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We report conductivity and dielectric-constant measurements on a series of orthorhombic
Ta& Nb„S3 alloys, with nominal concentrations between 0% and 0.3%, in the dc to 100-GHz fre-
quency range. The Peierls transition observed at Tp =220 K in the pure specimens is smeared and
suppressed in the alloys. The pinned —charge-density-wave mode, which occurs at the pinning fre-
quency of coo/2m-5 GHz in the nominally pure specimen, increases with increasing dopant concen-
tration at all temperatures. We analyzed the pinned mode in terms of a harmonic-oscillator
response and found that the effective mass m * and damping constant 1/r are independent of the im-

purity concentration. We also discuss the temperature dependence of coo and ~ and compare with
the available theoretical descriptions of charge-density-wave dynamics.

I. INTRODUCTION

The pinning of the electron-hole condensate called the
charge-density wave (CDW) by lattice imperfections, by
grain boundaries, and by finite-size effects has been stud-
ied in detail in various compounds. ' Pinning leads to a
shift of the collective-mode oscillator strength to finite
frequencies, with a so-called pinning frequency coo that is
generally well below the frequency corresponding to the
single-particle gap 2b, /fi. Extensive experiments per-
forrned in the dc —to —millimeter-wave spectral range
have been analyzed assuming that the collective response
is described by the equation of motion, '"
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where ~ is the relaxation time, m * is the effective mass of
the condensate, K is the CDW wavelength divided by 2m,

and P is the phase of the CDW. Deviations from Eq. (1)
have been observed ' for co & coo and have been interpret-
ed in terms of a tunneling model and alternatively by as-
suming that disorder caused by randomly distributed im-
purities plays an important role and leads to a distribu-
tion of pinning frequencies. Models ' that include the
internal degrees of freedom of the' condensate also pro-
vide a semiquantitative account of the experimental
findings. The above approaches lead to qualitative agree-
ment with both the real and imaginary parts of the
frequency-dependent conductivity, Reo (co) and Imcr(co),
over a large frequency range in the materials NbSe3, or-
thorhombic TaS3 (called TaS3 in the following),
(TaSe~)zl, "and (NbSe4)2I. '

In recent publications low-frequency data obtained in
NbSe3 and TaS3 and estimations of other parameters in-
volved were used to argue that the tunneling model de-
scribes cr(co) over the full spectral range, and similar
conclusions ' were reached on the basis of classical dy-

namics of the so-called Fukuyarna-Lee-Rice model. '

The conclusions were largely based on estimated values
of the effective mass and on comparisons between the pa-
rameters obtained for the different model compounds
NbSe3 and TaS3. Experiments that directly determine
the dynamical parameters involved, preferably on a series
of materials where some of the parameters are the same,
may lead to more direct information than that quoted
above. Aside from the question of the quantum versus
classical approach to CDW dynamics, several other im-
portant features of CDW dynamics are unresolved, such
as the nature of the damping and its dependence on im-
purity concentration, the detailed dependence of the pin-
ning energy on the strength of the impurities, and the
effect of temperature on the dynamics.

In this paper we report our measurements of cr(co) in
the microwave and millimeter-wave regime in
Ta& Nb S3 alloys and also compare our observations
with those made earlier on the m- and E-dependent-
response. In contrast to NbSe3, orthorhombic TaS3 un-
dergoes a metal-to-insulator transition at T=220 K (for
the nominally pure material), indicating that the whole
Fermi surface is removed by the formation of CDW's.
Also, only one type of chain exists in the material, ' mak-
ing it a conceptually more straightforward example of
CDW transport. The experimental results leads us to
conclude that a temperatures not far below the Peierls
transition the main features of o(co) observed in the
millimeter-wave range may be adequately described with
a simple harmonic-oscillator response. The effective mass
m* is within the experimental error, independent of the
impurities. The pinning frequency coo increases sharply
with increasing x, but the relaxation time ~ is indepen-
dent of the impurity concentration. It is clear, however,
that the simple approach based on Eq. (1) is not adequate
at low temperatures where the fits differ significantly
from the experimental results. The low-frequency dielec-
tric constant e decreases with increasing x and the
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threshold field for the onset of nonlinear conduction, E&,
~ increases with increasing x, with a concentration depen-
dence compatible with simple descriptions of CDW dy-
namics; however, the magnitude of both quantities is very
different froro those that are derived on the basis of sim-
ple models by using the pinning frequency coo as an input
parameter.

In Sec. II we describe the experimental details. This is
followed in Sec. III by the summary of experimental re-
sults. We then present the analysis of o'(ai) in Sec. IV,
discuss the parameters in detail, and ma.ke a comparison
with the low-frequency ac- and nonlinear dc-conductivity
results. Section V contains our conclusions. Some of the
results we present in this paper have been reported ear-
lier. '"

II. EXPERIMENTAL TECHNIQUES

We prepared TaS3 and Ta& „Nb S3 alloys by direct re-
action of the elements in sealed tubes. Gradient furnaces
with a relatively weak temperature gradient centered
around T=535'C were used. We obtained relatively
large single crystals (typically 1 cmX10 pmX30 pm)
within a period of a few days. Powder x-ray diffraction
performed on the majority of alloys confirmed the phase
to be orthorhombic. ' Attempts to use analytical
methods to evaluate the impurity concentrations were
not successful; therefore the concentrations referred to in
this paper are nominal. Because of this ambiguity, we
could not evaluate the precise concentration dependence
of the parameters that characterize the e- and E-
dependent response. Nevertheless, as will be demonstrat-
ed below, useful information can be obtained on the dy-
namics of the collective mode without detailed knowledge
of the actual impurity content of the specimens.

We measured the dc resistivity with a conventional
four-probe method, and evaluated the electric-field-
dependent conductivity with short pulses to avoid heat-
ing effects. Standard cryogenic techniques were used to
cool the specimens and to measure and regulate the tem-
perature.

The samples prepared by the gradient-furnace tech-
nique are long, thin single crystals, with the long axis cor-
responding to the b crystalographic axis. The 1 axis is
the high-conductivity axis of this quasi-one-dimensional
metal and is always aligned with the electric field in these
measurements. The conductivity along that axis deter-
mines the skin depth in the material and is the only com-
ponent of the conductivity tensor measured. At room
temperature the b-axis conductivity is 2500 (Qcm)
implying a skin depth at 10 CxHz of approximately 5 pm.
The transverse dimensions of the crystals, as grown, were
usually larger than 5 pm, and the pure specimens, where
o(co) is large even at low temperatures, were cleaved
along the long axis with the most desirable cross section
being a few square micrometers. At the larger impurity
concentrations, however, the microwave conductivity has
an activated temperature dependence and both Reo(co)
and Imo. (co) are lower than in pure specimens. Conse-
quently, to obtain adequate sensitivity at low tempera-
tures, samples up to 10 pm in diameter were chosen.

