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Electronic theory for solid-solution hardening and softening
of dilute Al-based alloys: Elastic-moduli enhancement of Al-Li alloys
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We discuss the characteristic solid-solution hardening and softening of Al-based fcc alloys using

ab initio Korringa-Kohn-Rostoker augmented-spherical-wave electronic structure calculations. We
choose the dilute Al-X alloy systems, X being Li, Be, Na, Mg, Ca, and Cu, which exhibit charac-
teristic solid-solution hardening or softening; solute elements such as Li and Be significantly
enhance the elastic moduli of Al-based alloys, while Mg and Ca decrease them strongly. On the
other hand, a solute element like Cu has little e6'ect on the elastic moduli. We will show that the
characteristic solid-solution hardening or softening can be predicted correctly by total-energy calcu-
lations, and that they are correlated to the change in the lattice constants due to the solute atoms.
Particular attention will be focused on the puzzling problem of solid-solution hardening of Al-Li al-

loys.

I. INTRODUCTION

The Al-based fcc alloys are very important for techno-
logical purposes. So far a number of Al-based alloys have
been developed and utilized widely typical examples are
Al-based alloys including Cu, Mg, Si, Zn, and Mn solute
elements (known as duralmin or super duralmin). Fur-
thermore, it has recently been recognized that Al-Li (Al-
based fcc) alloys are particularly useful and potential can-
c', .dates for aerospace materials because of their superior
strength-to-weight ratio. In general, the strength of these
materials is enforced by solid-solution hardening and/or
precipitation hardening. However, the detailed
strengthening mechanism of the alloys has not been eluci-
dated theoretically.

Li has the atomic number 3 and the melting point of
the bcc metal phase is 179'C. Young's modulus Y of the
Li metal is only about S-10 GPa, ' and this value is 1

order of magnitude smaller than that of Al, i.e., about 66
GPa. ' ' In view of these experimental data it is quite
surprising that the solute element, Li causes a drastic in-
crease of Young's modulus of Al-based alloys: the
strengthening rate is higher than that for Be or Cu
solutes. On the other hand, it is known that solute ele-
ments like Mg and Ca having much larger atomic nurn-
bers, 12 and 20, and higher Young's modulus than Li
lead to a significant reduction of the elastic modulus of
Al-based alloys. In Fig. 1 we summarize the experimen-
tal data on Young's moduli of Al-based alloys. ' ' It
can be seen that Young's rnoduli of Al-based alloys de-
pend quite sensitively on the species of the solute ele-
ments. It is the purpose of the present paper to clarify
the mechanism of the solid-solution hardening or soften-
ing of Al-based fcc alloys using the first-principles band-
structure calculations for the Al-based ard|:red corn-
pounds, A17X and A13X, with X denoting a solute ele-

ment.
In the present paper we restrict ourselves to the calcu-

lation of the bulk modulus of Al-based alloys, since the
theoretical scheme is not well suited for Young's modulus
or shear modulus calculations, in which the elastic defor-
mation modes of nonhydrostatic components should be
taken into account. Fortunately, however, Young's
modulus is proportional to the bulk modulus in many
cases. (Detailed discussions will be given in Secs. III A
and III D). In the following, we will show that the ob-
served trend in Fig. 1 can be correctly reproduced by the
electronic structure calculations. It will be pointed out
that the characteristic solid-solution hardening or soften-
ing is closely correlated with the change in the lattice
constant. Very interestingly, the lattice constant of the
Al-Li alloy varies nonmonotonically. We will demon-
strate that the variation of the lattice constant with alloy-
ing is well accounted for by the first-order perturbation
theory of the pseudopotentials. This implies that the
lattice-constant variation has essentially nothing to do
with the details of the band structures of the particular
ordered compounds which we use in this study.
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FICs. 1. Observed Young's moduli for the dilute Al-based al-

loys. For Li as a solute, A and Q in the parentheses denote an-

nealed and quenched, respectively.
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As for Al-Li alloys, Podloucky et al. " performed de-
tailed electronic structure analyses recently and, as a part
of their results, showed a decrease of bulk modulus by the
Li addition. They referred to the experimental work by
Miiller et al. ,

' which also claimed a bulk-modulus de-
crease. The present result is in contradiction with these
results. We will point out some possible problems in the
experiment of Miiller et ah.

