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Crystal-to-amorphous transitions are studied by molecular-dynamics simulations in which self-

interstitials are randomly arid sequentially inserted into solids composed of two atomic species with

size difFerence of 20%. Lennard-Jones interatomic potentials are used for the simulations at finite

temperature (about 4 melting) and constant pressure (I' =0). Two initial structures are considered,

an A38 ordered lattice and an AB solid solution which is significantly disordered. A variety of
physical properties are evaluated to assess the e6'ects of the interstitial insertions and subsequent

system relaxation. Results provide atomistic details which point to the dominant role of chemical

ordering in the amorphization process, ' they also reveal, in quantitative terms, the essential

difFerence between the amorphization of binary systems and that of single-component lattices stud-

ied previously.

I. INTRQDUCTIGN

In recent years it has been found that amorphous solids
ean be produced by a variety of processes other than the
rapid solidification of a melt. In particular, atomic disor-
dering of crystalline solids by irradiation has become a
prominent process having considerable fundamental as
well as technological interest. ' In the process of rapid
solidification, which we might call "vitrification, '* the sys-
tem goes from a liquid state to a glassy state when cry-
stallization is suppressed. In the irradiation process,
which we will call "amorphization, " the system goes
from a crystaHine state to a glassy state if the lattice is
destabilized and recrystallization cannot occur. In the
context of fundamental understanding of the glass transi-
tion, it is relevant to ask what is the nature of the driving
force in vitrification and in amorphization, and what are
the factors that determine the threshold condition for
each process.

Atomistic simulation is a method by which a Quid sys-
tem can be quenched practically instaritaneously and its
subsequent behavior observed on a microscopic time
scale. Studies of supercooled Auids and the liquid-to-
glass transition have been carried out using this ap-
proach, '" although it is still somewhat of an open ques-
tion how are the simulation results to be related to labo-
ratory measurements which occur on much slower tem-
poral scales. Since simulation offers the advantage of be-
ing able to probe a variety of physical properties under
conditions which can be characterized precisely, it may
be argued that this type of information is invaluable in
achieving a better understanding of how amorphous
states are produced. The same argument is also applic-
able to the study of crystal-to-glass transition; here even
less is known since only a few simulations have been at-
tempted.

In this paper we describe a molecular-dynamics study
of amorphization of atomic lattices induced by the rapid
introduction of self-interstitials while the system is main-

tained at constant temperature and pressure. In an ear-
lier work dealing with a monatomic fcc lattice with
Lennard-Jones interatomic interaction, ' we have shown
that the threshold condition for defect-induced amorphi-
zation is both rate and concentration dependent. The
present work is an extension to binary lattices in which
the only difference between the two atomic species is the
particle size. We find that the existence of two atomic
species has a profound effect on the nature of structural
ordering, and that for a certain choice of the size dispari-

ty between the species, the threshold requirements for
arnorphization of a binary system are considerably re-
duced compared to those for a monatomic solid. An
analogous behavior is known in simulations of
vitrification where binary Auids are found to be much
more resistant to crystallization than their monatomic
counterparts. '

Our simulation results also reveal the presence of resid-
ual stresses as a result of the size disparity. The distribu-
tion of the hydrostatic stress changes significantly upon
structural disordering, which is an indication that local
stresses can play an important role in the amorphization
process. Another manifestation of the correlation of
mechanical behavior with structural order is the change
in elastic constants upon amorphization, a reduction in

Cii, an increase in C$2, and a drastic reduction in C44.
This behavior is quite general since similar changes are
also observed in the case of the monatomic lattice.