The apparatus for the resonant-cavity measurements
(4.5 and 9 GHz) is identical to that discussed earlier. 's

The cavities were coupled to a microwave network which
measured the Q (quality factor) and resonant frequency of
a mode of the cavity. The resonance may be measured in
either the transmission or reAection mode. The fraction
of the power reilected or transmitted near resonance is
given by

, 2P g +B l co

P; (Q)o) co + ic01
(2)

where A =0 and 8 is positive in transmission, and A is
large and B is negative in reAection. The resonant fre-
quency coo=coo+iI'/2 is generally complex, and Eq. (2)
may be rewritten as

(3)
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I
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The rejected or transmitted power has the I.orentzian
form above when the frequency of the incident power, co,
is swept through the resonant frequency. The resonance
paramenters coo and I are the center frequency and full-
width at half-height, respectively.

%'e recorded the cavity resonance with and without the
sample and used the change in the resonance to calculate
the complex conductivity, or equivalently, the complex
dielectric constant. For the 9-GHz measurements we
placed the samples on a TeQon platform and rotated
them in and out of the microwave cavity with a set of
gears and a control rod extending from room tempera-
ture to the cryogenic environment. At 4.5 GHz we
placed the samples in a quartz tube and moved them in
and out of the cavity with a sliding control rod that also
extended to room temperature. By moving the samples
in and out of the cavity, we measured all of the quantities
needed to calculate the dielectric constant in a single
cooling. The cavity was mounted at the bottom of a
probe extending into a liquid-He" Dewar. Temperatures
below 2 K could be obtained by pumping on the He
bath.

The response of the sample may be written in terms of
complex conductivity (o =J/E) or a complex dielectric
constant (e=D/E). These are related via Maxwell's
equations by e= 1+4~o /ice, where i =+—1 and co is
the angular frequency. In the limit of samples with
a transverse dimension smaller than or comparable to the
skin depth, the electric field inside the sample is given by

Eo
1+%(e 1)—

where Eo is the field without a sample, e is the dielectric
constant normalized to the dielectric constant of flee
space, and N is the depolarization factor. The depolari-
zation factor is a purely geometric quantity and, if the
sample is approximated as an ellipsoid of transverse di-
mensions a, b and length L (with L ))a, b), then'
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where a is the filling factor —a =2. 1( V, / V, ), where V,
and V, are the volume of the sample and cavity,
respectively —and Leo =6~O+ i 5I is complex for ma-
terial with a loss term in the dielectric constant. Experi-
mentally, 6cuo is the shift in resonant frequency and 6I is
the change in the half-width of the resonance at half-
height. The formula may be inverted ' to solve for e and
separated into real and imaginary parts to yield the full
complex dielectric constant:

5coo(a/N —5coo) —(51 )
Re(e) =1+—

(51 ) +(a/N —5coo)
(7a)

sr
Im(e) =

N (5I ) +(a/N —5cuo)
(7b)

The two constants in the analysis, a and X, may be deter-
mined from the geometry of the sample. [See Eq. (5) and
the discussion following Eq. (6).] In practice, however, a
precise measurement of the sample dimensions and the
approximation of the actual crystal geometry as an ellip-
soidal cylinder lead to errors of up to 50%%uo in the calcu-
lated values of a and N. More precise values are ob-
tained by taking the room-temperature value of 5'/coo
(well above the phase transition) and choosing a and N
such that the real part of the conductivity is equal to the
dc conductivity at room temperature and the imaginary
part of the conductivity is zero. This procedure assumes
that the sample behaves as a normal metal well above the
Peierls transition. One should note, however, that Auc-
tuation effects caused by the quasi-one-dimensional struc-
ture of the compound are important above T and lead to
a pseudogap and, consequently, to the possibility of
frequency-dependent response even at millimeter-wave
frequencies. These effects are most probably an impor-
tant factor at temperatures not much above the Peierls
transition temperature where the temperature depen-
dence of the dc resistivity is distinctively nonmetallic. At

X rejects the ability of charges to build up at the ends of
the sample and screen the applied electric field. For ex-
tremely long and slender samples, N-O, and therefore
E -Eo, the continuity condition for electric fields tangen-
tial to a surface is reproduced. This approach assumes
that the electric field is uniform over the region in which
the sample is placed, a condition that is easily achieved
for samples much smaller than the cavity.

The samples used in this study were always much
smaller than the resonant cavity, and the changes in the
resonant frequency caused by the sample were only 1

MHz or less. The small changes in resonant frequency
could be described by the resonant-cavity perturbation
theory of Bethe and Schwinger, which relates the
change in electric field to the change in resonant frequen-
cy. Using Eq. (4) the resonant-frequency shift [5coo
=coo(sample in) —coo(sample out)] is~'

—a(e —1)
1+N(e 1)—

tan
(iY;„—iY,„,)/Yo

1+iv,„iV.„,re,' '

+here Y;„and Y,„, are the admittances with and without
the sample (sample in and sample out), respectively. The
form above is irivariant to transformations down the
transmission line and may be evaluated at any position.
For simplicity, we chose to evaluate the admittances at
the sample position. The short must be transformed by a

room temperature, however, the temperature dependence
of the dc resistivity is that of a metal. Consequently, we
assume that a. (co) is that of a metal at room temperature
[i.e., Reer(co) is independent of the frequency]. With this
assumption all the variables in Eq. (6) are determined and
the complex dielectric constant may be determined from
the measured values of 5coo arid 5r.

We performed the millimeter-wave conductivity mea-
surements (30, 32, 60, 94, and 109 CiHz) with a
millimeter-wave bridge technique discussed in earlier
publications. ' ' The technique involves placing samples
in a section of shorted waveguide and using the change in
impedance of the waveguide to calculate the conductivity
of the sample. The samples are cleaved to a diameter of a
few micrometers, similar to the cavity measurements.
We attach the small samples electrostatically to a quartz
fiber and insert the quartz and sample through a small
hole in the top of the waveguide, with the electric field
parallel to the long axis of the sample. The hole is at an
antinode of the electric field a distance 3X/4 (where A, is
the guided wavelength) from the waveguide-shorting
plate. The shorted-waveguide section is on the sample
arm of a millimeter-wave impedance bridge. The design
and operation of the bridge are extensively discussed in
Ref. 22. The bridge consists of passive components as
well as precision attenuators and phase shifters on sample
and reference arms. When the attenuation and phase
shifters are adjusted properly, the waves traveling the
two arms are 180' out of phase and equal in amplitude,
resulting in a null at the detector.

The components of the millimeter-wave bridge are
separated from the sample holder by an 8-in. section of
stainless-steel waveguide. A helium —gas-Bow system
placed around the sample-arm waveguide cools the sam-
ple holder down to 20 K. The application of a smooth
gas flow causes highly reproducible phase-shift and at-
tenuation readings because of thermal effects originating
in the apparatus, such as thermal contraction of the
waveguide, in addition to sample effects. We perform
two coolings, one with sample in and one with sample
out, and record the attenuation and phase readings on
each run. The absolute values contain systematic ar-
tifacts, but the differences in attenuation and phase are
determined by the sample.