The present paper is organized in the following way.
In Sec. II we outline the method of the band-structure
calculations and bulk-modulus calculations of the Al-
based alloys. Calculated results on bulk moduli of the
Al-based ordered alloys and related discussions on the
solid-solution hardening and softening will be presented
in Sec. III. Concluding remarks will be made in Sec. IV.

II. METHOD OF CALCULATIONS
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In order to discuss the solid-solution hardening or
softening of Al-based fcc alloys, we estimate the bulk
modulus of the ordered compounds with AlzX and A13X
compositions from the total-energy calculations: Li, Be,
Na, Mg, Ca, and Cu are chosen as the solute elements X.
The crystal structures of A17X and A13X (L12 structure)
compounds, with 12.5 and 25 at. %%uosolut econcentra-
tions, are shown in Figs. 2(a) and 2(b), respectively.

Although the crystal structure of AlzX compound is
rare in nature, it is useful to simulate the dilute solid solu-
tion of Al-based fcc alloys. For this AlzX compound, the
nearest-neighbor distance between the solute atoms is &2
times larger than that between the host Al atoms. A13X
compound with L12 structure is introduced in order to
investigate the concentration dependence on the solid-
solution hardening or softening of the Al-based alloys.
The L12 structure is also chosen for the reason that in the
dilute ( 5 4 wt. %) Al-Li alloys a certain amount of meta-
stable A13Li compound (5' phase, Llz structure) is pre-
cipitated by the normal heat treatment and a possibility
has been pointed out that the 5'(Al&Li) phase contributes
significantly to the solid-solution hardening of the al-
loys. ' ' As will be discussed later, our analysis indi-
cates that such an eff'ect of 5'(Al&Li) is not significant.

The electronic structure and the total energy of the
Al-based alloys are calculated self-consistently with the
augmented-spherical-wave (ASW) method' within the
local density approximation (LDA), in the density func-
tional theory. The ASW's up to l =2 are included for Al
and Cu, while for Li, Be, Na, Mg, and Ca we use only
those up to l =1. The number of k points used for the k-
space integration is 220 for A13X and 288 for AlzX in the
irreducible wedge of the first Brillouin zone. As a LDA,
we use the interpolation scheme proposed by Moruzzi
et ah. '4

The calculated total energies for A13X and A13 5XQ5
compounds are fitted to the form'

ET=(p/a) "—(q/a)"+r,
where a represents the lattice constant as indicated in
Fig. 2 and p, q, and r the fitting parameters. (Note that
we expand or compress both systems keeping the basic

FICs. 2. The crystal structures adopted in the band calcula-
tions.

fcc lattice undistorted. ) This type of fitting procedure
works well for the Al-based A13X and AlzX compounds
with n =3.5 and enables us to get simple analytic expres-
sions of the equilibrium lattice constants a0 and the bulk
modulus 8 of the alloys:

21/np 2
gq

8 (a) = (2n +3)—(n +3)2' a
2n +3 a 0

'n

(2)

(3)

III. RESULTS AND DISCUSSIONS

A. Calculated bulk moduli

In the present study we restrict ourselves to the calcu-
lations of bulk moduli of Al-based alloys. However, one
can generally draw definite conclusions on the solid-
solution hardening or softening since bulk modulus 8 is
related to other elastic constants in a simple manner. For
instance, Young's modulus Y for cubic systems is given
b 16

Y =3(1 2v)B, — (4)

where v represents Poisson's ratio. Therefore, for materi-
als with v=——,', the magnitude of Young's modulus is al-
most identical to that of the bulk modulus. '

As mentioned before, the bulk modulus can be calcu-
lated quite straightforwardly from the total energy of the
systems by using Eqs. (1)—(3). The fitting parameters p, q,
and r, calculated equilibrium lattice constants a0 and
heats of formation AEf are listed in Table I. Here EEf is
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TABLE I. Fitting parameters p, q, and r, equilibrium lattice constant ao and heat of formation AEf
of A17X and A13X compounds. All quantities are in Rydberg atomic units.

