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ordering kinetics of a chemisorbed overlayer: Q/%(110)
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The ordering kinetics of an oxygen submonolayer on W(110) is investigated at several coverages
and temperatures using low-energy electron diffraction. Coverages correspond to ordering in a
single-phase region and two difFerent two-phase coexistence regions. The growth follows a power
law at early times at each coverage. Dyriamic scaling of the growth is investigated at two coverages.
It is shown that from the activation energy for the ordering process, an activation energy for non-
equilibrium diffusion can be determined. The values are compared to those for equilibrium
diiTusion.

I. INTRGDUCTION

The kinetics of ordering or growth of two-dimensional
(2D) systems has recently attracted considerable atten-
tion. ' ' Of major interest has been the form of the
growth law in different regioris of the phase diagram, the
inhuence of ground-state degeneracy, and the question of
scaling in the growth. We report here a crystallographic
determinatioo, using low-energy electron diffraction
(LEED), of the growth of domains in a two-dimensional
disordered system that is suddenly forced to a condition
where the thermodynamic-equilibrium state is an ordered
superlattice. We address the questions of growth law and
scaling at different coverages, at which the system exists
in different phase regions. We show that the coverage
dependence of the activation energy for diffusion of ad-
sorbed species can be extracted from the measurements.

In this section we review relevant aspects of the system
under investigation, 0/W(110), including structure, de-
generacy, and phase diagram, and summarize theoretical
developments that are applicable to its ordering kinetics.
Oxygen chemisorbed on W(110) is ideal for this study be-
cause it has been extensively investigated and forms
several ordered structures at different coverages, which,
because of their lower symmetry relative to the substrate,
can form in several states that are degenerate in energy.
For example, at room temperature, three structures,
p(2X1), p(2X2), and p(1X1), corresponding to —,', —,',
and l monolayer coverage, are observed. These may
have, depending on the adsorption site, a degeneracy of
at least four and as much as eight. There are four possi-
ble adsorption sites on the W(110) surface: on-top,
short-bridge, threefold-hollow, and long-bridge. Four
different degenerate p(2X1) structures, differing either
rotationally or translationally, are possible for the long-
bridge and on-top sites. There are two short-bridge sites
per unit cell. Four different p(2X1) structures can form
at each of these sites. A total of eight different p(2X1)
structures can therefore be formed, which are not neces-
sarily degenerate in energy because two types of bond
configurations are involved. The degeneracy is thus equal
to 4. If the oxygen sits on threefold-hollow sites there
will, however, be eight degenerate states, because the two
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FIG. 1. Symmetry and ground-state degeneracy for
W(110)p (2 X 1)-O with occupation of the three-coordinated
sites. The degeneracy is 8.

threefold-hollow sites in a unit mesh are entirely
equivalent. Four translationally and four rotationally
equivalent structures, shown in Fig. 1, can form. There is
experimental evidence that p =8. '

For the p(2X2) structure, four degenerate states can
form with all adsorption sites except for the threefold-
hollow site, for which there are again eight possible de-
generate structures.

A possible phase diagram for 0/W(110) has been con-
structed from measurements of the appearance of super-
lattice rejections in LEED as a function of temperature
at different coverages. '"' It is shown in Fig. 2(a). At
room temperature and low coverages theie is a first-order
phase boundary separating a disordered lattice-gas phase
from a coexistence region consisting of lattice gas and is-
lands of oxygen atoms with a p(2X1) structure. For in-
creasing coverages a single-phase region for the p(2X1)
structure appears around 6=0.5. A single-phase region
for the p(2X2) structure appears around 6=0.75. The
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p(2X2) and p(2X1) phases may coexist at some inter-
mediate range of coverages. For some coverage 8 & 0.75
the p(2X2) structure coexists with the p(1 X 1) structure.
Figure 2(a) also shows possible transitions to the disor-
dered phase at high temperatures. The exact positions of
most of the phase boundaries are not known. For exam-
ple, the p(2X2) single-phase region can have a finite
width instead of being a "line phase" as shown, and the
p(2X1) phase can extend above 8=0.5. Similarly, the
two-phase coexistence regions may have upper bounds
that are somewhat lower than those shown. Transitions
from the disordered to the p(2X1) phase are believed to
be second order. ' ' A calculated' phase diagram for
this system is shown in Fig. 2(b). It is similar in the
essential features, except that no coexistence region is in-
dicated between the p(2X1) and p(2X2) phases, but
rather a complex disordered phase.

If one considers a nonequilibrium phase transforma-

tion from the disordered state to an ordered state, one
can expect that the approach to equilibrium depends on
the nature of the final state. Various theoretical ap-
proaches to this problem have been made, and it is first
necessary to establish which are applicable to the system
at hand. ' In 0/W(110) the density is conserved, i.e., the
number of oxygen atoms on the surface is fixed at the ini-
tially chosen coverage independent of the degree of order.
Ordering cannot proceed by evaporation and condensa-
tion through the 3D phase, but must proceed by point-
defect —vacancy exchange, i.e., by adatom hopping across
the surface (or by more complicated 2D diffusional
modes). Regions that have an excessive or deficient den-
sity of atoms relative to the ordered structure ("heavy" or
"light" walls between adjoining domains) must attempt
to achieve the mean by a diffusional mechanism —in
many cases through particle exchange with already exist-
ing ordered regions.

The ground-state degeneracy p, which reflects the
number and types of different domain walls, may also
affect the ordering. As the overlayer symmetry relative
to the substrate decreases [e.g. , (n Xm) layer], p in-
creases. It seems physically reasonable that it becomes
more dificult to order a layer as the number of types of
domain walls increases. Early calculations showed a
dependence of the growth kinetics on p. Recent calcula-
tions on the Potts model indicate that the dependence
may have been artificial. The influence ofp on growth ki-
netics in other models appears to be a still unsettled
question. ' "' ' The nature of the final state (one-phase
or two-phase coexistence) affects the ordering. As dis-
cussed below, the mechanisms for ordering that occur
may be quite different.

Finally, ordering may consist of a sequence of compet-
ing processes that become important at different points in
the time regime. A calculation may be relevant only for a
specific range of the ordering process.

Most of the theoretical effort has concerned itself with
the kinetics of ordering in a single-phase region of the
phase diagram, beginning with the work of Lifshitz' for a
two-dimensional system with ground-state degeneracy,
p =2, and nonconserved density. A homogeneous disor-
dered state that has been quenched into a one-phase re-
gion is allowed to order. This is shown schematically in
Fig. 3(a). After initial domain formation the system will
consist of many very small domains in contact, separated
by walls. The continued domain growth is driven by a
reduction in domain-boundary curvature (i.e. , boundary
free energy). The mechanism for domain growth appears
to be interchange of particles with the 30 gas phase.
Lifshitz' found that the growth of domains driven by a
reduction of boundary energy follows a power law,
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FIG. 2. Phase diagram for 0/W(110). (a) Schematic diagram
based on experimental measurements and the Gibbs phase rule.
LC» denotes lattice gas. (b) Theoretical, from Ref. 19.

where (L ) is the mean linear dimension of the domains,
A ( T) is a temperature-dependent rate constant, r is time,
and x is the growth exponent. For p =2 and noncon-
served density all subsequent calculations agree with
Lifshitz's result that x =

—,
' and that this exponent is

universal, i.e., independent of the microscopic interac-
tions of a particular system, as long as the degeneracy
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TWO-PHASE SYSTEM

ONE-PHASE SYSTEM

FIG. 3. Schematic diagram of the degree of order at some in-
termediate time for (a) a one-phase system with ground-state de-
generacy p =4, and (b) for two phases coexisting with a low
concentration of the dense phase. The dilute phase, consisting
of monomers at lattice gas sites, is not explicitly shown.

p =2 is maintained. Calculations for larger values of p
and nonconserved density' ' also generally produce an
exponent x =

—,
' for early stages of ordering. Thus, even

though the dynamic and static critical exponents of mod-
els with, for example, p =2 and 4, are different (e.g. , Ising
model versus xy model with cubic anisotropy' ), they
yield the same domain-growth exponent. Lifshitz specu-
lated that, for long times, the growth rate would slow
down if p & 2 because of polygonization, the formation of
domains with straight boundaries that meet at vertices in
such a manner that there is no driving force for further
reducing boundary length.