The introduction of the specimen leads to changes in
the amplitude and phase of the transmitted signal, which
we interpret as follows. If we define the change in the
complex phase as 54&=5/+i 5x [ ln(10)/20], where 5x is
the change in attentation (in units of dB) and 5P is the
change in phase, then, from standard microwave theory,
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distance —3A, /4 (defining the positive direction towards
the shorting plate) and becomes an open circuit ( Y,„,=0).
Determining Y;„ is generally a complicated calculation,
but for a sample approximated as a right circular

cylinder of radius R traversing the waveguide with the
long axis parallel to the electric field the admittance has
been calculated by Schwinger and Saxon and is given in
the small-sample limit by

Y,

Yo

a
'2k,

1
2 2 1/2

odd n&3 [n —(2a/A, ) ]

a 1
l

~g (kR) (e—1)

where R is the radius of the sample, a is the transverse di-
mension of the waveguide, A, is the wavelength in free
space, kg is the guided wavelength, k is the free-space
wave vector, and e is the complex dielectric constant.
The small-sample limit assumes that the sample radius is
smaller than a skin depth. The general form in Ref. 23
implies that deviations from Eq. (9) are small for several
skin depths. The first term, denoted Yo/Y, is indepen-
dent of the dielectric constant, and for large e it is the
only term remaining. The geometry assumed in Ref. 23
places the sample in perfect electrical contact to the inte-
rior surface of the waveguide. This geometry is not possi-
ble in practice, and the sample did not normally make
electrical contact to the waveguide. The small gap at the

a 16'= 1+
g (kRp tan(b, C /2)

iYo

and may be separated into real and imaginary parts:

ends of the simple may be represented as a capacitance in
series with the sample. ' ' The equivalent circuit is
therefore given by

Y
—1

Y,„Y, Y, Y Y, &s (kR)2(e —1)

fhe dielectric constant derived from Eqs. (8)-(10) is
therefore

Re(e) =1+ Re[cot(b@/2)] i ( Yo/Y—+ Yo/Y, )

As(kR) Ii ( Yo/Y, + Yo/Y„) —Re[ cot(b4/2)]] + Im[ cot(44/2)]
—a Im[ cot(A@/2)]

A, (kR) Ii( Yo/Y, + Yo/Y'„) —Re[ cot(b@/2)]J + Im[ cot(b4/2)]

(12a)

(12b)

As with the cavity method, the analysis requires two
parameters —Yo/Y, + Yo/Y„and a/ks(kR) . We
determined these parameters by setting Re(o ) =o'd,
and Im(o )=0 at room temperature and solving for the
parameters, which we then assumed to be independent of
temperature (although thermal contraction leads to an er-
ror of = 1%).

The complex-dielectric-constant measurements pre-
sented in the following section use the two methods dis-
cussed above: the bridge technique at 30, 60, 94, and )09
GHz and the cavity technique at 4.5 and 9 CiHz.

I

lead to a resistivity comparable to the phonon T =300 K
resistivity. The temperature derivative of the resistivity
clearly shows the effect of impurities on the phase transi-
tion. Figure 2 shows ( —1/R)(dR/dT) for the pure
specimens and for two alloys with x =0.001 and 0.002.
The transition is progressively broadened by the intro-
duction of impurities, and the peak in the temperature
derivative moves to lower temperatures. Figure 3 shows
the concentration dependerice of Tz, where T is defined
as the peak in ( —1/R )(dR /dT), versus the nominal con-
centration. We observe a linear depression of T, with

III. RESULTS de =70 K/at. % (13)
Figure 1 displays the temperature dependencies of the

low-field dc conductivities of pure TaS& and Ta& Nb S3.
The phase transition at 220 K is not evident from the
direct o.d, (T) plots, but the derivative do/dT or dR /dT
has a sharp cusp at the Peierls transition. Because of the
logarithmic plot, data taken on the alloys were indistin-
guishable from data taken on the pure samples, and mea-
surements on several crystals indicate that the rnagmtude
of the dc conductivity is, within the experimental error of
approximately 10%, also independent of the concentra-
tion. This result is expected because a small amount of
impurities (less than 1%) in a metal is not expected to

We stress again, however, that x refers to nominal con-
centration that may differ from the actual impurity con-
centration in the specimens we have investigated. Recent
experiments on irradiated specimens did not display a
linear decrease and were in agreement with a square-law
behavior, b, T~ cc —x'~, in clear contrast with Eq. (13).
Whether this represents a real difference between the
effects of substitutional impurities and radiation defects
or is due to the poorly defined x values in Fig. 3 remains
to be seen. The mair conclusions of our paper, however,
do not rely on the precise values of x.
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FIG. 1. Temperature dependence of the dc conductivity of
nominally pure orthorhombic TaS3. o.zz refers to the room-
temperature dc conductivity. The average value, oR&=2500
(0 cm) ', was determined from measurements made on several
single crystals.

FIG. 2. Temperature dependence of the derivative
( —l/R){dR/dT) in nominally pure TaS3 and in Tal „Nb, S3
alloys.

Figure 4 displays the response at millimeter-wave fre-
quencies in nominally pure TaS3. %'e presented and ex-
tensively discussed these results in a previous publica-
tion' and here we only shortly summarize the main ex-
perimental findings. The response, when analyzed in
terms of Eq. (1), is overdamped, i.e., coos«1. Equation
(1) is a simple harmonic-oscillator response; hence the
quality factor is Q =coor. In the regime above 100 K but
we11 below the transition temperature, the resonant fre-
quency, coo/2m. , is approximately 5 6HZ and the reso-
nance width, 1/2~v, is approximately 100 GHz, implying
Q « 1. The temperature dependence of these parameters
is weak, changing by 20—30% over the entire high-
temperature range (i.e., between 100 K and T ). Below
100 K the temperature dependence of the measured con-
ductivities is much stronger than that found at high tem-
peratures. The 9-GHz conductivity rises immediately
below 100 K, but begins a rapid decrease near 80 K. The
30- and 60-GHz conductivities also increase slightly, then

decrease as the temperature is decreased. The dielectric
constants became less negative, eventually crossing zero
at temperatures well below 100 K. For the response im-
plied by Eq. (1), the dielectric constant is positive below
coo and negative above coo. The conductivity [Re(o )] also
reaches a rnaximurn at coo. If we qualitatively express the
temperature dependence of o in terms of coo and 1/7,
then coo remains approximately 5 GHz above 100 K, but
increases sharply at lower temperatures. The damping,
1/r, remains weakly temperature dependent over the en-
tire temperature range of the measurements. In general,
the spectral weight remains at low frequencies above
=100 K with a clear movement to higher frequencies
below 100 K. Also, although we found the simple har-
monic oscillator appropriate at temperatures above 100
K, at low temperatures the agreement between Eq. (1)
and the experimental results becomes poor, and a
description in terms of the single-particle model is not
possible (see below).
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FICx. 3. Concentration dependence of the transition tempera-
ture T~ in Ta& „Nb„S3 alloys. The solid line leads to
dT~/de =70 K/at. %.