The present work is part of an attempt to understand
radiation-induced amorphization in terms of the disor-
dering effects of point defects. While there exists a con-
siderable body of data on both electron and ion irradia-
tions, ' there are few models to provide a theoretical
basis for investigating the role of defects in the amorphi-
zation process. " Simulation results can be useful in this
respect. Recently, it has been found that a glassy phase
can be formed in a crystalline lattice containing grain
boundaries and that a model binary aHoy in an initiaHy

fully disordered structure can become amorphous upon
relaxation.
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II. MOLECULAR-DYNAMICS
SIMULATION MODELS

In this study the standard molecular-dynamics
method5 is applied to a periodic system of two types of
particles, A and 8, which are dist&nguished only by their
interaction potentials. The potentials are of the
Lennard-Jones (6-12) form,

V p(r)=4s B[(cr i3/r)' (cr B/—r)6],

where a,P= A or B. For the parameters of the three in-
teractions, Vz&, V&&, and Vzz, we take

~Ad BB ~AB =~

oAA=oBB/1. 2,
a AB (oAA+oBB )/2=a

Thus, with the well depths for a11 three potentials taken
to be the same, particles A and 8 differ only in their size
(B is larger by 20%), and the geometric mean is used as
the size parameter for the A-B interaction (Lorentz-
Berthot combining rule). Notice also we do not consider
any mass difference between the two species.

For the equations of motion we adopt a Lagrangian
formulation' and use a fifth-order predictor-corrector al-
gorithm to carry out the integration. In this method the
simulation cell is allowed to change shape and volume in
response to an external stress, which we will set equal to
zero in all the simulation runs. All physical quantities
are expressed in dimensionless forms, length in unit of o.,
e, iergy in s, pressure in Elo, and time in r= (rncr /—s)'
m being the particle mass. For operational details, we
note here that the interparticle force is cut o6'at r, =2.33,
the time-step size At is 0.01, and the system temperature
is maintained constant by velocity resealing whenever the
instantaneous temperature exceeds a certain tolerance
limit.

A simulation run consists of four stages, equilibration
of the fcc binary lattice prior to any defect introduction,
insertion of self-interstitials sequentially at a certain rate,
continued simulation without further particle insertion,
and a second period of simulation without perturbation.
From the first stage one obtains the properties of the un-
perturbed or reference system. The second stage is the
perturbation or "irradiation" phase. The third is the re-
laxation or "annealing" phase, and the results from the
fourth stage provide a check that the third stage has been
run long enough.

To insert self-interstitials we choose an atom at ran-
dom and find among its nearest neighbors three which
are also first neighbors to each other. The positions of
these three particles relative to the chosen atom are taken
to be vectors s,b, c such that the position for the intersti-
tial is given by (a+b+c)/2. When the lattice is not
severely distorted, this procedure locates the octahedral
position at the center of the fcc unit cell. When many in-
terstitials have been inserted, it can happen that the pro-
cedure fails to locate an interstitial position relative to an
atom. In such cases the simulation would continue with
the choice of another atom. Immediately after a new par-

2

S(K)=(1/N) g exp(iK r ) (3)

p(K)=(1/N) g cos(K r ), (4)

where K is a reciprocal-lattice vector chosen along the
closed-packed direction, K=(2m/L, )(n, n, n), I., being.
the length of the simulation cell along the z or [111]
direction. Several ~K~ values are considered in each cal-
culation; the values of S(K) and p(K) shown in Table I

ticle is inserted, the simulation time step is reduced to
0.05 of the normal time-step size to allow for local relaxa-
tion of the crowding efI'ects of the insertion. The time-
step size is then gradually increased back to its normal
value over the next 20 steps.

The defect-insertion stage ends when a certain number
of interstitials, N, , has been introduced. The second
stage is therefore characterized by N,. and an interstitial
insertion rate r, We will consider two insertion rates,
r; =5.95 and 14.71, where r; is the time interval, in
units of ~, between insertions. In each case the simula-
tion continues through all four stages at the same temper-
ature and pressure. Particle trajectories during each
stage are saved and cumulative averages are computed
separately for each stage.

We have studied two binary solids with different initial
structures: one is an A3B lattice and the other an AB
solid solution. In the former, particles occupying the
corner sites of a fcc unit cell are assigned to be type 8,
while those on the face sites are type 3, and in the latter
structure species 3 and 8 have equal probability of occu-
pying each site in the fcc lattice. Each system contains
N= 576 particles at the start of the simulation and during
stage 1 it is equilibrated at T =kBT/a=0 2(ab. out 0.3
of melting) and zero pressure.

