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We have determined the surface-plasmon modes of cylindrical pores in metals and of pairs of cou-
pled cylindrical pores having parallel axes. The eigenfrequencies and the polarization fields are
determined in the case of interacting pores of equal radii where the modes are even or odd with

respect to the symmetry plane. Numerical application is made for pores in aluminum with inner ra-
0

~
Q

dii of 20 A and separation of the axes of 48 A. The surface-plasmon frequencies and the polariza-
tion fields show strong differences with respect to the case of an isolated pore. Frequency shifts up
to 2 eV occur, leading in particular to the appearance of two new modes at energies well below the
flat-surface-plasmon frequency e~/&2. For the one- and two-cylindrical-pore configurations, we

have established an expression for the second-quantized interaction Hamiltonian between an elec-
tron and the surface-plasmon modes, from which the energy-loss probability for an electron moving

parallel to the cylindrical axis is obtained. Application to the scattering of electrons of 10 keV ki-

netic energy shows, for both configurations, substantial differences in the energy-loss spectra as
compared to the flat-surface case. In addition, the loss function for the pair of cylindrical pores is

strongly affected by the coupling of the surface-plasmon fields of the two interacting pores.

INTRODUCTION

Initiated by the pioneering work of Ritchie' in 1957,
surface plasmons have been the subject of intense theoret-
ical and experimental investigations during the past few
decades. The existence of surfaces leads to the creation
of new modes which are absent in the bulk. Surface-
plasmon modes have eigenfrequencies and polarization
fields which are dependent on the geometrical shape of
the surface. Flat surfaces, thin films, and spherical-
shaped surfaces have extensively been studied. ' In par-
ticular, fast-electron spectroscopy has been a powerful
tool in the investigations on the properties of these sur-
face collective excitations. A charged particle moving
close to the surface of a polarizable body interacts with
the electromagnetic field of the surface modes and suffers
characteristic losses at energy values which are integer
multiples of the quantized surface-plasmon energies. The
energy position and the strength of the energy-loss peaks
for a given electron trajectory provide information on the
characteristic eigenmodes of the solid and on the interac-
tion mechanism between the electron and these eigen-
modes.

ReAection experiments with Hat surfaces or transmis-
sion experiments with thin films have been made since
the early 1960s. Scattering by spherical particles has
been performed only recently by Batson and Treacy, us-
ing scanning transmission electron microscopy (STEM).
The present achievements of this technique allow one to
produce electron beams whose width is less than 1 nm.
Batson and Treacy studied the losses of fast electrons on
oxide-covered aluminum particles of typically 10 nm ra-
dius. When modifying the position of the electron beam
with respect to the center of the sphere, it is possible to
choose electron trajectories where the electron crosses
the metal, or whether it remains outside, leading to

energy-loss features strongly dependent on the value of
the impact parameter.

The first part of this paper is devoted to a theoretical
study of the inelastic scattering of fast electrons by sur-
face plasmons on cylindrical pores. The aim is to obtain
the energy-loss probability as a function of the parame-
ters describing the cylindrical pore and the electron tra-
jectory, namely, the pore radius, the substrate plasmon
frequency co, the kinetic energy of the electron, and the
distance of the electron path with respect to the pore
wall. The first experimental investigation of electron
scattering by cylindrical pores was reported by Warmack
et al. The target consisted of silver metallic foils per-
forated by microchannels of radius of 20—200 nm. The
channels were uniformly illuminated by the electron
beam. Microchannels of much lower size seem, however,
to be possible, making the losses more sensitive to the
pore curvature. Warmack et al. observed that the pas-
sage of electrons results in energy-loss structures, which
they attributed to the excitation of surface plasmons.
Unfortunately, the experimental procedure did not allow
one to obtain a detailed dependence of the energy-loss
function on the electron trajectory, as the beam width
was larger than the pore diameter. In a later paper,
Mamola et al. reported energy-loss experiments by a
microchannel array. They interpreted the disagreement
of their experimental result with energy losses calculated
for electrons moving parallel to flat surfaces (an approxi-
mation valid for the range of pore radii used) in terms of
excitation of localized surface plasmons on roughness
structures close to the ends of the microchannels.

An alternative explanation could be that the coupling
of surface plasmons on neighboring channels is at least
partly responsible for the modification of the surface-
plasmon energies and henceforth for the shape of the
energy-loss function. In the second part of this paper, we
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study the surface-plasmon modes of a pair of coupled cy-
lindrica1 pores and determine the energy-loss function for
an electron transmitted through one of the cylindrical
channels. That the coup1ing between neighboring cylin-
drical pores may be important is suggested by the experi-
ment of Batson on a system having similar properties. '

He studied the inelastic-scattering process of fast elec-
trons on clusters of 10—50-nm-diam aluminum spheres.
For certain electron trajectories he observed energy 1osses
between 2.5 and 4.0 eV, i.e., at values completely split oft
from the 6.3-eV surface-plasmon energy of an isolated
sphere. He attributed these losses to the excitation of a
bispherical plasmon mode, as was consistent with the
peak position and the spatial variation of the scattering
probability.