This transition, evident from some structural studies,
leads also to peculiar temperature dependencies of the
nonlinear dc conduction. Because of this effect, the de-
tailed temperature dependence of the dynamics of the
collective mode is complicated, and we do not speculate
on the effect of commensurability on the ac response of
the pinned collective mode.

We present the temperature dependence of the conduc-
tivity and dielectric constant in Fig. 5 for x=0.001 and in
Fig. 6 for x=0.002. Contrasting the measured values of
Rea(co) and Re@(co) shows that the conductivities and
dielectric constants change by orders of magnitude with
increasing impurity concentration. This change is due to
a general shift of spectral weight of the collective CDW
response to higher frequencies with increasing impurity
concentration. The figures also show that in the tempera-
ture range between 100 and 200 K the frequency where
the maximum conductivity occurs, coo/2m. in terms of Eq.
(I), is increasing from approximately 5 6Hz for the nom-
inally pure samples to nearly 100 GHz for the samples
with x =0.002. Figure 7 presents the results for
Tap 997Nbp oo3S3 samples from experiments performed
only at one frequency, 94 GHz. The dielectric constant is
positive and the conductivity is rapidly decreasing below
the transition, indicating a pinning frequency signifi-
cantly larger than 94 GHz.

We believe that the reason for the peculiar (i.e.,
nonmonotonic) temperature dependencies observed in
both Reo(co) and Imo(co) is the commensurate-
incommensurate transition that occurs around 100 K.

IV. ANALYSIS

The experimental results presented above clearly show
that a small amount of impurities has a profound effect
on both the statics and dynamics of CDW's. We wi11 first
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comment on the effects of impurities on the transition
and then discuss in more detail the effect of impurities on
the dynamics. The discussion of the dynamical efFects
will treat the microscopic origin of the parameters in Eq.
(1), the details of fits to the experimental results, and the
interpretation of deviations from Eq. (1). Lastly, we will
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FIG. 7. Temperature dependence of the conductivity and
dielectric constant in Tap 997Nbp pp3S3 at 94 6Hz.

FIG. 6. Temperature dependence of the conductivity and
dielectric constant in Tap 998Nbp pp2S3, at various frequencies.

compare the temperature and impurity dependence of coo
with the low-frequency quantities e(co=0) and ET.

The standard model that treats the interaction between
impurities and CDW's has been proposed by Fukuya-
ma, ' ' Lee and Rice, ' and by Efetov and Larkin. The
Hamiltonian is given by

H =
—,'~ I (VP)'dr+ Vop, g cos[2k.r, +P(r; )], (14)

Vop]a=
AV~n;

(15)

tells whether the potential energy or elastic energy is
more important; a ) 1 is called strong impurity pinning
and cx ( 1 is weak impurity pinning.

In each limit the pinning frequency coo may be calculat-
ed; however, the relations between coo, e, and ET do not
depend on which limit is appropriate. The energy neces-
sary to overcome the pinning potential is approximately
the energy necessary to displace the phase at the CDW
by a quarter-wavelength in the harmonic potential.

where P is the phase of the condensate, Vo is the impurity
potential, ~ is the elastic constant associated with the
CDW deformations, p, is the CDW amplitude, and i
represents the impurity positions. The Hamiltonian, in
the limit when VP is small, is equivalent to the random-
field XY model. The (VP) representing the phase exci-
tations leads to a gapless mode, and Sham and Patton,
and Imry and Ma, have shown that in less than four di-
mensions long-range order is absent. The effect of impur-
ities in this case is dramatically different than, for exam-
ple, that in superconductors or ferromagnets. In the
latter cases, the transition remains sharp ( mean-field-like)
and only T, is depressed by impurities. In contrast, we
observe a dramatic broadening of the transition in
CDW's. Other observers have seen similar effects in irra-
diated specimens.

We are not aware of a detailed theory that treats the
impurity-induced smearing of the phase transition, but
we expect that impurities lead to an upper limit of the
phase-phase coherence length- and that this cutoff leads in
turn to a smearing of the phase transition. Further stud-
ies are required to clarify this point.

The CDW, as described by Eq. (14), is capable of non-
linear conduction in the presence of a large electric field.
This nonlinearity, the so-called Frohlich mode, is well do-
cumented experimentally and is the subject of extensive
studies. Within the model, Eq. (14), we may derive ex-
pressions for the threshold field for sliding, ET, and coo,
the pinning frequency in Eq. (1). In addition, we may cal-
culate the low-frequency dielectric constant e(co=0) in
terms of coo. Fits to determine co, and comparisons with
ET and e(co=0) will then determine the suitability of the
description and approximate values of the parameters in
Eq. (14).

The first term in Eq. (14) favors a spatially homo-
genous phase, whereas the second term favors local dis-
tortions of the phase of the CDW to minimize the energy
at the impurity sites. Within this one-dimensional theory
the ratio
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Therefore, eETA /4 = ,' m—*coo( A, /4), or

E
P7l C00A,

Also, the dielectric constant at low frequencies, e(co={)),
depends only on the spectral weight ne /m* and the
pinning frequency coo,

e(co =0)=P
Pl CO0

(17)

where the constant P is 1 for a harmonic oscillator and of
order unity for a mode centered at coo. In the above equa-
tions we have neglected the infinite-frequency dielectric
constant.

The static microscopic model in Eq. (14) may be ex-
tended to dynamical problems by adding a kinetic-energy
term and deriving an equation of motion. The impurities
and inertia alone produce a pinned mode with a finite
linewidth. In addition to the disorder-induced linewidth,
we add an intrinsic damping term to obtain the full
linewidth of the mode. (We will show that this is a neces-
sity. ) Others have obtained approximate solutions of this
model that will be discussed below, but we will first dis-
cuss the results in terms of Eq. (1), and use the micro-
scopic models to interpret the parameters of the fits and
the deviations from the fits.

(i) Strong pinning (a))1). The CDW is pinned at the
impurities and responds to the electric field with long-
wavelength distortions in the region between impurities.
The pinning frequency is approximately'

' 1/2

VFn;, (18)

where n, is the impurity d.ensity and (m lm*)'r Vz is the
phase velocity (the so-called phason velocity).

(ii) Weak pinning (a ((1). In this limit' the resonant
frequency is

3
772

—2/3 1 /2

VFL0 ', (19)

where Lo is the size of a phase-coherent domain given
within the model by

2/3
3L = —e0 (20)

Clearly, Lo ' «n, , which results from the elastic energy
preventing the phase from adjusting to each impurity po-
tential. The impurity potentials within a domain then
add randomly, leading to partial cancellation and a pin-
ning energy lower than that expected from strong pin-
ning. As a increases, Lo ' approaches n; and Eq. (19) is
equal to Eq. (18) to within factors of order unity.

