 180, and 270', where the X and F
axes are defined to lie along the [110] and [110] direc-
tions, respectively, and the Z axis is normal to, and points
out of, the surface.

Figure 9 gives the calculated azimuthal angular distri-
butions for the Ar+-ion sputtering of both the unrecon-
structed and (2X1) reconstructed Si(001) surfaces. The
calculated distributions are found to be very strongly
peaked at 90' intervals. Classical-trajectory calculations
on the Ar+ sp'uttering of Cu(001) have previously shown
a similar structure in the azimuthal distributions. ' The
structure in the distribution has been found to be con-
tained by the atoms sputtered at high energy ( ) 5 eV)
soon after the ion impact. Since each atom in an undam-
aged Cu(001) surface is surrounded by four neighboring
atoms, these structures have been explained by the argu-
ment that atoms sputtering before the surface structure is
destroyed prefer to eject along a trajectory through the
gap between two neighboring atoms rather than directly
over a neighboring atom. ' However, this mechanism
cannot apply for the sputtering of silicon for several
reasons. Firstly, the maxima in the azimuthal angular
distributions would be expected to shift on surface recon-
struction if this focusing mechanism was applicable.
Secondly, the atoms in the unreconstructed silicon sur-
face are too far apart for a focusing mechanism to
operate, and on surface reconstruction only one atom is
close enough. Finally, the maxima in the azimuthal dis-
tribution are for atoms which do eject directly over their
nearest neighbor [i.e., along the (110)directions].
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FIG. 8. Histogram of the kinetic-energy distribution of the
ejected silicon atoms. The bin size is 2 eV. The data for the
four beam kinetic energies have been combined to improve the
statistics. (a) The unreconstructed surface; {b) the reconstructed
surface.

FIG. 9. Histogram of the azimuthal angular distribution of
the ejected silicon atoms. The bin size is 10. The data for the
four beam kinetic energies have been combined to improve the
statistics. (a) The unreconstructed surface; (b) the reconstructed
surface.
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A more detailed examination of the azimuthal angular
distributions indicates that the structural information is
carried by high-energy atoms, which suggests that the
lattice structure is an important factor in generating
these maxima. Additionally, it is found that atoms eject-
ing from all of the first four layers contribute to the maxi-
ma, emphasizing that the silicon lattice is sufBciently
open for atoms to eject from the lower layers without un-
dergoing significant collisions with upper layers. Smith
in his previous study of the sputtering of silicon by Ar+
ions examined the spread of momentum in the initial
stages of a trajectory. He found that momentum spread
initially along the (110) row of the (first- arid second-
layer) atoms which contained the target atom. In time,
momentum was transferred outwards into neighboring
(110) rows of (third- and fourth-layer) atoms and then to
the adjacent (110) rows of first- and second-layer atoms.
This is confirmed in these simulations. Atoms are found
to be ejected at 0, 90, 180', and 270 when an ion im-
pacts very close to or on a row of atoms in the [110]or
[110] directions. A collision sequence of two or three
atoms propagating along the row finally gives rise to an
atom ejecting in the appropriate direction. Since the di-
mer reconstruction is along the [110] direction, surface
reconstruction would not be expected to significantly
alter this ejection mechanism; hence, the similarity be-
tween the two azimuthal angular distributions in Fig. 9.
If the ion impact is too far away from a row of atoms, the
collision sequence is quickly defocused and any atom
sputtered will do so in an essentially random direction.
The adoption of a warm lattice, in which the atoms will
be displaced from the perfect rows in the zero-
temperature lattice, will similarly be expected to defocus
the collision sequences and thus considerably broaden the
maxima in the calculated azimuthal angular distribu-
tions.

One point of contention between experimentalists and
theoreticians has been the nature of the formation of
clusters. As soon as two or more atoms are sputtered
from the solid during a single trajectory, there exists the
possibility that a dimer or larger cluster may form. Clus-
ter formation was first detected experimentally by
Honig' ' in 1958 when he observed the formation of Gez
dimers while sputtering germanium with rare-gas ions.
Since then, clusters containing up to several tens of atoms
have been observed in a variety of systems. ' ' The
first simulations of cluster formation were by Harrison Jr.
and Delaplain' for the argon-ion bombardment of a
Cu(001) surface. This paper describes the method of
detecting cluster formation from sputtered atoms in
classical-trajectory calculations and examines the various
mechanisms involved.

Classical dynamics simulatioris on the sputtering of
metals have indicated that the vast majority of clusters
form via a recombination mechanism above the surface
between atoms sputtered in the same collision cas-
cade &si —isa However, some claims have been made for
the ejection of clusters intact from the surface. '

Classical-trajectory calculations in the past have indicat-
ed that strongly bonded molecules such as CO and
aromatics may be ejected as intact entities. Essentially,

weakly bound substances, such as metals where the dimer
well depth is generally less than 1 eV, ' form clusters by
a recombination mechanism while strongly bound sys-
tems, such as CO whose well depth is 11.1 eV, may be
ejected intact. Silicon, with a well depth in the dimer in-
teraction of 2.17 eV, is intermediate between these ex-
tremes and might be expected to exhibit both mecha-
nisms.

Experimentally, silicon cluster ions containing up to
four Si atoms have been detected in sputtering experi-
ments, ' ' ' while Tsong' detected cluster ions up to
Si&z+ in laser desorption studies. However, since the pro-
portion of trajectories which sputter two or more atoms
is rather small (Fig. 6), only a few clusters have been
detected in these simulations. Of the clusters observed,
all the dimers mere bound by more than 1 eV, and in both
the quadramers, all the interactioris between pairs of
atoms were binding. Thus it is not anticipated that the
difBculties in defining cluster formation will be important,
especially as the well depth of the Si2 interaction is simi-
lar in the bulk and gas phase. For the studies using the
reconstructed surface, which provides the most realistic
initial conditions, only eight dimers and tmo quadramers
were observed. No surface dimers were found to eject as
clusters and six of the sputtered dimers were formed by
the recombination mechanism. However, the other two
clusters were formed between first- and second-layer
atoms which were directly bonded within the solid. Ex-
amination of these trajectories indicates that in each case
the two atoms that eventually comprised the final dimer
were within bonding distance throughout the trajectory.
A similar situation was found for a pair of atoms within
one of the quadramers. However, a definitive statement
on the relative importance of these rival cluster-
formation mechanisms requires a more extensive study.

V. CONCLUSIONS

The sputtering of the Si(001) surface by Ar+ ions has
been studied using classical-trajectory methods. Ab initio
calculations have been used to parametrize the Ar+-Si
and the short-range part of the Si-Si interaction, while
the silicon binding potential was described by the two-
and three-body terms of Stillinger and %eber. It is found
that the choice of the potential-energy function to de-
scribe the high-energy Si-Si and Ar -Si interactions
strongly infiuences the calculated sputtering yield. Un-
like previous calculations on metal surfaces, it is essential
that the reconstruction of the silicon surface be included
in the model. Sputtering yields have been calculated over
a range of ion beam kinetic energies which may be com-
pared with low-dose experiments when such data become
available. Possible remaining sources of error in the
model have been noted. Calculated azimuthal distribu-
tions are in agreement with experiment and the mecha-
nisms which give rise to the structure in these distribu-
tions have been examined. Some evidence has been found
that silicon dimers may be ejected intact from the sur-
face, although most dimers are formed by the recombina-
tion mechanism observed in simulations of the sputtering
of metals.
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