In the system we have studied the above treatments
may not be applicable. Domain growth at 0=0.5 in
W(110)p (2X1)-0 corresponds to ordering in a single-
phase region, but with conserved density. This situation
has been treated in detail by Sadiq and Binder. For a de-
generacy p =2 it is again found that x =

—,', as for noncon-
served density. For p =4 the calculations give x= 3,
lower than the corresponding value for nonconserved
density, implying that the conservation of density is im-
portant in determining the universality class for p )2. It
is reasoned that the growth is slowed by the lack of possi-
bility of atom exchange with the gas phase, requiring
long-range surface diffusion, and by the complexity of
domain walls that can now exist. ' "There is not, how-
ever, unanimity on this issue, as already mentioned. The
degeneracy in W(110)p(2X 1)-O is at least 4, and possibly
8.' To our knowledge, no specific calculation has been
made for conserved density and p =8. If p=4, the re-

suits of Ref. 7 are congeneric with the measurements at
6=0.5 that we present below.

Ordering when the coverage is low enough so that not
all of the surface can be filled with ordered structure re-
quires two-phase coexistence as the thermodynamic final
state. A homogeneous disordered phase is quenched to a
temperature at which a high-density phase [the p(2X 1)
structure] and a low-density one (the lattice-. gas or 2D va-
por phase) coexist. Immediately after the quench, the
system will continue to exist as a low-density homogene-
ous disordered state (vapor phase), which at the low tem-
perature represents a state of supersaturation, however,
Nucleation of ordered islands takes place randomly. Fig-
ure 3(b) shows a two-phase system at this stage. All is-
lands grow, by monomer addition from the vapor
(effectively a 2D condensation), until the supersaturation
is eliminated and the islands are in local equilibrium with
their vapor. The simplest mechanism for island growth is
long-range diffusion of monomers. After the mean super-
saturation is reduced to zero, subsequent ordering of the
system takes place by coarsening, in which small islands
disappear at the expense of large ones. The process is
driven by the difference in boundary free energy of is-
lands of different size. The mechanism is 2D evaporation
and/or condensation with long-range monomer diffusion.
There is some difference of opinion in the literature in the
use of the word "coarsening. " In some cases, what we
have termed "growth" from a solution with a mean su-
persaturation (all islands growing) is considered the "ear-
ly stage" of coarsening. The "late stage". of coarsening is
then the regime where small islands disappear at the ex-
pense of the larger ones. In other cases, "coarsening" is
reserved for this late stage. We will use growth and coar-
sening to refiect the two regimes.

The classical theory of coarsening is that due to
Lifshitz and Slyozov. Their work is a mean-field kinetic
theory for the size evolution of (1 X 1) islands of one
phase (the dense phase) in a sea of the other (dilute lattice
gas) phase, in the limit of vanishingly small density of
(1 X 1) islands. The theory predicts a growth exponent of
x =

—,'. The growth mechanism involves 2D evaporation
and/or condensation, and diffusion. There have been
subsequent efforts to extend the theory ' to finite den-
sities of islands, which involve, as is physically necessary
and apparent, interactions between the islands because
they all contribute to the density of monomers in the di-
lute phase. There is agreement that x =

—,
' independent of

the density. The more complete theories of kinetics of
first-order transformations show, as we have already de-
scribed above, two regimes: growth (changing mean su-
persaturation) and coarsening (constant total island
volume, but reduction in boundary length). These
theories to our knowledge all reAect the ordering of
(1X1) islands coexisting with disordered lattice gas. In
our case, the ordered regions exist as a superlattice. Be-
cause now antiphase boundaries are possible, the results
mentioned above may not apply directly. Physically it
seems as long as the density of islands is low, their anti-
phase relationship should have no bearing on the coar-
sening, because a simple evaporation and/or condensa-
tion mechanism can still be effective. Thus one would ex-
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pect a growth exponent of x= —,'. If the density of or-
dered islands becomes high, they begin to meet occasion-
ally at antiphase boundaries. One might expect at higher
co ver ages a transition to the ordering kinetics in a
single-phase region described earlier. If the growth ex-
ponent in both types of phase regions is x =

—,
' for p =4,

as predicted, one would not observe any change in x with
coverage. For a system with p =2, one might, on the
other hand, expect to see a transition from an exponent
x =

—,
' at saturation coverage (single-phase region) to an

exponent x =
—,
' at suKciently low coverages in the two-

phase coexistence region.
An aspect of theories for ordering in both the one-

phase and coexistence regions is that th. ey frequently ex,-

hibit dynamical scaling over a range of ordering
times. ' Scaling in the growth means that the size dis-
tribution function of ordered domains, P(N, t), changes
its mean value and width in such a manner that a specific
scaling function,

P(&, &) =F(&(&)r(&(&)) ), (2)

can be defined, where X(t) is the number of atoms in a
domain at time t. Dynamic sealing implies self-similar
growth: the distribution of domain sizes at one time can
be related to that at another time by a simple
magnification. Scaling appears to imply that only one or-
dering mechanism is active. Scaling is generally found
for domain growth in a one-phase region, unless defects
are present, which may act to destroy scaling. The
Lifshitz-Slyozov theory for coarsening in a two-phase re-
gion also exhibits scaling. More thorough treatments '
show that for early times in two-phase ordering, when a
mean supersaturation still exists, scaling is not observed
until this supersaturation is eliminated and the density of
"solid" phase becomes a constant. The relationship of
these results to the system under investigation will be dis-
cussed below.

II. EXPERIMENT

The experiment consists of measuring the LEED inten-
sity from the overlayer as a function of time, at different
temperatures and coverages. Intensity measurements are
made with a diffractometer consisting of an electron gun,
a two-circle goniometer, and a moveable Faraday cup
with a circular aperture. Provisions are made for sample
heating, cooling, temperature measurement, and oxygen
and argon dosing. The chamber background pressure is
in the high-10 "-Torr range, with partial pressures of
reactive contaminant gases, such as CO2, CO, and H, in
the low-10 "-Torr range or lower. The angular distribu-
tion of intensity in a diffracted beam is measured by elec-
trostatically scanning the incident beam across the sam-
ple so that the distracted beam moves across the aperture
of the Faraday cup, after first mechanically positioning
the Faraday cup at the beam maximum. In this measure-
ment the position of the beam on the sample changes,
and it must be assumed that the surface structure and de-
fect concentration are uniform over the area over which
the beam sweeps. The current is measured with an elec-

trometer or, alternatively, by imposing a small ac signal
on the Wehnelt cylinder of the electron gun and monitor-
ing the in-phase component of the diffracted current with
a phase-lock amplifier.

Overlayer ordering experiments begin with an evalua-
tion of the instrument resolving power and the defect
structure of the substrate. An estimate of the instrument
resolving power can be made from the full width at half
maximum (FWHM) of the beam and the measurement
accuracy. The FWHM of the (0,0) beam is constant at
—1. 1 down to -80 eV, below which it increases. The
variation of the FWHM's of angular profiles taken under
identical experimental conditions is always less than
15%. The minimum angle of resolution for our instru-
ment is calculated to be 0.7' at 70 eV, which gives a max-
imum resolvable distance (MRD) of 65 substrate lattice
constants ( —180 A). At 25 eV, the MRD is —125 A.
The MRD determined for diffraction geometries corre-
sponding to other beams is similar or greater. The instru-
ment thus has low resolution in comparison to the state
of the art. However, as will be demonstrated, it is quite
sufficient for the ordering kinetics measurements reported
here.

Because steps may act as diffusion barriers that isolate
adsorbed atoms on a given terrace, leading to a collection
of noncommunicating thermodynamic subsystems, ' it is
important to assure that the average substrate terrace
size is much larger than the maximum average overlayer
domain size that is observed in the experiment. If steps
exist on the surface, the FWHM will oscillate as a func-
tion of energy. This oscillation is a result of the iriterfer-
ence of waves scattered from terraces at different heights.
We do not observe any oscillations, indicating that,
within the detection limit, there are no steps on the
W(110) surface. An estimate of the lower limit of the
average terrace size, obtained by assigning all the uncer-
tainty in the measurement of the FWHM of a substrate
beam as a function of energy to step oscillations, gives 55
substrate lattice constants per terrace.