In contrast to the detailed theory of pinning, which
suggest that in both limits coo increases with increasing
impurity concentration, little is known about the damp-
ing that accompanies the CDW motion. Although
Frohlich originally suggested that there is no damping,
various interactions clearly can lead to the damping of

where A, is the electron-phonon —coupling constant,
p=m*/m&, with mb the band mass, and co, is the
transverse-phonon frequency. Previous estimates of
1/2~~ at 150 K yielded 4 GHz, a value far lower than the
experimental results in pure samples.

The last parameter in Eq. (1) is the effective mass of the
CDW condensate. The effective mass follows from a mi-
croscopic theory and is given by

4A

A,co(2k~ )
(22)

where 6 is the single-particle gap, A, is the dimensionless
electron- phonon —coupling constant, and co(2kF) is the
phonon frequency at wave vector 2kF before the in-
clusion of electron-phonon interactions. With 6-700 K,
A. ——,', and co{2k„)=100K {parameters appropriate for
TaSi), m "/mo-600. This result is in rough agreement
with the results for nominally pure TaS&, where
m * /m, = 1000+200 over a wide range of tempera-
tures.

In addition to the CDW response, the experimental re-
sults contain conductivity contributions from the quasi-
particles or "normal" electrons. This contribution is the
dc conductivity crd, ineasured at low fields (E (ET),
where the CDW is pinned and will not contribute to the
dc conductivity. For the following analyses of the fre-
quency dependence, we subtract crd, from cr(co) and call
the difference in conductivity the CDW response.

The three fundamental parameters, with a single-
degree-of-freedom description, are the pinning frequency,
the damping constant, and the effective mass. Subse-
quently, we will focus on the concentration and tempera-
ture dependence of these parameters. Using cr for the
CDW conductivity determined from Eq. (1), we have

2 2ne r co

m e 2( 2 2)2+ 2

ne ~ cor(coo2 2

Im(cr ) = m* r {co —coo) +co2

(23a)

(23b)

We will apply these equations to the experimental results

the collective mode. The theories of the damping
(linewidth) may be divided into two classes.

(1) Impurity scattering. The scattering of the CDW
from impurities will pin the CDW, as discussed above,
and will result in damping of the CDW. Estimates of the
linewidth contribution' using the impurity model [Eq.
(14)j imply I /r =coo in both the strong- and weak-pinning
limits. Any changes in coo would be directly rejected in
I /r, maintaining a constant product coor = l.

(2) Intrinsic processes. The scattering of the CDW by
other phasons has been treated by Takada, Wong, and
Holstein. ' The expressions they derive were discussed in
an earlier publication. The result of the theory at tern-
peratures greater than or comparable to the Debye tern-
perature is

1

2'rr'r 64( 2 )
r pA
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as a starting point for discussion.
Figure 8(a) shows the frequency-dependent conductivi-

ty of nominally pure TaS3 at 160 K. The response is
overdamped, and consequently a logarithmic frequency
scale is necessary to present the data. The lower-
frequency results —from Wu et al. —are measured on
the same batch of crystals used for our measurements.
The solid curve is Eq. (23a) with fit parameters coo/2m. = 5

GHz and (2m') '=125 GHz. We note that although
agreement between the experiment and Eq. (23a) is ade-
quate in the microwave and millimeter-wave spectral
range, the agreement at low frequencies between the ex-
perimental results and Eq. (23a) is poor. The agreement
may be corrected by including a distribution of pinning
frequencies extending to low frequencies, but having a
cutoff at higher frequencies. We will discuss these fits
below.

Figure 8 shows that the CDW motion can be qualita-
tively described with a harmonic-oscillator response, and
the fundamental parameters can be evaluated from such a
fit. Disorder effects appear to modify the response only
at frequencies below the pinning frequency coo, but do not
influence the conclusion concerning the pinning and
high-frequency damping of the collective mode. We are
therefore proceeding by using Eq. (1) also for the analysis
of the pinned collective mode in the doped specimens.
Figures 9—13 display both Reo(ro) and Imo(co) for the
pure specimen and the alloys at different temperatures.
At all temperatures we observe a sharp shift of the spec-
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given in Figs. 14—16.
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FICx. 10. Frequency dependence of Reo. (co) and Imo(co) in
Ta& „Nb„S3 alloys at T= 150 K. The solid lines are fits to Eqs.
(23a) and (23b) with parameters discussed in the text and also
given in Figs. 14—16.
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FIG. 13. Frequency dependence of Reo.(co) and Imo(m) in
Ta, Nb S3 alloys at T=60 K. The solid lines are fits to Eqs.
(23a) and (23b) with parameters discussed in the text and given
also in Figs. 14—16.
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(23a) and (23b) with parameters discussed in the text and also
given in Figs. 14—16.

tral weight to higher frequencies with increasing impurity
concentration. In addition, the maximum conductivity
remains unchanged within experimental error. In the
figures the solid curves are fits to Eqs. (23a) and (23b) for
each impurity concentration.

We first note that a harmonic-oscillator response
roughly accounts for both Reo (co) and Imo (co), especial-
ly at higher temperatures. The fit gets progressively less
and less adequate at lower temperatures, and at 60 K
only a gross overall agreement with the measured and
calculated curves is recovered. We also note that for the
higher-concentration alloys with x =0.002 and0. 003 the
fits are not accurately determined because only the lower
spectral end of the resonance is within the spectral range
of the measurements. Several facts, however, assist in
evaluating 1/r and coo in this case. The dc-conductivity
studies demonstrate that the transition temperature is de-
creased by less than 10% for the most heavily doped sam-
ples (x =0.003). The single-particle gap is, within
weak-coupling mean-field theory, linearly related to the
transition temperature, implying that the doping pro-
duces an equally small change (=10%%uo) in the gap. Also,
the dc-resistance curves for the materials are almost in-
distinguishable (see Fig. 1). That o.(T) is determined by
the gap below T~ also suggests that 6 is only weakly
affected by the impurities. In the theories of the CDW
excitation spectrum, the effective mass is proportional
to the square of the single-particle gap [see Eq. (22)], a re-
sult supported by our earlier work. " The change in
effective mass, or equivalently the integrated spectral



7636 D. REAGOR AND G. GRUNER 39

weight, is therefore approximately 20%. This produces
an additional constraint on the fit parameters, i.e. one ex-
pects that

o,„/r =ne /m ' = const, (24)

where, in practice, the approximation as a constant is ac-
curate to well within the 20% estimated above. The fits
to Eqs. (23a) and (23b), with this additional constraint,
are then accurately evaluated at the larger impurity con-
centrations.