ao

A14
(A1~Li)/2
(A17Be)/2
(A17Na)/2
(A17Mg) /2
(A17Ca)/2
(A17Cu)/2
A13Li
A13Be
A13Na
A13Mg
A13Ca
A13Cu

7;4512
10.4681
10.3001
10.7237
10.6148
11.1078
10.3551
7.4422
7.0923
7.2111
7.5437
7.9033
7.4054

8.9371
12.6350
12.3490
12.9201
12.6223
13.1110

, 12.3888
9.0949
8.4860
8.1216
8.8690
8.7481
9.1033

0.8704
0.9300
0.8451
0.8201
0.8365
0.7735
0.8742
1.0115
0.8401
0.5708
0.2745
0.5020
0.9887

7.530
7.476
7.405
7.672
7.694
8.112
7.461
7.424
7.226
7.805
7.822
8.704
7.344

0.0
0.034
0.072
0.070
0.022
0.144
0.020
0.036
0.064
0.066
0.026
0.103
0.019

defined by

b,Ef I Al X„J=E(Al X„;aoI mEIAl—I nEIXI, —

where E IA1 X„;ao) is the total energy of Al X„at its
equilibrium lattice constant and E I AlI and E I X J are the
total energies of pure metals of Al and X with an assump-
tion of a fcc lattice for X. One can see in Table I that the
calculated lattice constants and heats of formation of Al-
based alloys depend sensitively on the species of solute
atoms. In general, solute elements which lead to incre-
r..ental (decremental) lattice constants tend to decrease
(increase) the elastic modulus of the alloys. The lattice-
constant change will be discussed later in more detail by
using a simplified pseudopotential theory.

In Fig. 3 we present the calculated bulk moduli of A17X

x)0

1.2-

and A13X compounds. In the solute concentration range
of less than 25 at. %, the bulk moduli of Al-based alloys
depend almost linearly on the solute concentration, ex-
cept for Al-Na and Al-Cu alloys. A slight upturn of B
for the Al-Li alloy with respect to the Li concentration is
qualitatively consistent with the enhancement in Young's
modulus by annealing, which causes precipitation of
5'(A13Li). However, such an effect is of secondary impor-
tance in the solid-solution hardening for Al-Li alloys. In
the Al-Cu or Al-Na systems, the bulk moduli increase or
decrease nonlinearly and show marked changes at high
solute concentrations. This may indicate that solute-
solute interactions play an important role in determining
the elastic moduli of these Al-based alloys.

In order to facilitate the comparison of the calculated
bulk moduli B with the experimental elastic constants
(Young's moduli in wt. %%uo ), w eals opresen t inFig . 4 the
calculated bulk rnoduli B against the solute concentration
in wt. %%uo . Comparin g th eelasti cmodul i of Al-base dal-
loys presented in Figs. 1 and 4, one can see that there are
good correlations between the calculated bulk rnoduli and

experimental Young's moduli.
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FIG. 3. Calculated bulk moduli vs solute concentration in
at. %. Data points at 12.5 and 25 at. % are the actual results
and the lines connecting them are simply a guide for the eye.

FIG. 4. Calculated bulk moduli vs solute concentration in
wt. %%uo . Line sconnec t th epur eA 1 valu ewit h th edat a for12.5
at. %%uo .
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R, —1 =c„d„(R,„—I )+czd~(R,z —1),
with

(6)

CAZA +CXZX
R, = —1+0.452R, 0.916+1.8

R„.= —1+0.452R„(0.916+1.8z, i ),
and

z; 0.916+1.8(c~z~~ +cxzx~ )/z
z 0.916+1.8z.