The theoretical methodology that will be used for both
the one- and two-cylinder systems is based on a formal-
ism which was first applied by Lucas et al. for the thin-
film case and which has been successful in explaining the
energy losses of fast electrons by oxide-covered metallic
particles. ' '" First, we determine the surface-plasmon
frequencies by solving Lap1ace's equation in the nonre-
tarded limit. In the study of the inelastic-electron-
scattering process, the electron is described classically as
a sink or a source of energy, an approximation which is
valid at sufBciently high electron energies. In the next
step, we establish a Hamiltonian formalism to describe
the free-polarization eigenmodes of the cylindrical pore
systems and their coupling to the fast charged particle.
Finally, we obtain the energy-loss probability for given
cy1indrical radii and interdistance and for a fixed electron
trajectory.

Numerical application of our results is made to isolat-
ed cylindrical pores of inner radius a =20 A and to pairs
of parallel cylindrical pores of the same radius, their axes
being separated by 48 A. For both configurations, we
will show that the curvature eFect is important in giving
rise to energy-loss features diferent from those encoun-
tered in Hat-surface scattering. In the case of a pair of cy-
lindncal pores, we will show that the coupling of the sur-
face plasmons leads to new plasmon modes having eigen-
frequencies and polarization fields which are different
from those of the isolated cylinders. This will strongly
inhuence the energy-loss probability for an electron mov-
ing parallel to the common cylindrical axis.

I. CYLINDRICAL PORE

A. Surface-plasmon modes

%'e first study the plasmon modes in a metal contain-
ing a cylindrical pore of constant section and infinite
length. The inner radius of the pore will be labeled a.
The metal is described by a Drude-like dielectric function

e(co)= l —co /co

Inside the pore the dielectric constant eo is taken equal to
1, as corresponds to vacuum.

In order to determine, in the nonretarded limit, the
surface-plasmon frequencies of a cylindrical pore,
Laplace's equation is solved in the two regions bounded

by the cylindrical wall and the electrical potential and
normal component of the displacement vector are
matched at the interface.

In cylindrical coordinates, the solutions of Laplace's
equation, which have to be finite everywhere, can be writ-
ten

(i) (p) e k

I ka
(2)

and

e k

K ka
(3)

where I (kp) and K (kp) are modified Bessel functions,
and A k and 8 k are constants to be determined. The z
axis is chosen along the cylindrical axis. The eigenmodes
are therefore classified by a continuous index k and a
discrete index m. Expressing the continuity of the elec-
trical potential at p =a, one obtains

~mg —&ma . (4)

The prime means derivation with respect to the argu-
ment. The resulting eigenfrequencies for the cylindrical-
pore —plasmon modes are then

co k =co [—kaI (ka)K' (ka)]'

For comparison, we mention the expression of the
eigenfrequencies for the cylindrical fiber, i.e., the system
where e(co) and eo have been interchanged with respect to
the cylindrical pore case. They are given by

co &=co [kal' (ka)K (ka)]'~

In Fig. 1 we show the dispersion relations for both the
cylindrical pore and the cylindrical fiber, for the five
lowest values of m. All cylindrical-pore —plasmon fre-
quencies are greater or equal to the Hat-surface —plasmon
frequency co~ /+2, whereas the full-cylinder —plasmon fre-
quencies are lower or equal to co /V2. A similar situa-
tion is found in spherical geometry. The eigenmodes for
the spherical cavity are given by

1/2
k+1

CO~
—

CO& l=0, 1,2, . . . .

Hence they are larger than co/V2. The eigenmodes of
the spherical particle are

' 1/2

1=1,2, 3, . . . .

They are lower than co /V'2.
Going back to the cylindrical-pore configuration, the

limiting values for ka » l are co /&2, for'all values of m.

The continuity of the normal component of the displace-
ment vector yields the allowed values of the dielectric
function

I'(ka)K (ka)

I (ka)K'(ka)
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B. Electron-surface-plasmon interaction Hamiltonian

In the next step, a second-quantization description of
the surface-plasmon field is introduced, using a methodol-
ogy similar to that which has been applied to Hat sur-
faces, thin films, or spherical-shaped surfaces. In terms
of surface-plasmon creation and annihilation operators
a k and a k, the'total surface-plasmon Hamiltonian can
be cast into the harmonic-oscillator form,

0.6 =3,4
Ho= g A'co k(a ka k+ —,') .

m, k

(13)

0.4

0.2

0 0.8 5.2

FIG. 1. Dispersion relations for surface-plasmon modes of a
cylindrical pore (dotted lines) and for a cylindrical aber (solid
lines).