Impurities can significantly affect the ordering
k jnetjcs I 3, 2 I ( b ), zs —27 acting as pinning sites for boundaries
and possibly as nucleation centers for small islands. Thus
the cleanliness of the surface is an important considera-
tion. The W(110) surface was cleaned in the usual
manner, which produces a surface free of contamina-
tion. Contamination builds up over time and consists
mostly of CO and H. The amounts adsorbed after a
given time can be measured by thermal-desorption mass
spectrometry. The maximum amount of impurity gases
adsorbed on the sample prior to dosing with oxygen is
found to be less than 0.1/o of a monolayer, ' occurring
generally in the early stages of an experiment. Most of
this is hydrogen. With additional cycles of 0 dosing, the
impurity concentration drops.

The source of oxygen is a silver permeation leak tube.
An oxygen pressure of 1X10 Torr is built up in the
tube by heating it for several hours. A leak valve and a
molecular-beam tube for dosing the sample are used to
control flow and to decrease exposure time, thus reducing
the amount of 0 exposure of other parts of the system
and lowering the pumping load. The equilibrium partial
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pressure of oxygen, Po(t), in the chamber during dosing
is -2X10 Torr and remains constant over a large
number of experiments. Po(t) is monitored and the leak
tube recharged as necessary. To determine and control
the coverage, exposure curves coupled with sticking-
coeScient measurements are used. For a normalization
point of coverage versus exposure, the intensity max-
imum of the (0, —,

'
) refiection from the oxygen overlayer

for room-temperature exposure is usually taken to
represent half-coverage . The rest of the coverage scale
is then determined using sticking-coeScient measure-
ments. If S(B,T) is the sticking coefficient of oxygen
on W(110) at 6 and T, then the change of the coverage,
dB(t)/dt, at the surface is

or

=CP (t)S(B,T)
dt

(3)

where C is a constant that takes into account that we do
not know the absolute pressure of oxygen at the sample,
but only Po(t). C is found by integrating I/S(6, 300 K)
to 6=0.5, and Po(t) to to «(300 K).

At temperatures where the oxygen overlayer does
not order, e.g. , at 200 K, superlattice-beam-intensity-
versus —exposure curves are not available and some other
means of coverage measurement is needed. The exposure
time to reach half-coverage at 200 K, to «(200 K), is first
estimated using Po(t), S(6, 200 K), and C(300 K) and
then found precisely by annealing at 600 K samples ex-
posed to 0 for times varying by incremental amounts
from this estimated value. The exposure time that gives
the narrowest profiles is chosen to correspond to to «(200
K). The value of C is finally recalculated using S(6, 200
K) and the now independently determined to «(200 K).
The difference between C(200 K) and C(300 K) is about
8%.

For e &0.4 the absolute coverage can be determined
easily because S is large and not rapidly varying with cov-
erage. For 8&0.5 this is not an accurate method, be-
cause of the small sticking coefBcient. However, a given
coverage is easily reproducible, because the coverage
change with exposure time is small. Considerable efFort
was made to determine e=0.5 accurately. The uncer-
tainty of the measurement of 6=0.5 favors values below
rather than above this coverage.

To measure growth kinetics the sample is cooled to 200
K and then exposed to oxygen until the desired coverage
is obtained. At 200 K the adsorbed overlayer does not
form superlattice structures, as indicated by the lack of
superlattice beams and by a high diffuse intensity,
representative of a disordered overlayer. The sample is
then rapidly heated to and held at a particular annealing
(growth) temperature. The peak intensity of a superlat-
tice beam and the sample temperature are measured as a
function of time at 1-s intervals. The intensity generally
shows variations of +15% that are a consequence of elec-
trometer drift at the very small currents ( —10 ' A) that

we are measuring. At specific times (100, 200, 300, 400,
500, 700, and 900 s) the sample is rapidly cooled, and the
intensity distribution in a superlattice beam (angular
profile) is measured. The temperature drop over the
range of annealing temperatures used here is of the order
of 30 K, enough to freeze the structure for the time to
make an angular-profile measurement. The sample is
then rapidly heated again to the annealing temperature
and the experiment is continued. The temperature
reaches the desired value in -7 s, oscillates about this
value for -20 s, and thereafter remains within 2 K of
this value. The time scale of these variations in tempera-
ture is thus small compared to the time scale important
in the kinetics. We consider the annealing cycle to begin
when the sample temperature is within 5 K of the anneal-
ing temperature and to end when the sample temperature
is more than 5 K below the annealing temperature. All
growth that occurs below T—5 K is ignored. The error
introduced in the intensity caused by growth below T —5
K can be estimated using the measured activation energy
(see below) and is of the order of 5 —10%, with the higher
values corresponding to higher growth temperatures. In
general, to prevent the interpretation of time-dependerit
variations in the experimental parameters as an aspect of
growth kinetics, both the annealing temperature and the
coverage for consecutive runs are chosen randomly.
Such variations include adsorbed impurities (generally
the system becomes cleaner for later runs; see above) and
variations in oxygen pressure during dosing.

At the end of each experiment, the sample is annealed
at -500 K and the p (2X1) structure is allowed to order
at that temperature for a short time to reach its best
structure. After cooling the sample to room temperature,
the (0, —,')-beam profile is remeasured. The profile for the
fully annealed structure should be the same for all experi-
ments at the same coverage. The shapes of such profiles
from different experiments are usually the same, but the
peak intensity generally varies slightly, +15'rio, as a
consequence of incident-electron-beam intensity Auctua-
tions. We use the integrated intensity of (0,—,')-beam
profiles from the fully annealed structure as a normaliza-
tion factor in all analyses where comparison of the abso-
lute intensity between different data sets is required.
Data sets with very different profiles for fully annealed
structures are discarded.

III. GROWTH LAW AND ISLAND SIZE AT =0.5

In this section we begin with a general discussion of
the determination of the growth law of two-dimensional
phases from measurements of the peak intensity of super-
lattice beams and the domain size from angular profiles.
We then describe the results at 8=0.5.

A. Peak intensity measurement and growth law

Consider diffraction from a single two-dimensional
domain with a superlat tice and a linear dimension
L-N' . The peak intensity of a superlattice beam
diffracted from the domain can be written in terms of X
as
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(4)

I,„„„„„,„(O,T)=~f(O, E)~ CN(t), (6)

where C is a constant. This result depends on conserva-
tion of the number of scatterers and on the fact that the
intensities from individual islands of an overlayer that
forms a superlattice can be summed incoherently (see
below). ' For a system in which there is a distribution of
island sizes, but which exhibits self-similar growth, it can
easily be shown that N(t) can be replaced by a constant
times (N(t)).

Although a limited instrument response does not affect
the above arguments, it will introduce uncertainties in
the measurements. A finite-size detector cannot measure
I(O, t); instead it integrates the intensity around I(O, t)
within an area the size of the detector aperture. If the
FWHM of the diffracted beam is large compared to the
instrument response using a circular aperature, the mea-
sured peak intensity is a good approximation to I(O, t).
The instrument response function at the diffraction con-
ditions of our experiments is 3 times narrower than the
narrowest profile measured for any of the growth experi-
ments. The difference between the measured value and
the true peak intensity is estimated to be always less than
5%. The greatest error occurs at late times, as the true
profile gets narrower and thus the instrument response
becomes more important.

One can check for a power-law —growth time depen-
dence for the domain size by plotting ln(intensity) versus
ln(time). Combining Eqs. (1) and (6) gives

If there is a power-law time dependence, the data should
fit a straight line with the slope of the line equal to 2x. A
typical example is shown in Fig. 4(a). Data taken at
seven temperatures between 260 and 300 K and plotted
in this manner give a mean value 2x =0.56+0.04. Inten-
sities for three of these temperatures are shown in Fig.
4(b) plotted versus (time) ". The normalization factor is
the integrated intensity of the fully annealed profile. The
slopes of the fits to the data in Fig. 4(b) are temperature
dependent and proportional to A (T) . If one assumes
that A ( T) has an Arrhenius-like temperature depen-
dence, such that

A(T)= Aoexp( E„,/k&T), —

where E „,is an activation energy, Ao is a frequency
factor, and kz is Boltzmann's constant, one can extract

where s is the deviation parameter from the Bragg condi-
tion and f (H, E) is the atomic scattering factor of each
atom in the domain. If there are P domains on the sur-
face, each with N atoms, the total number of atoms on
the surface is PN, and the peak intensity at any instant is

I,„„i„„„(0,t)=~f(H, E)~ PN (t) .