Several conclusions can be drawn concerning the con-
centration dependence of the fundamental parameters of
the problem, even without knowledge of the impurity
concentration. First, the pinning is due to impurities
and, except for the nominally pure specimens, pinning by
grain boundaries, by contacts or by the surface of the
specimens, does not play a significant role. Because of
the absence of detailed information on the actual impuri-
ty concentration, we are not able to rigorously distin-
guish between the weak- and strong-impurity-pinning
limits. We have performed an analysis, such as that
presented before for the T =150 K data, at di6'erent tem-
peratures, leading to the temperature dependence of the
parameters coo/2m and (2~v )

' and cr,„/o z~ (Rl'
denotes room temperature. ) These results are displayed
in Figs. 14 and 15 in the temperature range where the
harmonic-oscillator fit provides an appropriate descrip-
tion of the experimental results.

In general, the pinning frequency increases with in-
creasing impurity concentration at all temperatures,
confirming the importance of impurity pinning TaS3.
Figure 16 plots the pinriing frequency versus impurity
concentration at selected temperatures. It appears, how-
ever, that the data cannot be simply described by the ex-
pression

0.9-
b
C)
E 07

150-

100-
4

50
50

Ta~-x Nbxs ~

I

100

temperoture (K)

0.002 o
0.001 o

pUre x

I

150 200

FIG. 15. Temperature dependence of the relaxation rate
(2m~) and maximum conductivity Reo.(co=no) in nominally
pure and a11oyed TaS3 specimens.

coo= A (T)f(x), (25)

with f (x)-xr (with y also depending on the impurity
concentration), as would be required for a pinning fre-
quency determined entirely by this type of impurity even
for the nominally pure specimen. The data can be better
represented by
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FIG. 14. Temperature dependence of the pinning frequency
coo in nominally pure and alloyed TaS3 specimens.

FIG. 16. Concentration dependence of the pinning frequency
ma at two different temperatures, T = 150 and 90 K.
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coo= coo(pure) +Bx, (26)

with 8 =500 GHz/at. %. Equation (26) suggests that the
parameter B is determined by the choice of impurities,
that 8 is weakly temperature dependent, and coo(pure) is
of diferent origin. In the absence of the detailed studies
of coo(pure) as the function of sample size or preparation
conditions, it is impossible to locate the origin of the pin-
ning frequency in the pure specimen. There may, howev-
er, be other types of microscopic disorder, such as vacan-
cies or impurities, that do not match the valence of tan-
talum and contribute a pinning potential wi)h a different
temperature dependence. In nominally pure TaS3, com-
mensurability, grain boundaries, or surfaces may be re-
sponsible for the pinning.

Figure 15 shows that, within experimental error, the
damping is independent of the impurity concentration,
and, to a first approximation, it can be written as

= A +BT", (27)

(28)

The dashed line in Fig. 8 is deduced from such a distribu-
tion by convoluting it with a harmonic-oscillator complex
conductivity (see Ref. 16),

o (co)= de' P (co')
0 le+'T C0 CO

(29)

with n —1, A =85 GHz, 8 =0.3 GHz/K. Because of a
weak temperature dependence and large residual resistivi-
ty, we cannot exclude a higher exponential n and a
weakly-concentration-dependent B. Equation (27}, how-
ever, is surprising and is unaccounted for at present.
First, although the temperature-dependent term can be
thought of as caused by the interaction of the collective
mode with the uncondensed electrons and/or with the
phonons, both mechanisms lead to temperature depen-
dence stronger than that given by the nearly linear depen-
dence found experimentally. We cannot exclude a T
t-.mperature dependence on the basis of the experimental
data, a finding in agreement with the predictions of Taka-
da et al. ' [Eq. (21)]. As discussed elsewhere, the nu-
merical estimates of B are an order of magnitude smaller
than the measured value of 8. The large "residual damp-
ing" [2m'(T =0)] ' is also dificult to understand. For
damping due to phonons, or normal electrons
1/2m'(T =0)=0, the damping goes to zero at zero tem-
perature, and for a damping determined by impurities,
1/2m. r should increase with increasing impurity concen-
tration. The highly unusual residual damping, which we
found to be independent of the impurity concentration, is
unexplained at present and will be discussed in more de-
tail below.

Figures 9—13 clearly show that the fits are qualitative
in nature. The actual line shape departs from the
harmonic-oscillator fit significantly. As discussed earlier,
the deviation is explained at higher temperatures in the
nominally pure material by including a distribution of
resonant frequc:ncies,

1/co~, co & co~

P(~)= '

0, ct)) co

E,
P2 A.

(30)

where cp is the phason velocity. The erroneous cosine in
Eq. (3) of Ref. 8 has been replaced with a sine. The above
expression may be approximately solved with a self-
consistent Born approximation, leading to a frequency
dependent conductivity

ne 1
o(co) =i a)' m' co +iso/r+X(co)

where X(co) satisfies the self-consistent condition
~ 3l Q)p

X(co)= —yco02+
4[co +iso/r+X(cg)]'

(31)

(32)

and where y is a constant of order unity and
mp=n;cx cp. The third term in the denominator of Eq.
(31) has the role of introducing a frequency-dependent
damping that decreases as the frequency is increasing.
This term broadens the response at lower frequencies, but
remains close to harmonic-oscillator response at higher
frequencies, exactly as observed in nominally pure TaS3
(Ref. 2) (see Fig. 8) and NbSez. ' In addition, Im(cr) de-
creases relative to the harmogic-oscillator value at fre-
quencies below the maximum in Re(o.). A frequency-
dependent conductivity with the opposite properties —a
broadening of Re(o ) to higher frequencies and an in-
crease of Im(o) at frequencies below the maximum in
Re(o )—is not possible within this model when 1/r ) coo.

The results in Figs. 9—13 are clearly in contrast to this
approach. In Fig. 13, for Tap 998Nbp 002S3 all the experi-
mental results are below the harmonic-oscillator fit [Eq.
(23a)] to Re(o ) and above the harmonic-oscillator fit [Eq.
(23b)] to Im(o). Similar effects are observed at higher
temperatures (Figs. 11 and 12). The calculations of Ref.
8 are in the weak-pinning limit and imply that coo is pro-
portional to n . This implication is jn disagreement

Figure 8(b) displays Imo(co) at the same temperature.
The positive Imo. below cop and the negative Ima above
cop are again characteristic of a harmonic-oscillator
response. Because the fit to Eq. (23b) does not agree in
detail at low frequencies [just as with the fit to the real
part of the conductivity in Fig. 8(a)], we must use the
same distribution to obtain an accurate fit. The fits in-
cluding a d.istribution are excellent, as is clear from Fig.
8. Qualitatively, the distribution fit succeeds by broaden-
ing the resonance to lower frequencies. In contrast, the
deviations from Eq. (1) at lower temperatures or at higher
impurity concentrations require a sharpening of the lead-
ing edge of the resonance. The model presented in Ref. 5

is therefore clearly inadequate for describing the NB-
doped samples.