The total electrical potential can be expressed in terms
of the same operators, leading to an expression of the in-
teraction Hamiltonian HI between an electron at a fixed
position r and the surface-plasmon field, linear in the
creation and annihilation operators a k and a k.

HI(r)= y & k(r)(a k+a k),
m, k

where
' 1/2

h „(r)=e
S~~mk

with gr k(r) given by Eqs. (2), (3), and (12).
This is an analytical expression of the coupling func-

tions depending on the cylindrical coordinates p, z, and 8.
In particular, the z dependence is given by the exponen-
tial e'"' term.

C. Loss function

~ k
k(r) ~'p k(r) '

4m
(10)

In the following, the normalization constant A k is
chosen such that the polarization modes are orthonor-
mal,

fdr P'.k.(r) Pk(r) =5 . .5(k —k') .

This yields the following value for A

A k =2[—kaK (ka)E' (ka)]'~z . (12)

For large values of k, i.e., small plasmon wavelengths, the
eigenfrequencies are not sensitive to the surface curva-
ture. For ka &(1, i.e., the long-wavelength limit, the lim-
iting values are co k =co~ /&2 for m &0 and co k =co& for
m =0. This latter plasmon mode corresponds to an osci100

lation of the electronic charge with respect to the positive
background having the same symmetry as the cylindrical
surface. Its eigenfrequency is equal to the bulk-plasmon
frequency co, as is also the case for the I =0 breathing
mode of the spherical void.

The electrical potential corresponding to each plasmon
mode, as given by Eqs. (2) and (3), is defined up to a nor-
malization constant A k. The associated polarization
modes are given by

An electron moving parallel to the cylindrical mall will
interact with the surface-plasmon field and sufFer energy
losses equal to integer multiples of the quantized surface-
plasmon energies %co k. &hen the trajectory remains
outside the metal, no bulk-plasmon modes will be excited,
as the electrical field associated with the bulk modes is
zero outside the meta1. %'hen part of the trajectory is go-
ing through the metal, bulk-plasmon losses will be ob-
served in addition to the surface-plasmon losses. As we
will discuss in the following only the contribution of the
surface-plasmon losses, bulk effects will not be treated
here.

The energy-loss function P(co) is defined as the proba-
bility that at time t =+ 00 the plasmon system mill be in
a state of total energy E =ED+%co above the ground-
state energy Eo. It will be assumed that the electron is so
fast that any momentum transfer occurring during the
scattering process is much smaller than the electron
mornentum0 This means that the kinetic energy of the
electron remains essentially constant and that its trajecto-
ry suffers no displacements perpendicular to its initial ve-
locity. In that approximation, the electron can be con-
sidered as a classical particle of constant velocity U and
acts as a tine-dependent perturbation on the surface-
plasmon system.

The loss function P(co) can then obtained from the
evolution of the surface-plasrnon eigenstates, ' yielding,
in general notations i; = (m, k),
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oo g 2tg

P(co)=PO g0

ll) . . . , l

X5(co—(co; +co; + +co; )) .

(16)

Here, I,. denotes the time-Fourier transform of the cou-

pling function, i.e., for the cylindrical-pore system

(17)

and Po is a normalization factor.
In expression (16), the n =0 term gives the no-loss

probability, and the general n term of the series gives the
strength of the energy loss due to multiple excitations of
n eigenmodes, such that the total energy loss is equal to
A~. The energy-loss probability as given by expression
(16) is normalized to unity.

For the following we will study energy losses suFered
by an electron moving parallel to the cylindrical axis. Its
trajectory in cylindrical coordinates is given by

p=p„O=O„z =ut .

The main energy losses will be due to one-plasmon ex-
citations, the contribution of which in the sum (16) is
given by

angle 0, . For a trajectory such that p, & a, the depen-
dence would be proportional to K (kp, ), as can be seen
from the relations (3) and (15). The loss function Q&(co) is
a sum of 5 functions at values co = co „such that
co k =kv. This reduces the double sum over m and k to a
single sum over m, such that for each m only one k =k
value is allowed, which corresponds to the intersection of
the dispersion curve co (k) with the line co=ku. The
condition ~=co k =kU expresses that only those surface
modes can be excited for which the phase velocity is

equal to the electron velocity parallel to the surface. The
same condition is encountered in the case of an electron
moving parallel to a Aat surface, or an electron reAected

by a Hat surface. ' '
We have determined numerically the energy-loss prob-

ability, as given by expression (21) for the case of an elec-
tron having a kinetic energy of 10 keV, moving parallel
to the walls of a cylindrical pore of inner radius a =20 A,
at a distance p, = 17 A from the cyhndrical axis of a pore
in an aluminum metal, for which we take A'co =15 eV.
For ease of graphic presentation, we have replaced the
di6'erent 5 functions by Lorentzian functions of linewidth
y=0. 5 eV. This simulates a damping factor in the clas-
sic dielectric function. In Fig. 2 we show the energy

a =20A
p =17A

Po
P&(co)= g ~I k~ 5(co—co k) . (19)