At constant coverage, to conserve the total number of
atoms, PN must be constant and thus P=C/N(t) T.he
evolution of peak intensity with time is therefore propor-
tional to N (t), i.e.,

E „,for the ordering process. This is shown in Fig. 5.
The activation energy for initial ordering at 6=0.5 is
found to be 0.17+0.03 eV. The relationship of E „,to
an activation energy for surface diffusion will be explored
in Sec. VII.

B. Late-time behavior

As ordering proceeds, eventually a stage is reached at
which the rate of increase of the intensity slows down.
This is observed in our data, as well as the results of oth-
ers. ' ' ' ' There are several physically plausible
causes. In a single-phase system, polygonization, the
achievement of straight domain boundaries meeting at
fixed angles, can slow the growth, even if the substrate is
perfect and free of impurities. ' In two-phase systems,
in the final stage of Ostwald ripening, where all islands
have reached about the same size, the growth must slow
down. There are also extrinsic reasons why the growth
may slow. For example, if growth of the overlayer occurs
on a substrate with terraces, and the terraces are thermo-
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FIG. 4. Evolution of the peak intensity of a superlattice
beam of p(2X1)-0 with time at 6=0.5. (a) lnI-vs-lnt plot at
two temperatures. (b) Peak intensities at three temperatures
plotted vs (times), where 2x has been determined from plots
such as those in (a). The "oscillations" in the data are noise that
is a consequence of measuring very small currents.
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tions of the superlattice beams of the other and thus one
orientation does not contribute to the superlattice beam
intensities of the other, but rather acts like empty space,
or "sea," for the other. However, domains with the same
orientation but with a translational antiphase relationship
will contribute intensity at the respective superlattice
rejections. As long as the positions of the antiphase
boundaries are assumed to occur randomly, the interfer-
ence between domains is small. ' The superlattice beam
intensities are then the sum of the intensities scattered
from individual domains,
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FIG. 5. Arrhenius plot of the slopes in Fig. 4(b). The fit to
the data gives E

„„

the activation energy for the ordering pro-
cess.

dynamically independent in the sense that mass transport
across steps is very slow, then ordering can occur only
within each terrace. There will be a limited supply of
adatoms, and the domains or islands size may reach a
limited size as a consequence. Additionally, point defects
may slow the growth. ' ' Finally, there is the
inhuence of the instrument on the measurement of the
peak intensity. A finite-size aperture integrates more and
more of the profile as the profile becomes narrower at late
times. As a consequence, the relationship expressed by
Eqs. (6) and (7) changes. If the actual growth exponent is
constant, the measured intensity will show a reduction of
its rate of increase with time.

We observe at all coverages a reduction at late times of
the intensity increase from the power-law value at earlier
times. The effect can be seen for 8=0.5 in Fig. 4. Using
Eq. (7), the growth exponent, after being constant over
some initial time regime, decreases gradually to a new,
lower value, which at 0=0.5 is x =0.13+0.05. The time
at which this slowdown occurs is temperature dependent,
being shorter for higher temperature. The intensity at
which the growth slows down is also temperature depen-
dent, with a higher value, corresponding to a larger value
of (N), achieved at higher temperature. This behavior is
inconsistent with impurity models of growth slowing.
Possible reasons for this behavior' will be brieAy dis-
cussed in Sec. VIII.

C. Domain-size distribution

As growth proceeds, the sizes and size distributions of
ordered domains change. The time evolution of the
domain-size distribution function contains information
on the growth mechanism and the rate-limiting steps in
the growth kinetics. The size distribution can, in princi-
ple, be determined from angular profiles of the diffracted
intensity in superlattice rejections. There are two orien-
tations for p(2X1)-0 structures on W(110), i.e., p(2X1)
and p (1 X2). The kinematic structure factors of p (2X 1)
and p(1X2) domains are, respectively, zero at the posi-

where P (N, t) is again the probability of finding a domain
with N atoms.

On any surface the size and separation distributions of
the islands or domains are in actuality two-dimensional
functions, and it is quite difFicult to determine them. The
conventional approach is to use one-dimensional models
[as in Eq. (9)] and to project the actual two-dimensional
distributions down to one dimension. This projection is
done experimentally by using a slit detector or by in-
tegrating point detector measurements along one direc-
tion. The latter approach is used here. In separate pa-
pers we will address the uncertainties in and limitations
to using this approach. It can, in any case, be stated that
mean island sizes determined from one-dimensional pro-
jections do not quantitatively represent the true sizes in
the two-dimensional distribution. The distributions
themselves become distributions of line segments. As a
consequence, although we present actual values for mean
sizes and size distributions here, they should be viewed as
approximations. However, because we use a consistent
approach for all profiles, investigations of scaling in the
growth should not be affected by the fact that we do not
know the 2D distribution functions.

The inhuence of the instrument on the angular profile
must be taken into consideration in order to determine
the domain size distribution function from measured
diffracted-intensity distributions. The instrument
response function, independently measured, can be
deconvoluted from the measured profiles. Alternatively,
a distribution function P(N) can be chosen and I(S) cal-
culated using Eq. (9). I(S) is convoluted with the mea-
sured instrument function to obtain J(S), which is com-
pared with experimental profiles. Both methods were
used here and gave consistent results. All profile mea-
surements are made along the direction normal to a line
connecting the (00), (0, —,'), and (0, 1) refiections using a
Faraday cup with a circular aperture small compared to
the profile width. This line lies along the a direction in
the primitive surface unit mesh, with a =2.74 A.

Figure 6(a) shows a comparison of profiles at early and
late times at 0=0.5. For all times and temperatures at
which we were able to measure them, they are fitted best
by a Gaussian domain-size (length) distribution [Fig.
6(b)]. A geometric size distribution also gives an approxi-
mate fit at early times, but gives wings that are increas-
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FIG. 6. Superlattice diffracted-beam profiles for
W(110)p (2X 1)-O at e=0.5. (a) Comparison of profiles at early
and late times, indicating the profile shape and relative amounts
of background; (b) fit to an angular profile (900 s at 289 K) using
Gaussian ( . ) and geometric ( ———) size distributions.

ingly too high as the order increases. The Gaussian func-
tion has a FWHM corresponding to a length scale of ap-
proximately one overlayer lattice constant (which in this
direction is the same as that of the substrate, a =2.74 A).
The maximum mean length measured within the range of
annealing temperatures and times of the experiments
(which corresponds here to the maximum mean separa-
tion between domain walls in the measurement direction)
is a.little more than five lattice constants. For compar-
ison, the fully annealed structure gives a mean linear di-
mension of &40 overlayer lattice constants. The exact
mean size and island-size distribution function are uncer-
tain for the fully annealed structure because the
diffracted-intensity profile from the fully annealed struc-
ture is instrument limited. This result indicates that,
within the annealing time of our experiments, the system
is far from ordering as completely as it could do, and con-
tains considerable disorder. Measurements of profiles be-
gin only after 100 s of ordering time have elapsed. A

perusal of Fig. 4(a) shows that the turnover from the ini-
tial power-law —growth regime occurs at 400 s at the
lowest anneal temperature (265 K) and at 200 s at the
highest anneal temperatures (297 K). Hence essentially
all of the profiles are measured in the regime in which the
growth exponent determined from the evolution of the
peak intensity is x =0.13+0.05. Averages of ln(inverse
profile width)-versus-ln (time) plots at six temperatures
give an exponent of x =0.07+0. 10. The value is
suSciently uncertain so that it is not clear whether this
represents agreement with the intensity data.