(9)

where z; (i = A or X) is the valence number of A or X
metal, c, the concentration, z the average valence number
given by c„z„+czzz, R, the electron-sphere radius of
the 2-X alloy, and R„ the equilibrium R, value of the
pure constituent. The electron-sphere radius R, is
defined as

i /3
3

4~n
a (10a)

with n being the valence electron density and aH the
Bohr radius, or

' i/3

R, = 3
16m.z

a
aH

(lob)

in terms of the lattice constant a of a fcc lattice.
In order to discuss the lattice constants of dilute alloys

(X being solute), we now expand the electron-sphere ra-
dius R, and lattice constant a in terms of the solute con-
centration c~. After some manipulations, we obtain

R, -=R,~ (1+cx P2 ),
zA zx

a -=a~ 1 ——'cz
3

ZA RsA

with

=a~ [1+c~(P,+P2)],

ZA zx

3ZA

(12)

(13)

R,~ —R,~ z~P2=
z

Rsg +Rsvp
(R,x+ 1)—1

sX

(14)

8. Lattice-constant change

As mentioned in the preceding section, there seems to
be a close correlation between the bulk-modulus change
and the lattice-constant change. Therefore, as the first
step toward the understanding of the solid-solution har-
dening or softening, we discuss the physical origin of the
characteristic lattice-constant variation of Al-based alloys
by adopting the first-order perturbation treatment of the
electron-ion pseudopotential. ' Within this scheme based
on the empty core model, ' the electron-sphere radius R,
of A-X alloy can be obtained by solving the following
equations

with a~ the lattice constant of pure A metal. For alloy
systems with (R,~

—R,x)/2R, X &&1, Eq. (14) is reduced
to

Rsg Rs g B~
P2 -=

R,~ B~
(15)

where B,- denotes the bulk modulus of pure i rectal given
by

B.= '"'z R /Rl ]2 I sl Sl (16)

Equations (11)—(15) provide us with a simple interpreta-
tion of the lattice-constant change in the dilute 3-X al-
loy. Equations (11) and (15) state that the mean
electron-sphere radius R, deviates from a simple linear
interpolation of R,~ and R,~ due to the difference in the
bulk moduli between the pure A and X metals. If the
metal X is much softer than the pure metal
(Bz ((Bz ), R, hardly changes irrespective of the
difference between R,~ and R,z. In addition to the
change in R„ the valence electron number changes also
in alloys. P, takes care of this contribution to the lattice
constant.

In Fig. 5, we present the calculated lattice constants a
as a function of solute concentration cx. (In these figures,
all the pure metals X are assumed to have a fcc structure
and their lattice constants are estimated from their atom-
ic density. ) The lattice constants calculated by using the
first-order pseudopotential theory are denoted by solid
curves, while those obtained from the LDA-ASW calcu-
lation are denoted by solid circles. [The experimental lat-
tice constant of Al&Li is denoted by X in Fig. 5(a). Also
in the same figure, the open circles denote the calculated
results by a modified method, as discussed in Sec. III D.]
The dashed lines were obtained by linear extrapolation
from the dilute limit. As we used experimental values for
R„. (i.e., the lattice constant) in the pseudopotential cal-
culations, we can, judge the accuracy of the present
LDA-ASW calculation at the pure metal limits.

We note large deviations from Vegard's law for the
alkali-metal solutes, Li and Na, and in particular the non-
monotonic variation of the lattice constant of the Al-Li
alloy. The addition of Li to Al causes a shrinkage of the
lattice for CL; &0.86, though the atomic volume of pure
Li metal is larger than that of pure Al. (Note, however,
that the Al-Li fcc phase is stable only to about 5 at. % of
Li at room temperatures. ) This is in fact observed experi-
mentally and was reproduced also by Podloucky et aI. ,"
although some significant discrepancy exists in quantita-
tive aspects, which we will argue in detail in Sec. III D.

As mentioned above, Eqs. (11}—(15} provide us with
useful information about the slope of the lattice-constant
change in the dilute solution limit. For alkali-metal
solutes with zz =1, P, makes a significant negative con-
tribution of —

—,
' = —0.222. In addition to this, the bulk

modulus of alkali metals is an order of magnitude smaller
than that of Al and thereby P2 is also reduced. The actu-
al values of P2 are 0.127 for Li and 0.250 for Na. There-
fore the slope is negative for Li and slightly positive for
Na. The larger P2 for Na than for Li comes from the
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(a)
4.5- 4.0

(b)

difference in R,x. We think that the lattice-constant de-
crease is the dominant source of the bulk-modulus
enhancement in the Al-Li alloy.