P, (co,L)
Q, (co)= lim I Po

(20)

For a cylinder of infinite length, the energy-loss proba-
bility would be in6nite. Therefore, we have determined
the (unnormalized) energy-loss probability per unit path
length, denoted in the following by Q&(co) and which we
define as follows: if the interaction h k is switched on
during the interval [ L/2, +L/2—] and set equal to zero
outside, the energy-loss function depends on the length L.
The energy-loss probability per unit path length is then
de6ned as the limiting value of

3
(3
C0
0
C

V3
Q

Total

which has a finite value.

Q, (m)= g [ kaK (ka)K' (k—a)]I (kp, )
flU ct)~k

X5(co „—ku)5(co —~~„) . — (21)

The energy loss depends on the electron trajectory
through the factor I (kp, ), and for the obvious reason of
the cylindrical symmetry, it is independent of the polar

D. Electron scattering by a cylindrical pore

Application of the above expressions for the energy-
loss probability Q&(co) in the case of an electron moving
parallel to the axis of a cylindrical wall with p, & a yields,
making use of the expressions (15), (17), (19), and (20),

m=o

1 i I a

8 9 10 'l6 17
l . I a

7 11 12 13 14 8
Energy (eV)

FICx. 2. One-plasmon energy-loss probability per unit path
length for 10-keV electrons moving at a distance p, =17 A from
the axis of a cylindrical pore of inner radius a =20 A, with
bulk-plasmon frequency co~ =15 eV. The five lowest curves are
for the m =0, 1, 2, 3, and 4 modes; the upper curve is the total
energy loss.
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losses due to the five first m modes, together with the to-
tal energy loss, where the sum over m contains suf5cient
terms to achieve convergence.

For an electron moving parallel to a Hat surface, one
would obtain only a single energy-loss peak at the
surface-plasmon frequency e~/&2. In the case of a cy-
lindrical pore, energy losses occur at different ~ k fre-
quencies (whe;re k =k ) and their strength decreases
with increasing m value. Within the chosen graphical
resolution, the highest loss peak at 13.6 eV clearly results
from excitation of the m =0 mode. The peak at 11.1 eV
results from the m =+ 1 and —1 modes, and the struc-
ture at 10.6 eV contains all the energy losses due to
higher modes.

The detailed shape of the energy-loss function is
strongly dependent on the choice of the parameters
describing the scattering process. Reducing thb value of
p, not only reduces the strength of the energy-loss proba-
bility through the I ( kp, ) factor in expression (21), but
also increases the relative importance of the m =0 mode.
In particular, for p, =0 the m =0 term is the only term
reinaining in the sum. Increasing the kinetic energy of
the electron would increase the slope of the co=kv line.
As a consequence, as one can see from Fig. 1, the m =0
energy-loss peak would move up in energy, but all the
lower energy-loss peaks would coalesce at a position close
to cg& /+2.

An alternative way to determine the energy-loss func-
tion is to use a classical description by deriving the
energy-loss probability from the work done on the elec-
tron by the electrical field rejected by the metallic sur-
face. ' This yields an energy-loss probability given by

I (kp, ); g,
O'Jk(r)= X ~ k

& k
g g 'f p(+a (23)

(2i ~ (k») ™;k..
(p~k(r)= gD k e 'e' ' if pz(b,

m m

E (kp(); g,

(24)

parallel cylindrical pores of inner radii a and b. The dis-
tance between the two axes will be labeled R, and the
used coordinates are illustrated by Fig. 3. The two cylin-
drical walls delimit three regions in space; the inner re-
gion of each cylinder will have a dielectric constant
e~ =ez= 1, whereas the outer region is characterized by a
dielectric function @3=A(co), as given by expression (1).
For this two-cylinder system the translational invariance
along z persists, but the rotational invariance around the
z axis, of course, is nonexistent. There is no coordinate
system in which the Laplace equation is separable and
which would describe the cylindrical walls as constant
coordinate surfaces.

We therefore are forced to use a numerical procedure
in order to obtain the plasmon modes of the coupled-
cyhnder system. The starting point is similar to that
which has been used to obtain the van der Waals interac-
tion between cylindrical fibers' ' or between spherical
particles or spherical voids. ' '

Using the coordinates illustrated by Fig. 3, the eigenso-
lutions of Laplace's equation are labeled y~k(r), where k
is again a wave number along the z axis, and p is an index
which will be defined below.