IV. GROWTH LAW AND ISI.AND SIZE AT 0=0.25

At 8=0.25, the overlayer system is in a two-phase re-
gion in the phase diagram, with ordered D islands coex-
isting with lattice gas. Measurements of the peak intensi-
ty at this coverage show again a linear region on a lnI-
versus-lnt plot, with a changeover at long annealing times
to a slower rate of intensity increase. The changeover
occurs later in time than at 6=0.5 ( & 500 s at the
highest temperature and later at lower temperatures), in-
dicating that the initial ordering mechanism that we ob-
serve is maintained for a longer-time period. Angular
profiles are again measured as 100, 200, 300, 400, 500,
700, and 900 s of annealing time. They are more complex
than those at 0=0.5 and must be discussed somewhat
more fully before one can have confidence in the interpre-
tation of the intensity in terms of a growth law.

A. Island-size distribution

The discussion on the determination of the size distri-
bution of domains presented above [Eq. (9)] holds as well
for islands that are spatially separated. The island-size
distribution function is found by fitting the (0,—,) profile as
described above. The measured profiles at 8=0.25 have
a lower intensity and higher background. Both results
are reasonable. There are fewer atoms scattering at
8=0.25, and more of them are in the disordered phase
as a random lattice gas, or exist as very small islands. We
determine the island-size distribution function as above
by deconvoluting the instrument function, and choosing
model size distribution functions to fit the resulting
profile. Again, we use 1D models and thus really deter-
mine a projected length distribution function. Profiles
at all temperatures and times can be fitted well with two
Gaussians, corresponding to islands with a bimodal size
(length) distribution. Over the time scale and tempera-
ture range of the experiment the large islands range in
mean size from —3 to 9 lattice constants (in the measure-
ment direction), somewhat larger than the maximum
mean size at 8=0.5, and the small ones from —1.5 to 3
lattice constants. The density of the small ones is about 3
times that of the large ones. These values are to a slight
degree dependent on the fitting —mean size and concen-
tration are somewhat cross-correlated in the model. We
have not been able to fit the profiles with a single size dis-
tribution, but this does not imply that one does not exist.
For example, an Ostwald ripening distribution function
does have a tailing toward smaller sizes, but there appear
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to be too many small islands in our data. %e have no
good physical interpretation for a bimodal size distribu-
tion.

500

g) 400

~ 300

8 = 0.25 4 ~

B. Peak intensity measurement and growth law

For any complex island or domain-size distribution
function the evolution of the peak intensity with time
must be considered with caution. If the growth obeys
scaling, i.e., if all the islands grow while the size distribu-
tion maintains its same functional form, then the peak in-
tensity is still a good quantity to evaluate the growth
law and Eq. (7) applies to the entire island distribution.
If the growth does not obey scaling, e.g. , if a part of the
-size distribution evolves in a manner different from
another part, then evolution of the peak intensity is not a
valid measure of the growth law of the total system. It
may still approximately reflect the growth law of part of
the system, however. Consider a bimodal distribution of
large and small sizes. The evolution of the peak intensity
proceeds as (N(t)) [Eq. (6)]. If the concentration of
large domains dominates, then the time dependerice of
the peak intensity of the diffracted beams from this struc-
ture will reAect approximately the growth of the large
sizes, and Eq. (7) would approximately apply to this com-
ponent. At other conditions, the development of the
peak intensity becomes more complex.

In Sec. VE we will demonstrate that the angular profiles
at 6=0.25 scale. Although we do not presently under-
stand this scaling behavior, its existence implies that, in-
dependent of the identification of the correct size distri-
bution function, the evolution of the peak interisity with
time can be used to determine the growth law, Eq. (7).

Peak intensity measurements were made at six anneal-
ing temperatures in the range 265 & T & 300 K. Figure 7
shows the results at three of these. The average growth
exponent is found to be x =0.28+0.02. The activation
energy for the ordering process, determined from the
temperature dependence of the slopes of the curves in
Fig. 7, is 0.16+0.04 eV.

V. GROWTH LAW AND ISLAND SIZE AT e=0.65

At e=0.65, beams corresponding to the p (2 X 2)
structure are observed. The system is probably in the re-
gion of coexistence (see Fig. 2) between the p (2X 1) and

p (2 X 2) structures. It cannot be definitively excluded
that the system is in the p(2X2) one-phase region, be-
cause the superlattice beams that belong to the p(2X1)
structure are also part of the p (2 X 2) structure, but it can
be excluded that the system is still in the p (2X 1) single-
phase region. If an overlayer phase diagram of the na-
ture of Fig. 2(a) is accepted, then at equilibrium at
8=0.65, by the lever rule, about half of the surface is
covered with p(2Xl) phase and the other half with

p (2X2) phase.
The two-phase region at this coverage is different from

the two-phase region at e=0.25 in that the second phase
is not a disordered lattice gas but rather an ordered struc-
ture with at least four degenerate states. The combined
higher number of' degenerate states creates more types of
walls and one may expect' "the growth process to be
slower than growth when one phase is a disordered lattice
gas. For a system whose composition is in the center of
the coexistence region, both phases will, to first order,
have an equal probability of nucleating and will form in
close proximity to each other. The diffusional path for
monomers for one phase will need to cross the other or-
dered phase, slowing the growth process.

A. Island-size distribution

Data were taken at 8=0.65 for annealing tempera-
tures in the range at 270 (T (350 K and times up to
900 s. Contrary to the results at lower coverages, there is
no ordering observable below 300 K. This result implies
that ordering is more difficult at 0=0.65 than it is at
8=0.5 and 0.25. Five data sets were taken between 300
and 350 K for the (0, —,') beam. The measured intensity

profiles are again fitted very well with a Gaussian size dis-
tribution function. The maximum size in the range of an-
nealing temperatures and times of the experiment is less
than seven overlayer lattice constants (mean domain size

0
is less than 20 A). The fully annealed structure gives a
diffracted-intensity profile that is instrument limited
(mean size ) 120 A). This indicates that, as before, the
system has ordered only very little in the time and tem-
perature regime we have considered.

200
z'

100

10 15
o.56

(s

20 25 30

FICx. 7. Evolution of the peak intensity of a p (2 X 1) superlat-
tice beam at 8=0.25 for several temperatures, plotted vs

(time), where 2x is determined from lnI-vs-lnt plots as in Fig.
4(a)

B. Peak intensity measurement and growth law

The peak intensity follows a straight line on a lnI-
versus-lnt plot at early times and then changes over to
slower growth at later times, as it did at the other cover-
ages. The changeover occurs for t ) 300 s at the highest
temperatures, arid at later times at the lower tempera-
tures. The peak intensity has again been used to deter-
mine the growth law. The growth of domains [both
p(2X1) and p(2X2), because both contribute to the
(0, —,

'
) beam] fits a power-law time dependence. The

growth exponent is found to be x =0.20+0.03. From the
slopes of such intensity evolution curves with time [simi-
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lar to those in Figs. 4(b) and 7] taken at five temperatures,
the activation energy for the ordering process is found to
be 0. 13+0.04 eV.

VI. SCALING IN THE ORDERING
KINETICS OF 0/W(1lo)

If an ordered structure grows in a self-similar fashion,
the morphology of the system at any time is indistin-
guishable from that at an earlier or later time except for
the magnification of the system. In this section we inves-
tigate scaling in the growth kinetics of W(110)p {2X1)-O
at 6=0.25 and 0.5.

The diC'racted-intensity distribution, which is a mea-
sure of the degree of order of the system, changes with
time during annealing. If the growth morphology is self-
similar, the structure of the system, and hence also the
diffracted-intensity distribution from the system, should
be time independent except for a scale length, see Eq. (2).
This result can also be expressed in terms of a "scaling
function, " F(y), for the diffracted intensity, where
y =S/w(t) is a length in reciprocal space normalized to
the FWHM, w(t), of the profile measured at time t and
where S is the magnitude of the momentum transfer.
Then

F(y) =F(S/w(t) ) = I(0, t) (10)

where I(0, t) is the peak intensity of the profile at time t.
If the system scales, then F (y) =const.

In order to test for scaling, it is convenient to remove
the instrument response function from the measured
profiles before they are compared. Alternatively, one
could fit the profiles measured at di6'erent times with
model profiles convoluted with the instrument response
function and then check for scaling in the model profiles.
We choose the first approach here. The profiles show a
weak asymmetry that depends on the degree of order.
The asymmetry becomes less noticeable the greater the
order and hence the greater the intensity of the profiles.
An asymmetry about S~~

=0 cannot be caused by any
phenomenon related to island or domain size: all size or
shape distributions will produce symmetric profiles. We
conclude that, in all likelihood, the asymmetry is an ar-
tifact of the way the profiles are measured. Another, very
speculative, possibility is the existence of domain walls
caused by the possible occupation of the two "hourglass"
sites in the unit mesh. " Because we believe that the
asymmetry is a measurement artifact, we have fitted only
one-half of the profile and have reAected it about the peak
to give symmetric profiles. A more detailed discussion
appears elsewhere.