For divalent solute elements (zx=2), Be, Mg, and Ca,
the deviation from Vegard's law is relatively small.
Among them, Be causes a lattice-constant decrease as is
shown in Fig. 5(b), which is correlated with the bulk-
modulus enhancement. However, in contrast to the Al-
Li case, the lattice-constant decrease in the Al-Be case
seems to be nothing but a result of a small atomic volume
of pure Be metal.

For Cu, it is well known that a simple pseudopotential
theory does not work and the broken curve in Fig. 5(f)

denotes a linear interpolation of the two end metals,
which is quite parallel with the results from the LDA-
ASW calculations.

So far, we have shown that the lattice-constant change
by alloying can be well reproduced by the first-order per-
turbation theory with the empty core model (except for
the Al-Cu case) and that the lattice-constant decrease (in-
crease) is correlated with the bulk-modulus enhancement
(reduction) without any exception for those systems we
are concerned with. This is a very important aspect not
only because the first-order perturbation theory provides
us with simple pictures of the problem but also because
the success of the first-order perturbation implies that the
details of the band structures and also the choice of the
particular ordered compounds (Fig. 2) have little effect on
the essential points of the present problems.

C. Effect of charge transfer to bulk moduli
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Al
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It should be noted that although the first-order pseudo-
potential theory may give reasonable results for the equi-
librium lattice constant, it is not accurate enough to dis-
cuss the bulk modulus. ' This is because the former
quantity is related to the first derivative of the total ener-
gy with respect to volume while the latter is related to its
second derivative which requires higher accuracy in the

Be
total-energy calculations. There are some subtle aspects
in the bulk moduli quantitatively. For further discus-
sions, we show in Fig. 6 the calculated bulk moduli for
A17X, Bx, versus the corresponding equilibrium lattice
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FIG. 5. Lattice-constant variations for the Al-X alloys with
X being (a) Li, (b) Be, (c) Na, (d) Mg, (e) Ca, and (f) Cu. Solid
circles denote the results of the ASW band calculations and
solid curves those of the first-order perturbation theory of pseu-
dopotentials. The dashed lines denote the initial slope estimated
by Eq. (12). The cross in (a) is the experimental lattice constant
of the precipitated 5 (A13Li) from Ref. 23. The open circles in
(a) denote the results of the modified calculations as explained in
Sec. III D.

1.0 7.5

Lattice Constant
FIG. 6. The solid circles denote the calculated bulk moduli

vs the equilibrium lattice constants for A17X. The solid curve is
the lattice-constant dependence of the bulk modulus of pure Al
estimated by Eq. (3). The cross denotes the calculated bulk
modulus of Al at its equilibrium lattice constant. The dashed
curve suggests a qualitative trend of 8& versus a&.
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constant, az, together with the lattice-constant depen-
dence of the bulk modulus of the pure Al metal, BA, (a).
An important observation is that although a nonmono-
tonic behavior of B~ as a function of az is seen for Be,
Cu, and Li as X, the data seem to crudely follow the
dashed curve whose slope is significantly reduced from
that of B~,(a). The following qualitative analysis may
help to explain this behavior.

We consider the internal pressure associated with each
atomic sphere, and assume the same atomic sphere size
between Al and X. We express the pressure for the Al
atomic sphere in Al-X alloy as

01

c 0{}5-

0
Li

-0.05- 0

Se
I

Ca

(8)

Cu

P =PA, (V, n),

where V is the atomic sphere volume and n is the valence
electron number within the atomic sphere. When we
change the volume of the whole system, the atomic
sphere volume changes in the same ratio and n is adjusted
so that the pressure at the Al site is the same as that at
the X site. Generally, n deviates from the pure Al value
n (n being independent of volume) and we expand P to
the first order with respect to hn = n —n:

~PAi
P =P~&(V, n)+An

0n

xlO-'

8.0-

4.0-

Cg

-2.0-

Be
I

Na

0
CLI

The bulk modulus is given by

BP
BV

(19)

FIG. 7. (a) An denotes the change in the number of electrons
in the atomic sphere of Al in the A17X systems with X being
from Li to Cu. (b) The volume derivative of hn. The values in
{b) are in a.u.