In the three regions, these solutions can be written as

e e—1P,((co)= g Im
hv

I (kp, )E (ka)
X 5(co—ku) . (22)

K~(kp2);~g,-" X.(kb)
'
if p&)a and p2)b . (25)

Choosing a Drude-like expression of the dielectric func-
tion e(co) with an imaginary part containing a damping
factor g, expression (22) reduces to (21) in the limit g ~0.

II. COUPLED CYLINDRICAL PORES

As in some samples it may happen that two cylindrical
pores are close to each other, and so one may ask to what
extent the energy-loss function may be inAuenced by the
presence of the second pore. To answer this question we
will proceed along the same lines as for the single-pore
case: After a detailed study of the coupled plasmon
modes, we will establish the interaction Hamiltonian and
deduce the energy-loss probability.

In order to apply the boundary conditions at the sur-
face of the first cylinder, at p, =a, it is useful to express
the term depending on p2 and 82 in the outer potential in
terms of p, and 8&, using an addition theorem for
modified Bessel functions:

E (kp2)e '= g X + (kR)I (kp()e ' . (26)

A. Surface-plasmon inodes

To obtain the eigenfrequencies and the polarization
waves of the coupled plasmon system, one has again to
solve Laplace's equation with appropriate boundary con-
ditions for the particular system which is formed by two

FICs. 3. Definition of the coordinates for the two cylinders of
inner radius a and b, the axis-to-axis separation being R.
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The continuity of the electrical potential at p, =a yields

K„+ (kR)I (ka)
mk mk g K (kb) nk

n n

which we can write in matrix form,

A=B+PC,

(27)

(28)

where A, B,C are vectors whose components are 3
B k, and C k respectively. P is a matrix whose elements
are

K +„(kR)I (ka)

K„(kb)
(29)

K„+ (kR)I' (ka)

K„(kb)
(30)

Eliminating A k between (27) and (30) yields a set of re-
lations between the coe%cients B k and C k which can
be cast into the matrix form

B=MC, (31)

where the matrix M has the elements

(e—1)I' (ka)Im(ka)K (ka. )K +„(kR)
(32)[I' (ka)K (ka) eI (ka—)K' (ka)]K„(kb)

In an analogous way, one can express the continuity re-
lations at the surface of the second cylinder, obtaining
vector relations

D=QB+C (33)

The continuity of the normal component of the displace-
ment vector at p, =a yields

I' (ka) K' (ka)
k =e B" I (ka) K (ka)

As will be seen below, the minus sign corresponds to
modes which are symmetrical with respect to the plane
x =R /2, and the plus sign corresponds to modes which
are antisymmetrical with respect to this plane.

The problem which arises now is to find the plasmon
modes from Eqs. (37) and (38), where the matrices are of
infinite dimension. In Refs. 16 and 17 a series expansion
valid in the thin-cylinder approximation (i.e., R )&a,b)
has been performed in order to obtain the leading terms
in the van der Waals interaction energy. Such a develop-
ment, however, is not valid for any distance R.

The numerical approach we have chosen, is to retain
for each interacting cylinder only the modes for which

~
m

~

is lower than a cutoF value m,„.This limits the ma-
trices M+ 1 and M —1 to the dimension 2m,„+1, lead-
ing to a total number of modes equal to

Nd =2(2m, „+1). (39)

4)p
I.O

In each case convergence tests have been made with in-
creasing values of m,„ in order to obtain convergence for
the surface-plasmon modes, the polarization fields, and
the surface-plasmon losses, for which results are present-
ed here. The matrix elements M „are decreasing func-
tions of the indices and the needed computational effort
depends only on the required precision. Of course, the
closer the distance R between the two cylinders, the
larger the number of separate cylindrical modes which
have to be retained.

In Figs. 4 and 5 we present the dispersion relations we
have determined for the case of two parallel cylinders of
equal radius a =20 A and whose axes are separated by 48
A, i.e., 2.4 times the inner radius. In each figure we have
shown only five of the pair modes, together with the

and

C=XB, (34)
0.9

where the matrices Q and N are obtained from P and M
through permutation of the radii a and b.

From relations (31) and (34), one obtains

(M N —1)B=O . (35)
0.8

The dispersion relations for the surface-plasmon modes
are obtained by equating the determinant of this set of
equations to 0, 0 7 ~ I ~ ~

0
~ ~

fTl 2

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ *~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ l ~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

det(M N —1)=0 . (36)

If the two cylindrical pores have equal radii, then
M=N and P=Q, and Eq. (36) subdivides into two sets
corresponding to

0.6
0

I

0.8
I I I

I.S 2.4
ka

3.2 4.0

det(M+ 1)=0

and

det(M —1)=0 .