Starting with measured profiles, we obtain, using the
convolution theorem, the properties of Fourier trans-
forms, and a fast-Fourier transform routine, I(S,t) from
the measured profiles J(S,t) I(S,t) is th. en rescaled ac-
cording to Eq. (10) above. Figure 8 shows profile scaling
at two temperatures at 6=0.5. At the high temperature,
all but the 100-s profile are measured in the time regime
in which the peak intensity has slowed and thus the good
overlap of the profiles indicate that there is dynamic scal-
ing in the late-time domain growth. The profiles can be

fitted with Gaussian functions, indicating that the size
distribution of domains is also Gaussian. At the low tem-
perature, the profiles are measured basically in the region
of transition in which the evolution of the peak intensity
[Fig. 4(b)] changes its slope. One would not expect scal-
ing to be observed, and the profiles overlap much more
poorly. We unfortunately cannot measure profiles rapid-
ly enough to investigate scaling at 6=0.5 in the early-
time regime in which we observe good power-law growth
from the peak intensities.

Scaling of intensity profiles taken at 6=0.25 for
di6'erent times at two temperatures is shown in Fig. 9.
The deconvoluted profiles for 6=0.25 have greater in-
tensity in the wings than are obtained for a Gaussian
shape, but it appears that they still scale, to the accuracy
of the experiment, with a single scaling parameter. The
profile measurements here are primarily in the time re-
gime before the peak intensity begins to slow its increase
(see Fig. 7). This is so because this regime lasts longer at
6=0.25, as we have already pointed out, and is more
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VII. DETERMINATION QF NONEQUII. IBRIUM
DIFFUSION COEFFICIENTS

FROM ORDERING KINETICS MEASUREMENTS

The thermodynamic behavior of an overlayer is deter-
mined by the microscopic interactions between the adsor-

true at lower than at higher annealing temperatures. The
overlap of the profiles, if anything, is better at the lower
temperature. We can fit the resulting profiles with a sum
of two Gaussians, corresponding to a bimodal size distri-
bution of two narrow Gaussians. It is more difFicult to
imagine physically that a bimodal distribution would ex-
hibit dynamic scaling, and in all likelihood the profiles
can be described also by a single distribution.

Although we did not make the same detailed analysis
of the profiles at 0=0.65, scaling is indicated here as
well. The profiles are Gaussians at all times and tempera-
tures that we have been able to measure, and change
widths in a continuous manner.

bate atoms and between adsorbate and substrate atoms.
A determination of these microscopic interactions can be
made at equilibrium or also as the system evolves toward
equilibrium. The usual equilibrium measurement is the
temperature-coverage phase diagram of the overlayer,
made, for example, with a diffraction or specific-heat ex-
periment. Using a statistical model with a few local in-
teraction parameters and an underlying lattice geometry,
the phase boundaries are fitted to find the magnitude of
these interaction parameters. Nonequilibrium determina-
tions of the same interactions can also be made, from
measurements such as those reported here. The evolu-
tion of the system toward its equilibrium state requires
mass transport. The temperature and coverage depen-
dence of the ordering that we have discussed in this paper
provides information on the microscopic interactions
that govern nonequilibrium diffusion in the system.

It is to be noted that this diffusion is termed "non-
equilibrium" to distinguish it from equilibrium diffusion.
The simplest form of equilibrium diffusion that one can
imagine is the random walk of a single particle among
lattice-gas sites, for which the activation energy for
difFusion is simply the corrugation of the substrate poten-
tial. For an overlayer, equilibrium diffusion is the ran-
dom motion of atoms about their equilibrium sites. Mea-
surements of such equilibrium diffusion have been per-
formed by Gomer et ah. The activation energy for
difFusion here depends on the interaction energies an ada-
tom sees when it is in an equilibrium environment of
neighbors. At temperatures and coverages at which the
overlayer is ordered, the activation energy for diffusion
will be high. At temperatures and coverages at which the
equilibrium state is disorder, the activation energy will be
lower, as the atom "sees" only a mean barrier due to the
presence of random neighbors. It approaches the value
for single-particle diffusion as the coverage approaches
zero.

The factor A ( T) written in terms of an Arrhenius rela-
tionship in Eq. (8), contains the nonequilibrium diffusion
coefficient, D. Theoretical determinations of the growth
in both single-phase and two-phase coexistence regions
have found that

E „,(e)=xE'„,(e) . (12)

From the values of x and E „,(6) at three coverages, we
deduce that the activation energy for diffusion of O on
W(110) in a random environment of other 0 atoms lies in

A(T) ~D',
where x is the growth exponent in Eq. (1). This relation-
ship can be generalized on the basis of dimensional argu-
ments to any growth situation (different ground-state de-
generacies, etc. ) with the assumption that the only time
dependence on the right-hand side (rhs) of Eq. (1) occurs
in D and in t . There are (as in Refs. 2 and 8) other con-
stants (e.g. , boundary energy, molar volumes, etc. ) in Eq.
(11), but they do not depend on time. The activation en-
ergy E

„„

in Eq. (8), obtained from a plot of in'(T)
versus 1/T, can then be related to the activation energy
for nonequilibrium diffusion, E'd;ff, by
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the neighborhood of 0.6 eV/atom.
We would like to relate this value to the adatom in-

teraction energies for p (2X l)-o on W(110) found from
fits to the phase diagram and to equilibrium diffusion
measurements in this system. The phase diagram has
been shown in Fig. 2(a), and a part of it is reproduced in
Fig. 10(a). Monte Carlo fits to the phase boundaries re-
quire [see inset, Fig. 10(b)] a nearest-neighbor attraction
P„anext-nearest-neighbor repulsion $2, with ~P, ~

= ~P2~,
and a weaker third-neighbor attraction P3=P, /3. Mea-
surements of equilibrium diffusion have been made over
a coverage and temperature range [Fig. 10(a)] that in-
cludes the one-phase region and a disordered lattice-gas
phase. The activation energy for equilibrium diffusion
deduced from these measurements is shown as a function
of coverage in Fig. 10(b). It shows a strong coverage
dependence, as suggested earlier. The rise in activation
energy occurs at the coverage at which the system orders.
The magnitude of the rise is consistent with the interac-
tion energies determined from the phase-diagram fits.
The value at lowest coverage, Ed;s(6=0. 15)=0.6 eV,
represents an upper limit of the activation energy,
Ed ff ( 0 ), for single-particle diffusion. It is an upper limit
because, even though the system is in a disordered phase,
fluctuations can still create momentary ordered regions
that will raise the activation energy.

Values of the activation energy E'd;z from ordering ki-
netics measurements, using Eq. (12) and the experimen-
tally determined growth exponent x, are also shown in
Fig. 10(b). These values can be related to the adatom in-
teractions as follows. The value E'd;~ represents the ac-
tivation energy for diffusion for an atom in a mean envi-
ronment. The mean environment of a diffusing atom is
disorder —the random occupation of sites at the ap-
propriate coverage. This can be expressed to first order
as

Ed,.~(6)=Ed;s(0)+Z6 (13)
J

where Z is the coordination number of the lattice, 6 is
the coverage, and
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deduce the dashed curve, but the methodology for deter-
mining the coverage dependence of the nonequilibrium
diffusion coeKcient is inherent in the results we have
presented. If measurements of ordering are made at a
variety of coverages, both gP and Ed;s(0) are, in princi-

&4 =4i+02+43 (14)
04

O. I

I -~ I

0.2 0.3 04 0.5 0.6 0.7

is the sum of the adatom-interaction energies. The
second term in Fq. (13) thus represents the increase in ac-
tivation barrier above the single-particle value caused by
the presence of a randomly arranged set of neighbors.
An atom in position 1 in the inset would contribute —Pi',
in 2, +tI)2, in 3, —P3. This second term depends on cov-
erage: the greater the coverage, the more occupied
nearest-neighbor sites an atom is likely to have. The
dashed curve in Fig. 10(b) is a plot of the coverage depen-
dence of the activation energy Ed;s.(6), normalized to the
value at 0=0.25. Its intercept at 6=0 gives the activa-
tion energy for single-particle diffusion.