»Ai(V n) a~. aP., a'
av av an "avan (20)

The first term is approximately equal to the bulk modulus
of pure Al for a given volume V (the solid line in Fig. 6)
and the second and third terms give rise to modifications
to it depending on the solute element X through An and
Bb,n /B V. In the latter two terms, dPA, /Bn )0 and
(8 PA&/8 VBn) &0 may be reasonable, because the kinetic
energy change may be more significant than the
potential-energy change at the equilibrium volume.
Furthermore, as Fig. 7 shows, An, the electron transfer
from X to Al, is positive (negative) for X with az larger
(smaller) than a„except in the case of Na. The sign of
Bb n /BV is opposite to that of b n. (Mg is an exception in
this respect. ) These trends which are satisfied in most
cases are physically meaningful: if Al is compressed in
the Al-X alloy (az &aA&), the valence electrons will flow
out of the atomic sphere of Al in order to reduce the
repulsive force due to the kinetic energy, so that An & 0;
in such a situation, an increase in the repulsive force by
compression will be more significant at Al than at X,
leading to a further. electron transfer from Al to X by a
volume reduction, i.e., Bhn /0 V )0. Therefore both the
second and third terms are positive for a~ & a A& and neg-
ative for a~ & a~& and thereby contribute to the reduction
of the slope of 8 with respect to a.

The above argument is only approximate and there

are in fact some exceptions (Na and Mg). Nevertheless, it
provides us with some hints about the relaxation effect
due to the charge transfer between inequivalent sites as-
sociated with the volume change, which is absent in pure
metals and may cause the reduction in slope of the
dashed curve compared with the solid one in Fig. 6.

D. Problems in experimental and computational
situations for Al-l.i alloys

It is now well known that the Li deficiency extends up
to 0.3 mm deep into the bulk from the surface in Al-Li al-
loys. ' Therefore experiments affected by this Li-deficient
region will not provide us with reliable data for a given
bulk concentration of Li. The lattice-constant measure-
ment requires a caution. For example, a vanishingly
small lattice parameter shrinkage (only by -=0. 1%) was
reported for the Al-Li alloy with 21.53 at. % Li in 1963,2~

while the recent review cited 4.01 A as the lattice con-
stant of A13Li, which is reduced by l%%uo from that of pure
Al. In the present calculation, the corresponding value is
1.5%, indicating a reasonable agreement but a slight
overestimation of the lattice-constant shrinkage.

The experimental determination of the bulk modulus
of the Al-Li alloy is also problematic. Muller et al. '

measured three elastic constants by measuring the veloci-
ty of ultrasonic waves in three different modes and es-
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timated the Young's modulus Y and the bulk modulus B
to conclude an enhancement in Y but a reduction in B by
the Li addition. However, their increase in Y for the 4
at. % Li case with respect to the pure Al is only half of
the corresponding value obtained by the direct measure-
ment of Y by Noble et al. (The result of Noble et al. is
consistent with other measurements. ) Independent mea-
surement of Poisson's ratio v of the Al-Li alloy is avail-
able: v decreases slightly with increasing Li concentra-
tion, though some ambiguity exists quantitatively. We
estimated B by the Y values of Noble et al. and three
possible variations for v as shown in the inset of Fig. 8,
which cover the ambiguous range in v. In all three cases
for v, the bulk modulus is in fact enhanced in the Al-Li
alloy (Fig. 8). On the other hand, if we use the estimation
of Muller et al. for the increment in Y, ' the same pro-
cedure results in a reduction of the bulk modulus. We
would like to point out also that the Debye temperature
is enhanced by the Li addition to the Al metal.

As for the computational aspects, the local density ap-
proximation in the density functional theory is an ap-
proximation and the electronic structure calculation
based on it tends to underestimate the lattice constant.
In the present calculation, the lattice constant of fcc Al
and bcc Li are underestimated by 1% and 3.5%, respec-
tively. This results in an overestimation of bulk moduli:
theoretical values are 82.3 GPa for Al and 18.4 GPa for
Li, while experimental ones are 72.2 GPa for Al and 11.6
GPa for Li. One may suspect that these discrepancies
may seriously a8'ect the lattice-constant change and the
elastic-modulus enhancement in the Al-Li alloys, leading
us to qualitatively wrong results. We therefore per-
formed the following check calculations.