(37)

(38)

FIG. 4. Dispersion relations for the odd surface-plasmon
modes of the two —cylindrical-pore system (solid lines). For
comparison, the dispersion relations for the rn =0, 1,2 isolated-
cylinder —plasmon modes (dotted lines) are shown.
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that for these two modes the k =0 frequency does not
shift with respect to the one-cylinder case and remains
equal to the bulk-plasmon frequency co~. This particular
property also exists for the plasmon modes of a system of
two spherical cavities. All modes, as given by (8), shift
when the voids approach each other, except for the
breathing monopole 1' =0 mode.

Once the plasmon frequencies are known, it is possible
to obtain for each eigenfrequency the corresponding elec-
trical potential as expressed by Eqs. (23)—(25); the
coeKcients A k, 8 k, C k, and D k are obtained from
(29), (31), (34), plus an additional normalization condi-
tion, which we have taken identical to that for the one-
cylinder problem, requiring the different polarization
modes to be orthonormal.

B. Electron-surface-plasmon interaction Hamiltonian

0.6

l

0.8
ka

)

2.4

FIG. 5. Dispersion relations for the even surface-plasmon
modes of the coupled —cylindrical-pore system (solid lines) and
dispersion relations for the m =0, 1,2 isolated-cylinder —plasrnon
modes (dotted lines).

m =0, 1, and 2 isolated cylinder dispersion relations.
Calculations have effectively been made with Nd, as
defined by relation (39), equal to 22. The five modes
which are shown here are those which reduce, when in-
creasing the separation between the two cylinders, to the
one-cylinder m =0, +1, and +2 modes. The other
modes, not shown here, have energies between the lowest
odd pair modes shown in Fig. 4 and co~/&2. The pair
modes which are shown in Fig. 4, solutions of Eq. (37),
are odd with respect to the symmetry plane x =R /2 and
have been 1abeled po =1,2, . . . , 5. This indexing is pure-
ly arbitrary. The even modes in Fig. 5 have been labeled
Pe.

As one can see from Figs. 4 and 5, for the system under
study there is a substantial modi6cation of the disper-
sion-relation structure. Applied to an aluminum sub-
strate, for which Acoz =15 eV, shifts up to 2 eV occur for
1ow values of k. All odd pair modes move up in energy
with respect to the modes from which they originate.
Adding higher m terms to the determinental equation
produces each time an additional upward shift. For the
even modes, the situation is different. The two modes

p, =4 and 5 move downward in energy to frequencies
substantially lower than the Bat surface-plasmon frequen-
cy co~ /+2. All other modes remain above co~ /+2.

The one-cylinder mode I =0 interacts with all other
modes in such a way that each pair mode contains a par-
tial contribution from it, but the two modes having the
strongest m =0 wave character are the two highest pair
modes, namely, p, =1 and p, =l-. A remarkable fact is

The second-quantization operators a k and a k are in-

troduced along the same lines as for the one-cylinder
case, leading to an expression of the coupling functions
h k(r) given by relation (14), the electrical potential being

pk
obtained as expressed above. As a numerical procedure
is required for solving the whole set of equations, analyti-
cal expressions are no longer possible. In Figs. 6—8 we

show, for the 10 pair modes illustrated by Figs. 4 and 5,
and at a particular value k =0.6/a, the position depen-
dence of the coupling function h~k(r).

In Fig. 6 we show the coupling functions h~„(r) for
electron positions along the Ox direction, i.e., the direc-
tion joining the centers of the two cylinders. For all
modes the coupling functions are real, and as the pair
modes are either odd or even with respects to the x-z
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plane, some of them have also their real part equal to
zero. Therefore only the coupling functions correspond-
ing to the even p, =1,3, 5 modes and the odd p, =1,2, 4
are shown, the other four being zero for r on the x axis.
As a general result, for the chosen two-cylinder system
the interaction between the individual modes is so strong
that the original potential symmetries have completely
been lost. The modes p, =1 and p, =1, for example, have
completely lost the minimum at the center of the cylinder
which they had when at infinite separation.

The new character of the modes leads in some cases to
coupling functions which are zero even for electron posi-
tions not on symmetry planes. See, e.g. , p, =4 and p, =5.
The behavior of the even p, = 5 mode, in particular, is in-
teresting. It is the mode which peels off from the mode
continuum and has the lowest plasrnon frequency. Its
corresponding coupling function has the strongest ampli-
tude of all the modes in the interspace between the two
cylinders, but becomes very weak, even zero in some
points, for x values such as x (0, or x )a+R. This
type of behavior will have important consequences for
the dependence of the energy-loss function on the
electron-beam position and, as will be seen below, is at
the origin of the completely different energy-loss function
in the paired-cylinder configuration, as compared to the
isolated cylinder case.