Unfortunately, in this system, the inAuence of the
mean adatom-interaction potential, gP, is rather weak
(i.e., +/=0), so to first order all of our measurements
reAect the activation energy for single-particle diffusion,
and only weakly a coverage dependence. %'e do not sug-
gest, therefore, that our data are precise enough to

FIG. 10. Comparison of the equilibrium and nonequilibrium
measurements of activation energies for di6'usion of 0 on
%(110). (a) Equilibrium phase diagram. The phase boundaries
above 6=0.5 are uncertain. LG denotes lattice gas. The
hatched region indicates the T-6 range for equilibrium mea-
surements (Ref. 35). The cross-hatching indicates a region
where these measurements overlap the uncertain phase dia-
gram. Heavy bars indicate T-0 rt„gions of the ordering kinetics
measurements. (b) Activat&on energy for di8'usion. Open cir-
cles: equilibrium measurements. Crosses: nonequilibrium mea-
surernents. The dashed line shows the coverage dependence of
Eq. (12) using the interactions P, , $2, P, shown in the inset.
Their magnitudes (Ref. 36), determined from a best fit to the
phase boundaries shown jn (a), are —0.09, +0.075, and —0.03
eV. The curve is forced to go through the data point at
6=0.25. The intercept at 8=0 gives the activation energy for
single-particle diffusion.
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pie, extractable.
We also come to conclusions about the diffusional ac-

tivation energy that are consistent with the equilibrium
measurements of Gomer. In phase regions where the
equilibrium state is disorder, the determinations for the
activation energy for diffusion are very similar to ours,
which always rejects disorder, except for a coverage
dependence. In regions where the equilibrium state is or-
der, the activation energy for equilibrium diffusion is
higher than E'd;~ by an amount that is related to the
adatom-interaction potential as seen by atoms in the or-
dered state.

There are several assumptions in this analysis. One is
that the arrangement of overlayer atoms is random. True
randomness occurs only at zero time. In general, the sys-
tem is more ordered, which increases the activation ener-
gy. In our measurements, the mean domain sizes change
from -2.5 atoms wide at early times to -7 atoms wide
at the latest times, and thus there is considerable disorder
over the complete time regime. A second assumption is
that the coverage is known. It can occur that the
effective coverage for a diffusing species is lower than the
mean coverage. e.g., in a two-phase system at a low de-
gree of supersaturation. This latter effect is only impor-
tant if gg&0, and then generally it lowers E'd;rr. Because

g P =0 here, our values should be reliable. A more accu-
rate analysis will require weighting of each configuration
with the proper probability factor and the use of Monte
Carlo methods. A third assumption is that there are no
extrinsic barriers to diffusion. There is always the possi-
bility that impurities or defects affect the growth. They
would tend to increase the activation energy, in the sense
that they act as nucleation sites or sites blocking
diffusion, implying that any measurements such as those
described here give an upper limit to the activation ener-

gy for single-particle diffusion. The fact that our results
give a consistent picture with equilibrium diffusion values
from field-emission measurements that by their nature
are very clean suggests that impurities play a negligible
role in our experiments.

There are also other determinations ' of the diffusion
coefficient of 0/W(110), using measurements of the evo-
lution of an initial concentration profile with time. They
are made at temperatures above the highest ordering
temperature in the phase diagram, and thus are always
representative of diffusion in a disordered system. They
should therefore be comparable to our measurements and
are, at least in their behavior. A slight coverage depen-
dence is even indicated in one measurement. However,
both obtain values of activation energies that are too high
relative to our measurements. We do not understand the
difference. Concentration-profile —evolution measure-
ments are much less microscopic than ours. We specu-
late that additional diffusion barriers, such as steps, act to
raise the activation energy.

VIII. DISCUSSION AND CONCLUSIONS

In this paper we have presented measurements of the
ordering kinetics of a submonolayer of 0/W(110), in
which the ground-state degeneracy is at least 4 and possi-
bly 8. Measurements are made at different coverages, at

which the system exists either as a single ordered phase
or coexist with a second phase that is either a disordered
lattice gas or a second ordered phase.

Measurements are made using diffraction. Both the
peak intensity of superlattice rejections and their angular
distribution of intensity are evaluated to determine the
evolution of the mean domain size and the size distribu-
tion. One-dimesional models are used to fit the profiles
and thus to determine the size distribution. From a com-
parison of profiles at different times but the same temper-
ature, dynamical scaling in the growth is demonstrated in
certain time regimes.

The evolution of peak intensity with time is used to
determine growth laws in the different phase regions. A
power-law growth is found at all three coverages that
were investigated. In two of them [single p(2X 1) phase
and coexistence between p(2X1) and disordered lattice-
gas phases], the growth exponent is found to be very simi-
lar, x =0.28. In the third [p(2X1)+p(2X2) phase
coexistence], the growth exponent is lower, x =0.2. Al-
though much has been done, the state of the theory is not
yet very advanced. Most effort has been expended in
studying the growth dynamics with nonconserved order
parameter, i.e., corresponding here to domain growth in
the p(2X1) single phase. There are suggestions, al-
though not general agreement, ' that x =0.33 for a sys-
tem analogous to ours with p =4. We believe that actual-
ly' ' p =8, which may act to lower the growth ex-
ponent. The growth temperature may also inhuence the
result. ' " Our growth temperatures were of the order
of 0.4T, at this coverage. Most of the rest of existing cal-
culations for single-phase ordering do not appear to be
directly applicable to our system. They are applicable ei-
ther to nonconserved density or for systems for which

p =2, in which case there is general agreement that
x=—'.2'

For ordering in a two-phase coexistence region (con-
served order parameter) there is general agreement that
x =0.33 (Ref. 8) for the coarsening of the dense phase, in-
dependent of its concentration. "" We find x =0.28.
No theory exists, to our knowledge, specifically for coar-
sening of a phase that has a high ground-state degenera-
cy. At very low densities this should not matter. Our
measurements are at 6=0.25, where equal concentra-
tions of disordered lattice gas and p(2 X 1) phase coexist.
The growth morphology (see Ref. 23) in all likelihood
consists of interconnected domains. Such a growth in a
two-phase coexistence region with high ground-state de-
generacy may mimic single-phase growth with high de-
generacy. Unfortunately, it is as yet unclear whether the
exponent should be —,

' or —,
' in the single-phase region. If

it is —,', then the exponents are the same in both phase re-
gions and it is not possible to address the question of evo-
lution from and growth to another with coverage. In a
p =2 system such an analysis should be possible, because
the predicted exponent changes from x =

—,
' to x =

—,
' going

from single-phase ordering to two-phase ordering. The
growth temperature in this region is -0.6T„higher than
that at 6=0.5.

In two-phase coexistence, the sequence of growth of
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domains of the dense phase from a supersaturated 2D va-
por following nucleation is (1) growth of the dense phase
to reduce supersaturation, and (2) coarsening driven by
boundary-energy reduction. It is not likely that one
growth law can describe both of these regimes. If one ac-
cepts that the intensity measurements shown in Fig. 7
correspond to the coarsening regime, it implies that su-
persaturation is eliminated very quickly. If, on the other
hand, the time regime following the slowing of the in-
crease of the intensity in Fig. 7 is assumed to correspond
to coarsening, then the region at shorter times showing
power-law behavior would be ascribed to growth to elimi-
nate supersaturation. A power-law behavior in this re-
gion is inconsistent with theoretica1 conclusions. It
thus would appear that the slowing down of growth at
late times is a phenomenon analogous to that observed at
6=0.5 and discussed in Sec. III B and below.

At 8=0.65, where two ordered phases coexist, we
measure a distinctly lower growth exponent. The order-
ing should again be representable by a coarsening model.
We do not know the respective concentrations of the or-
dered phases, but the most simple-minded guess, based
on a lack of solubility of each phase in the other (i.e., the
assumption that the single-phase region cuts off sharply
at 6=0.5 and 0.75, respectively), would make the con-
centrations about equal, similar to the 6=0.25 coex-
istence region. Growth then likely again consists of con-
nected regions with neither phase acting as the distinct
matrix phase. A smaller exponent implies initially more
rapid growth and a subsequently slower growth. The
growth temperature is -0.45T, . Below 0.4T, no order-
ing was observable in laboratory times.