Considering that the LDA is in any case an approxi-
mation, we scaled the exchange-correlation potential apd
energy by a constant a as in the Xa method. a's for Al
and Li were adjusted so that the pure metal lattice con-
stants could be correctly reproduced. This gives us
aA&=0. 97 and aL;=0.91. The resultant bulk moduli are
75.5 GPa for Al and 10.9 GPa for Li, in good agreement
with experimental values. In the band-structure calcula-
tions for A17Li and A13Li, the same scaling factors a&&
and aL; were used in the ato~ic spheres of Al and Li, re-
spectively. The calculated lattice constants are shown in
Fig. 5(a) by open. circles. The rate of the lattice-constant
shrinkage caused by the Li addition is rather enhanced in
the new calculation compared with the results shown by
solid circles. For example, the lattice-constant shrinkage
of A13Li is now about 3%. This is not so strange, because
both Al and particularly Li are much softer in the present
calculation than in the previous one. Although the calcu-
lated lattice shrinkage looks too large compared with the
experimental value, it should not be discarded. The lat-
tice constant of A13Li is measured for the precipitated 5'
phase surrounded by the a matrix whose lattice constant
is larger than that of 5'(A13Li). It is therefore probable
that the precipitated 6' phase may be exerted by a nega-
tive pressure to expand the lattice and that A13Li, if iso-
lated, may have a smaller lattice constant than the ob-
served one.

The bulk modulus B of A17Li in the new calculation is

0.32

0.36
2 4 6 8

Lg(at. i.)
0
r

75-

QI 3

0 2.0 4.0 60

Li (at. /. )

FIG. 8. The dashed curve denotes the observed Young's
modulus vs the Li concentration (Ref. 8). The inset shows three
possible variations for Poisson s ratio of the Al-Li alloys (Ref.
24). By combining Young's modulus with Poisson's ratio by Eq.
(4), the bulk modulus was estimated as denoted by the three
curves with the numbering corresponding to that for Poisson's
ratio.

IV. CONCLUDING REMARKS

We have analyzed the microscopic origin of the solid-
solution hardening and softening of the Al-X alloys with
the solute X being Li, Be, Na, Mg, Ca, and Cu by per-
forming the total-energy calculations based on the LDA
for the ordered A17X and A13X compounds. The calculat-
ed bulk modulus for the Al-X system correlates very well
with the observed Young's modulus. We have found that
the solute which causes a lattice-constant decrease (in-
crease) enhanced (reduces) the bulk modulus. It has been
redemonstrated that the lattice-constant change of the Al-X
alloy (except for Cu as X) can be fairly well reproduced

78.5 GPa, still larger than that of pure Al (75.5 GPa), but
the enhancement is suppressed. On the other hand, B of
A13Li is estimated to be 95.7 GPa being considerably
enhanced, which may be correlated with the large
lattice-constant shrinkage.

Summarizing the arguments in this subsection, we con-
clude that although there are some complications and
ambiguities, it seems to be more probable that the bulk
modulus of the Al-I i alloys is enhanced by the Li addi-
tion.
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by the first-order perturbation of the pseudopotential
theory with the empty core model and a simple analytic
expression has been derived for the initial slope of the
lattice-constant change in the dilute limit of X. Qualita-
tive discussions on the efFect of charge transfer on the al-
loy bulk modulus have also been given.

Not only from technological interest but also from fun-
damental theoretical interest, detailed discussions have
been given, particularly on the Al-Li alloys. The present
analysis suggests that the initial decrease of the lattice
constant by the Li addition, despite the larger atomic
volume of Li than that of Al, is the main source of the
enhancement in the bulk modulus (and Young's modulus
also). Because of some complications and ambiguities
both in experimental and theoretical situations, we have
performed careful analyses on our calculated results to
conclude that they should qualitatively be correct.
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