In Figs. 7 and 8 we show the real and imaginary parts
of the. coupling functions for electron positions on the Oy

axis, i.e., perpendicular to one of the cylindrical axes.
For each mode either the real or imaginary part is equal
to zero. These coupling functions will be useful in ex-
plaining the position dependence of the electron energy-
loss probability.

C. Electron scattering by coupled cylinders

Starting from expressions (17)—(20), rewritten for the
two-cylinder configuration, it is possible to obtain the
energy-loss function per unit path length for an electron
moving parallel to the z d&rection with a given trajectory
described in cylindrical coordinate& by a value of its radi-
al position p, and of its polar angle 8&.

No analytic form of the energy-loss function is ob-
tained, as already the pair-plasmon frequencies and the
coupling functions are determined numerically. But, due
to the e'"' term in the coupling functions (24)—(26), there
will again be a 5 function 5(co k

—ku) in the energy-loss
probability, as in expression (21), and the corresponding
one-plasmon energy-loss probability per unit path length
is of the form

Q~(~)= g ~f~k~'5(co~k ku)5(co co „—) . —(40)
p, k

The factor
~ f~k ~

is essentially proportional to the square
of the amplitude of the coupling functions (23)—(25).

We have determined the energy-loss function Q, (co)
for a series of diff'erent positions of the electron beam
with respect to the two-cylinder system. As for the one-
cylinder case, we have, for a given electron velocity,
determined numerically the modes which satisfy the
surfing condition co I, =kU, restricting the double sum in
(40) to a single sum over p values. The energy-loss func-
tion reduces to a sum over discrete 5 functions, which we
hp, ve again replaced by Lorentzian functions as in the
one-cylinder case.

In a first series of figures we show results for electron-
scattering configurations for trajectories with equal
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values of p&, i.e., equal distance of the beam with respect
to the walls, but with different polar angle 9&. In the case
of infinite separation of the pores, there would, of course,
be no dependence on the polar angle 8&. In Figs. 9—11 we
consider a 10-keV electron moving at a distance p = 17 APi.
from the axis of a cylinder of inner radius a =20 A dis-
tant by 48 A from a second cylindrical pore of the same
inner radius. The metallic substrate is characterized by a
bulk-plasmon frequency fi~ =15 eV.

In Fig. 9 we show for 0&=0 the total energy loss, as
well as the contribution of the five even and odd modes
for which we have previously shown the detailed disper-
sion relations and the coupling functions. As for the cou-
pling functions, the partial energy loss of the modes

p, =3, 5 and p, =2,4 is not shown as it is equal to zero. A
feature which has to be mentioned here is that in the total
energy loss a double peak at 13.4 and 14.2 eV appears as
due to the p, =1 and p, =l modes, instead of the m =0
peak at 13.65 eV in the one-cylinder energy-loss function
shown in Fig. 2. The dominant peak in the energy-loss
function results from the p, =5 mode. It is this peak, at
an energy of 9.1 eV, which is well below the Oat surface-
plasmon frequency co&/+2=10. 6 eV, and even below all
structures, that one observes in a scattering experiment
on an isolated cylinder. The relative strength of this

energy-loss peak is in relation with the amplitude of the
coupling function of this mode, as illustrated in Fig. 6 for
ak =0.6. The losses due to the other modes (as well as
those not shown here) are an order of magnitude lower.

In Fig. 10 we have shown the energy-loss functions for
an electron trajectory with 8& =n /2. As one can see, the
total energy-loss spectra are completely different from the
preceding ones. All pair-plasmon modes contribute to
the energy-loss mechanism, even if for the p =4 and0

p, =5 modes the energy loss is very small. The energy
losses due to the two highest pair modes p =1 and p =1

4

n p, —
are still well resolved, the energy losses due to the p =20
and 4 modes lead to structures at 12.2 eV, and the contri-
bution of all the other modes (including those not shown
here) lead to a broad peak at ll eV. The even p =4ven pe-
mode leads only to weak losses, and the (p =5)-mode
1oss, which contributed to the dominant structure at
8&=0, has now completely disappeared. This results
from the value of the coupling function at p =17 A,1

0&=m/2, as is illustrated clearly by Fig. 7, showing that
the coupling function, by accident, is changing its sign
close to these parameter values.
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In Fig. 11 we show, for comparison, total energy-loss
spectra corresponding respectively to values of 0&=0,
m/4, m/2, 3m. /4, and m.. It shows the evolution of the
energy-loss spectra when moving the electron beam at a
constant radial distance p&. The energy losses due'to the
low-frequency modes p, =4 and 5 are observed only for
the two spectra of 0& =0 and m. /4, i.e., for electron trajec-
tories crossing the region close to the second cylinder.
Whereas the energy-loss functions for 49&=0 and m show
strong differences, there is a close resemblance between
the three upper curves, for 8& =sr/2, 3m. /4, and m, i.e., for
electron trajectories where the presence of the second
cylinder is felt less strongly.