It is worthwhile at this stage to summarize and discuss
the overall growth behavior based on peak intensity mea-
surements. If one measures with a true point detector,
Eqs. (6) and (7) are correct for the relationship between
the evolution of the peak intensity and the growth ex-
ponent, given the implicit assumption that there is self-
similar growth. If the latter is not true, i.e., if the size
distribution function changes over time, then it is not
possible to replace N(t) in Eq. (6) by a constant times
(N(t) ). The peak intensity must then have a correction
factor in it that rejects the changing shape of the intensi-
ty profile that results from the changing size distribution
function. A changing distribution would imply that it
is not possible to extract a meaningful exponent. If one
nevertheless interprets the data as if there were self-
similar growth, the exponent that is extracted may be ei-
ther too large or too small, depending on the nature of
the evolution of the size distribution. We have assumed
that the growth is self-similar, on the basis of profiles at
later times, even though we do not actually have profiles
at the early times. The fact that the mean sizes are small
and the size distributions narrow suggests that any effect
due to non-self-similar growth would be negligible in our
experiment.

If the detector is not a point detector, errors are made
in determining the peak intensity. For example, the use
of a slit detector invalidates the relationship of Eq. (7).
With a slit detector, there is integration over one direc-
tion, reducing the time dependence of the intensity to

I(t)ccN(t)'~ cct .Hence, the measured slope becomes
the actual growth exponent, rather than —,

' of the slope
(the minimum possible) for a true point detector. All
finite-size apertures produce a partial integration in both
x and y, in principle increasing the growth exponent that
is extracted from the measured intensity from its
minimum value of —,

' of the slope. The greater the in-

tegration, the greater the increase. Because profiles be-
come narrower with increasing time, the problem of a
finite detector aperture to measure the peak intensity be-
comes exacerbated at late time. A system growing with a
constant growth exponent (straight line on a ln-ln plot)
would give a measured intensity on a ln-ln plot that
would deviate downward from a straight line. The initial
slope of the intensity plot would be close to double the
slope of the growth plot, and for sufticient integration,
may actually fall below the slope of the growth plot.

One can claim that this is what is, in fact, observed,
both by us and by others. ' There are two problems.
One, the break in the ln(intensity)-versus-ln(t) profile is
too sharp, and two, at least in our case, the detector does
not provide a significant intergration over the data range.
In other words, Eq. (7) is applicable as long as self-similar
growth is assumed or demonstrated.

How then do we interpret the growth behavior? In
theoretical modeling, the difticulty is frequently the ex-
istence of a transient before the "true" growth exponent
is reached. Is there an analogous transient in experi-
ments? We certainly find the existence of some order as
soon as we can begin a measurement. But is it possible
that the region up to several hundred seconds, in which
we observe a constant rate of increase of the peak intensi-
ty, is in fact also a transient, or at least not yet the region
in which the calculations find stable behavior and self-
similar growth? Is it then further possible that "late-
stage growth" can never be reached because of the in-
terference of other phenomena, such as impurity or sub-
strate terrace size effects? These questions are dif5cult to
answer. What is known is that the maximum mean
domain sizes that are observed here are much smaller
than optimum obtainable sizes (at annealing temperatures
near the disordering temperature) and that a growth
slowdown occurs long before such sizes are reached.

The results (both the value of the intensity and the time
at which the slowdown occurs are temperature depen-
dent) suggest that there is an activated process associated
with the initiation of the growth slowdown. ' The small
mean sizes at which the growth slows down suggest that
a limited substrate terrace size is probably not the cause
of the growth limitation, although this possibility cannot
be conclusively excluded. (It is possible that at higher
temperatures the barriers at terrace edges are overcome,
while they are not at low temperatures. ) Second, the tem-
perature dependence of the slowing down suggests that
point defects, such as impurities, are not the cause of the
slowing down, at least not in the simple manner usually
considered. It is dificult to see how defects can be less
effective in slowing the growth at higher temperatures
than at lower ones unless one again assumes an activated
process associated with overcoming the inAuence of a
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point defect. ' Such a growth slowdown due to diffusive
impurities rather than quenched impurities cannot be
ruled out but, in fact, calculations appear to show the op-
posite behavior: at higher temperature a power law is
obeyed for a greater time range. We believe that the
slowing down is probably related to the nature of domain
and island boundaries, akin to the idea of polygonization
originally suggested by Lifshitz. ' There can then be an
activation energy associated with overcoming certain
types of boundaries that would allow the observed ac-
tivated process.

If, on the other hand, p is not relevant to ordering, as
has been recently suggested, ' ' polygonization cannot
be the cause of slowing down. The only remaining possi-
bilities for slowing growth are impurities and substrate
terrace size effects. If impurities are the cause, they
would appear to have to be diffusive, which an activation
energy for motion, and to have a long-range effect (mea-
surements indicate that only one out of —1000 atoms is
an impurity, while the islands on average contain only
25 —50 atoms when the slowdown begins; hence one im-
purity atom affects the growth of many islands). If p is
not relevant to the ordering, then one also must wonder
how to explain a growth exponent of x =0.28 at 6=0.5
(at the coverages at which there is two-phase coexistence,
there is no difficulty). One is left with these choices: (1)
the growth observed at early time, before the slowdown,
is not "late-stage" growth at all, and the exponent would
climb to x =

—, if diffusive-impurity effects did not inter-
fere to, in effect, reduce the exponent; (2) impurities affect
the whole growth process, (3) the system is never really at
6=0.5. One cannot argue against the former to any
greater extent than we have already done, namely that we
believe that there are very few impurities and that their
inAuence requires an activated process. The second
choice requires an explanation of the slowdown in growth
if the same impurities are responsible for the growth limi-
tation at all times, and appears unrealistic. Finally, if the
system is never really exactly at 6=0.5, it may find itself
locally always in a two-phase coexistence region, where
its growth may be governed by the t' Lifshitz-Slyozov
law. This raises the interesting questions of to what den-
sity the t ' law is valid and how the crossover occurs.

Analysis of the angular profiles of diffracted intensity
indicates that dynamical scaling is obeyed in the growth
of 0 on W(110) at several coverages over a certain time
regime. At 6=0.5 the profiles are Gaussians, indicating

a Gaussian size distribution function (actually line-length
distribution function). The profile measurements corre-
spond to the regime where the growth has slowed. In
this regime, dynamic scaling is obeyed. It has not been
possible for us to measure profiles at sufficiently early
times to test for scaling in the time regime in which we
determined the initial growth exponent. We presume
that scaling, with a different scaling function, is obeyed in
this regime. The data shown in Fig. 8(b) indicate that, as
one would expect, dynamic scaling is not well obeyed in
the transition region as the system changes from one
mechanism to another. At 6=0.25 the profiles corre-
spond for the most part to the regime for which we ex-
tracted a growth exponent of x =0.28, but they are more
complicated. We have fitted these profiles with a bimodal
size distribution. Dynamical scaling is obeyed, but it is
difficult to see how a bimodal size distribution can scale.
We expect that some other size distribution function can
also fit the data. We have extracted mean sizes (lengths)
of ordered domains for all coverages and times, but these
must be viewed with caution because they are one-
dimensional representations of two-dimensional size dis-
tributions. Determination of growth exponents from fits
to profiles to extract (,N ) versus t give, where it is possi-
ble to do so, somewhat lower exponents than the peak in-
tensity. We assume that this is due to the uncertainty in
using one-dimensional models to fit one cut through a
profile that reAects a two-dimensional size distribution.
These aspects are being explored in greater detail.

Finally, we have extracted activation energies for the
ordering processes at early times, and have presented ar-
guments on how these activation energies can be inter-
preted in terms of activation energies for nonequilibrium
diffusion. We have shown that a consistent picture of
diffusion of 0jW(110) arises when the adatom interaction
energies for 0 on W(110) are taken into account. We
have shown that studies of ordering can provide the cov-
erage dependence of the activation energy for diffusion on
the surface.
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