The impurity-pinning model has been extended * re-
cently to include intrinsic damping of the CDW response.
Using the phase Hamiltonian [Eq. (14)] to derive the
impurity-pinning and elastic forces, one can replace the
phenomenological pinning term coo/ in Eq. (1), leading to

d+— —co —
Vop& g sin[Qx +P(r; )]

dt & d~ dx m A,
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with Fig. 16 and Eq. (26), where the pinning frequency is
linear in the impurity concentration.

Clearly, a theory involving an intrinsic damping and
strong rather than weak impurity pinning may be useful
in further interpretation of these experimental results.

Bardeen has proposed an alternate approach to de-
scribe the dynamics. In this model the frequency-
dependent conductivity arises from excitations across a
pinning gap. Taken at face value, this model would im-
ply a sharp onset of frequency-dependent conduction, just
as observed at lower temperatures on the leading edge of
the doped-sample resonance. A functional forrg for fits in
the inertial regime has not been proposed for the tunnel-
ing model, so the agreement is only qualitative.

Quantum models would possibly explain an additional
feature of the results. The damping of a dynamical
response is usually described as arising from impurities or
intrinsic excitations of the pure crystal. Here, however,
we have a very weak temperature dependence of the
linewidth, 1/r (see Fig. 15), only partially in agreement
with the phonon-scattering mode, Eq. (21). Figure 15
shows that the linewidth is also weakly impurity depen-
dent, in clear disagreement with impurity scattering.
Another linewidth mechanism, common in semiconduc-
tor spectroscopy, is a bandwidth where quantum fluctua-
tions produce a single electron absorption lipe that is
broad at zero temperture in an impurity-free sample. Al-
though a theory of this type is not available, we note that
the quantum-fIuctuation energy scale for an arbitrary sys-
tern is given by

2M',

where M is the particle mass and k is the separation be-
tween particles. For metals M=m, and A, is a few
angstroms, leading to =5-eV bandwidths. In the CDW
case we take M=2m*, the bipolaron mass, and A, to be
the CDW wavelength (the bipolaron separation). We
evaluate this at T=150 K with m*=940m„1=13.4
A, and express the result as a frequency, v=E/h = 107
GHz. The close agreement between v and the experimen-
tal value of the linewidth, (2nr), combined with the
weak impurity dependence and weak temperature depen-
dence, lead us conclude that quantum concepts may be
necessary to describe the dynamics of the CDW.

Finally, we compare the measured pinning frequency
with the measured low-frequency dielectric constant and
with the measured threshold field Ez-. Others have inves-
tigated both on specimens from the same preparation
batch on which our experiments were conducted. The
low-frequency dielectric-constant experiments were con-
ducted at ~/2m= 1 MHz, a frequency significantly small-
er than uo. The dielectric constant displays a weak fre-
quency dependence at co «coo, in contrast to the predic-
tion of Eqs. (23a) and (23b), and therefore e(1 MHz) can-
not be regarded as the true e(a&~0) limit. Consequently,
the arguments based on the low-frequency dielectric con-
stant have only a semiquantitative significance. Figure 17
displays all three parameters, coo, e(u~O) ', and Fr'
measured at T =150 K as the function of the nominal Nb
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FIG. 17. Concentration dependence of coo, [e(1 MHz)]
and E& 3,t T=150 K.

concentration. Both in the strong pinning limit and in
the weak pinning limit [see Eqs. (16) and (17)], both Er
and e '( co = 0) are proportional to coo, and this is
confirmed by the experimental results. The numcri|:al es-
timates of e and Ez are, however, in clear disagreement
with the experimentally found parameters. As n is close
to 1, both the weak and strong-impurity-pinning limits
give the same order-of magnitude values for e and Er.
For the pure material using m'=940m„n =6.5X 10 '/
cm, P= 1, A, =4ao= 12 A, and coo/2m. =8 6Hz leads to
e(co=0)=9X10 and Ez.=20 V/cm, in contrast to the
measured values of e(1 MHz) =4X 10 and Er =0.2
V/cm. The disagreement in the case of e(co=0) is easily
explained by the unusual shape of the resonance, where
the tail extending to low frequencies adds substantially to
the dielectric constant at lower frequencies. Ip addition,
the resonant frequency is not clearly defined for an over-
damped resonance, and a value coo=4 GHz leads to ex-
cellent agreement with e(1 MHz) without compromising
th|: high-frequency fits.

The difFerence between the experimental values of El-
and those predicted by Eq. (16) is more substantial. The
arguments leading to Eq. (16) assurpe that a displacement
of the CD%' by a length A, /4 is necessary to achieve de-
pinning. That experiment and theory difFer by a factor of
100 could imply that the phase displacement necessary to
achieve a sliding CD%' is of order 1 . This finding is in
agreement with nuclear-magnetic-resonance studies of
sliding CDW s in NbSe3 that establish that the phase is
typically advanced by a few degrees at Ez. An alternate
explanation for the discrepancy in Ez is that the q.on-
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linear conduction is associated not with the microwave
resonance, but with the spectral weight extending to low
frequencies. The effective coo is then much smaller, im-
plying a lower Ez.. This possibihty is supported by exper-
iments in several materials which show that the limiting
nonlinear conductivity is activated and the activation
energy is approximately equal to the activation energy of
the low-frequency conduction.

The above analysis strongly suggests that the main res-
onance, which appears in the millimeter-wave spectral
range, is not simply related through a single-degree-of-
freedom dynamics to the low-frequency and dc proper-
ties. The large low-frequency dielectric constant indi-
cates a large low-frequency spectral weight, which also
has a strong temperature dependence at low tempera-
tures. Figure 18 shows the temperature dependence of
the two parameters. Both e(1 MHz) and Er display a
characteristic temperature dependence that has been dis-
cussed earlier in the literature. In contrast to the
double-peaked e and corresponding Ez.(T) that has two
minima, coo displays monotonic rise with decreasing tem-
perature. Although we do not understand coo( T) and the
increasing pinning forces with decreasing temperature,
Fig. 18 obviously shows that ~0 is not simply related to
e(1 MHz) and Ez.

V. CONCLUSIONS
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We have studied the pinned CDW mode in
(Ta I „Nb„)S3 alloys in the millimeter-wave spectral
range. At high temperatures, 100 K & T & T, the
response can be approximately described by a harmonic
'.scillator [Eq. (1)] with a pinning frequency coo, effective
mass I*, and damping constant 1/r. A distribution of
pinning frequencies, which has been used to describe the
experimental results in nominally pure TaS3, does not ap-
pear to be important in the alloys.

In agreement with theoretical expectation, we find that
the pinning frequency increases with increasing impurity
content, with the frequency increasing approximately
linearly with nominal impurity concentration. The tem-
perature and concentration dependence of ~0 is well de-
scribed by Eq. (26), which suggests that impurities intro-
duce an additional temperature-independent contribution
to the restoring force, with mo in the nominally pure ma-
terial being strongly temperature dependent. This tem-
perature dependence has not been explained. Arguments
advanced by Maki for the behavior of the threshold
field may be relevant also for the pinning frequency.