In Fig. 12 we show the energy-loss functions
for five different electron trajectories, corresponding to
0& =0 or ~, with x, respectively, equal to
R/2, 2a/3, 0, —2a/3, —R/2. Again there is no symme-
try in the energy-loss functions with respect to a cylindri-
cal axis. Only those modes which are even with respect
to the x-z plane contribute to the energy-loss mechanism,
namely those for which the coupling function has been
shown in Fig. 6. The first spectra, for x =R/2, corre-
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spond to a trajectory contained in the x =R /2 symmetry
plane. Therefore, all odd p, modes lead to zero energy
losses; only the even modes contribute. As a result, only
the three modes p, =1,3, 5 among those shown in Figs. 3
and 4 give rise to energy losses, which one retrieves in the
peaks, respectively, at 13 4, 10.5 (together with other
modes), and 9.1 eV. In particular, the odd p, =1 mode
has disappeared. For this configuration, the even p, =5
peak has the strongest amplitude, as compared to other
configurations.

If. the electron beam is displaced towards decreasing x
values, the odd modes again start to give rise to energy
losses, as one can see from the reappearance of the odd
p, =1 loss at 14.2 eV. The even p, =5 mode, in turn, is
strongly decreasing in amplitude, which is again ex-
plained with the values of the coupling functions as
shown in Fig. 6. The intensity of the energy losses are
weakest at x =0, but it is worth mentioning that the
spectrum is completely difFerent from that one would
have for an isolated cylinder, as, due to the contribution
of only the m =0 mode, there would be a single peak at
13.6 eV. The two upper curves, in turn, show a four-peak
structure which is essentially due to the modes shown in
Fig. 6 =xcept for p, =5.
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It should be noticed that the two spectra for x =R/2
and —R /2 correspond to electron trajectories across the
metallic substrate. This implies that other inelastic
energy-loss processes have been neglected, at least for this
energy range. For example, bulk-plasmon losses at

would occur and would be present in the energy-
loss spectra, but without overlapping with most of the
surface-plasmon structures. Inclusion of bulk-plasmon
energy losses in our formulation would not present a fun-
damental difficulty. '

In comparing finally the energy-loss spectra of the
two-cylinder system, with those of a single cylinder, as
shown in Fig. 2, marked differences can be observed. The
coupling of the cylinder modes leads to new plasmon fre-
quencies and hence to new properties contained in the
coupling functions, which completely modify the energy-
loss spectra.

CONCLUSIONS

In the present paper we have studied the surface-
plasmon modes of single cylindrical pores and of a pair of
coupled parallel cylindrical pores. Using a Hamiltonian
formalism we have determined the one-plasmon energy-
loss probabilities for electron trajectories parallel to the
cylindrical axis.

0

Application to cylindrical pores of 20-A inner radius in
an aluminum host metal and to pairs of pores such that
the axes are separated by 48 A show marked differences
in the plasmon frequencies and in the energy-loss func-
tions as compared to a flat-surface configuration. These
differences result from the effect of the surface curvature

and the coupling between surface-plasmon modes on
neighboring cylindrical pores. Among these new features
appearing for the system of two coupled cylindrical
pores, we mention a split by 1 eV for the m =0 mode and
the appearance of a completely new mode at 9 eV, i.e., at
1.5 eV below the surface-plasmon —mode bands of isolated
cylinders. This mode leads to prominent energy losses
for electron trajectories close to the interfacial region be-
tween the two cylindrical pores. Another important
consequence of the coupling is the strong dependence of
the energy-loss function on the cylindrical polar angle, in

striking contrast to the situation for an isolated cylindri-
cal pore.

Experimental observation of these features would re-
quire the use of scanning transmission electron m.icros-
copy, analogous to the technique used by Batson ' for
studying energy losses by coupled spherical particles.
Direct experimental comparison with our results would
require microchannels of sizes and interdistances of the
same order of magnitude as those used in the calcula-
tions. Their section should be circular and the inner wall
sufficiently smooth such that roughness effects could be
neglected. These constraints will be difficult to realize
with the use of the presently available preparation tech-
nology.

Our work has shown that coupling effects are impor-
tant and could be taken into account in the explanation
of the observed experimental energy losses on microchan-
nel arrays. For a detailed comparison, a study of
cylindrical-pore arrays would be necessary, considering a
superlattice of coupled cylindrical pores. This would
yield bands of cylindrical modes instead of the pair
modes we have labeled p, or p, .
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