The damping that characterizes the high-frequency
(co&coo) response of the pinned CDW condensate does
not, within experimental error, depend on the impurity
concentration and appears to be of intristic origin. The
scattering of the collective mode from uncondensed elec-
trons, phasons, or phonons depends on the density of the
scatters, which should rapidly decrease as the tempera-
ture is lowered. The weak temperature dependence of the
damping or linewidth must then be explained by more
complex models, possibly including quantum effects,

FIG. 1&. Temperature dependence of the pinning frequency
cL)0 dielectric constant e(1 MHz), and threshold field E& in nom-
inally pure TaS3.

which are not yet available.
We have also attempted to relate the pinning frequency

coo to the low-frequency (co/2m. = 1 MHz) dielectric con-
stant and the threshold field Ez for the onset of nonlinear
conduction. Simple arguments, based on the depinning
of the collective mode as a rigid entity, lead, however, to
e(1 MHz), which is orders of magnitude smaller, and to
Ez, which is orders of magnitude larger, than the mea-
sured values. It is evident from the analysis that the
low-frequency, and also low-field, response of CDW's is
dramatically different from a single-degree-of-freedom
classical dynamics. Others have suggested that tunneling
effects or internal distortions with normal electron
screening are responsible for the low-frequency behavior
of the pinned CDW condensates.

ACKNOWLEDGMENTS

These studies were supported by the National Science
Foundation Grant under DMR-86-20340. The authors
thank John Bardeen for useful discussions and S. Sridhar,
Wei-Yu Wu, A. Janossy, and L. Mihaly for contributing
some of the experimental results presented in this paper.
One of us, D. R., was supported by the U. S. Department
of Energy during preparation of this manuscript.



7640 D. REAGOR AND G. GRUNER 39

For a review, see G. Griiner and A. Zettl, Phys. Rep. 119, 117
(1985), and the articles in Charge Density 8'aves in Solids,
Vol. 217 of Lecture Notes in Physics, edited by Gy. Hutiray
and J. Solyom (Springer, New York, 1986).

See, for example, S. Sridhar, D. Reagor, and G. Gruner, Phys.
Rev. B 34, 2223 (1986);D. Reagor, S. Sridhar, and G. Gruner,
ibid. 34, 2212 (1986).

M. J. Rice and S. Strassler, in One Dimensional Conductors,
Lecture Notes in Physics, edited by H. J. Schuster (Springer-
Verlag, Berlin, 1974).

4G. Gruner, A. Zawadowski, and P. M. Chaikin, Phys. Rev.
Lett. 46, 511 (1981).

Wei-Yu Wu, L. Mihaly, G. Mozurkewich, and G. Gruner,
Phys. Rev. B 33, 2444 (1986).

6R. J. Cava, R. M. Fleming, R. G. Dunn, and E. A. Reitman,
Phys. Rev. B 31, 8325 (1985).

7John Bardeen, Physica B+C 143B, 14 (1986), and references
therein.

8M. Bleher, Solid State Commun. 63, 1071 (1987).
P. Littlewood, Phys. Rev. B 36, 3108 (1987); M. O. Robbins

and R. A. Klemm, ibid. 34, 8496 (1986).
J. R. Tucker, W. G. Lyons, and G. Gammie, Phys. Rev. B 38,
1148 (1988).

D. Reagor, S. Sridhar, M. Maki, and G. Gruner, Phys. Rev. B
32, 8445 (1985).
A. Philipp, W. Mayr. T. W. Kim, and G. Griiner, Solid State
Commun. 62, 521 (1987}.

I H. Fukuyama and P. A. Lee Phys. Rev. B 17, 535 (1987);P. A.
Lee and T. M. Rice, ibid. 19, 3970 (1979).

I4D. Reagor and G. Griiner, Phys. Rev. Lett. 56, 659 (1986).
I~P. L. Hsieh, F. deCzito, A. Janossy, and G. Griiner, J. Phys.

(Paris) Colloq. 44, C3-1753 (1983).
S. Sridhar, D. Reagor, and G. Griiner, Phys. Rev. B 34, 2223
(1986).

7Wei-Yu Wu, A. Janossy, and G. Griiner, Solid State Com-
mun. 49, 1013 (1984).
D. Reagor, S. Sridhar, and G. Griiner, Phys. Rev. B 34, 2212
(1986).

' J. A. Osborn, Phys. Rev. 67, 351 (1945).
H. A. Bethe and J. Schwinger, National Defense Research
Committee Report D1-117, Cornell University, 1943 (unpub-
lished).

~ L. I. Buravov and I. F. Schegolev, Prib. Tehk. Eksp. Instrum.
Exp. Tech. (USSR) 14, 171 (1971) [Instrum. Exp. Tech. 14,
528 (1971)].
S. Sridhar, D. Reagor, and G. Gruner, Rev. Sci. Instrum. 56,
1946 (1985).

J. Schwinger, and D. Saxon, Discontinuities in 8'aveguides
(Gordon and Breach, New York, 1968).
H. Mutka, S. Bouffard, G. Miha, ly, and L. Mihaly, J. Phys.
(Paris) Lett. 45, L-113 (1984).

~sSee, for example, P. Monceau, in Electronic Properties of Inor
ganic Quasi One D-ime-nsional Compounds, edited by P. Mon-
ceau (Reidel, Dordrecht, 1985), Pt. 2, p. 139.
H. Fukuyama, J. Phys. Soc. Jpn. 45, 1474 (1978); 41, 513
(1976).

~7K. B. Efetov and A. I. Larkin, Zh. Eksp. Teor. Fiz. 72, 2350
(1977) [Sov. Phys. —JETP 45, 1236 (1977)].
L. Mihaly and G. Griiner, in Nonlinearity in Condensed
Matter, Vol. 69 of Springer Series in Solid State Sciences, edit-
ed by A. R. Bishop (Springer-Verlag, Berlin, 1987).
L. J. Sham and B.R. Patton, Phys. Rev. B 13, 3151 (1976).
Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).
S. Takada, M. Wong, and T. Holstein, in Charge Density
8'aves in Solids, Vol. 217 of Lecture Notes in Physics, edited
by Gy. Hutiray and J. Solyom (Springer-Verlag, Berlin, 1985),
p. 227.
P. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Com-
mun. 14, 703 (1974).
H. Salva, Z. Z. Wang, P. Monceau, J. Richard, and M. Re-
nard, Philos. Mag. B 49, 385 (1984).
J. Ross, Z. Wang, and C. P. Slichter, Phys. Rev. Lett. 56, 663
(1986).
R. M. Fleming, R. J. Cava, L. F. Schneemeyer, E. A. Riet-
man, and R. G. Dunn, Phys. Rev. B 33, 5450 (1986).
K. Maki, Phys. Rev. 8 33, 2852 (1986).