In presenting the results of the simulations, we will first
consider the characteristic temporal responses during
each of the four stages. Then we will examine the
changes in structural and mechanical properties brought
about by the interstitial insertion and subsequent relaxa-
tion processes. Table I shows three simulation series
which we have carried out, each corresponding to a par-
ticular combination of initial structure and insertion rate.
Ip these cases stage 1 is equilibration without defect for a
period of 10 time steps, stage 2 is the insertion of 40 in-
terstitials, stage 3 is the system relaxation for 3000 steps,
and stage 4 is further relaxation for 2000 steps.

The system response in the density, average potential
energy per atom, static structure factor, and an order fac-
tor (defined below) are given in Table I. These are aver-
age values calculated over a portion of the trajectories
near the end of each stage. The density is obtained as the
ratio of the number of particles in the system at the given
time to the instantaneous volume of the simulation cell
which is given by h, .h2X h3, h, being the basis vectors
defining the simulation cell. ' The static structure factor
and order factor are defined as
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TABLE I. System responses after insertion of 40 interstitials obtained from simulations with
different initial structures and insertion ratios r.

Series Struct.

A3+

A3B

Rate r

5.95

14.71

14.71

Stage Density

1.12
1.06
1.09
1.09

1.12
1.04
1.09
1.09

0.97
0.92
0.95
0.95

7.08
6.75
6.95
6.97

7.08
6.55
6.95
6.99

6.95
6.60
6.90
6.91

S(K)
520
100
10
8

520
1SO

20
5

210
70

5
7

p(K)

0.95
0.40
0.1S
0.11

0.95
0.50
0.15
0.08

0.60
0.35

0.10
0.10

correspond to values of ~K~ for which S(K) is a max-
imum, A comparison of the results in Table I for series E
and I' shows only slight variation with insertion rate,
Since this is true for all the properties that we will discuss
in Sec. III, we will not consider series E any further.

id response in energy relaxation. As in the case of the
density, the recovery is not complete and the system is
left in an excited state relative to the unperturbed lattice.

Figure 4 shows the mean-squared displacement which
is defined as

III. STUDY OF A 3B ORDERED I A'I I'ICE

The significance of the system responses shown in
Table I will become clear once we consider the time-
dependent behavior of the properties at each stage. For
an overview of the eff'ect of interstitial insertion, we show
in Fig. 1 two projections of the particle configurations be-
fore interstitial insertion, after 20 insertions, and after 40
insertions. In a qualitative way the results suggest a cer-
tain structural coarsening or the appearance of local-
density inhomogeneities in the system.

Figure 2 shows the density variation during each of the
four stages. The oscillatory behavior during stage 1 is
caused by vibratory motions of the simulation cells, a
characteristic of the equations of motion for the h,. vec-
tors which is of no physical interest. When interstitials
are inserted, the density is seen to decrease monotonical-
ly. This implies that the instantaneous volume expansion
of the cell is greater than the volume needed to accom-
modate the new particle at the original density. From
previous studies of amorphization of one-component
crystals, we have found that the decrease of density with
interstitial insertion levels off after about 80—100 iuser-
tions, and thig behavior can be associated with the forma-
tion of new (111)planes as new particles are added to the
system.

When the system is allowed to relax after insertion of
40 interstitials, there is a rapid recovery of density. How-
ever, the original value of the density is got obtained,
which implies that the packing of the particles has been
altered significantly. Since no further change is seen dur-
ing stage 4, one can also conclude that density relaxation
during stage 3 is more qr less complete.

Figure 3 shows the variation of the average potential
energy per atom. The presence of the interstitials raises
the energy level of the system, as can be seen from the
stage-2 behavior. Once the insertion stops, there is a rap-

Prior to particle insertion, this quantity gives a measure
of the average thermal vibrational amplitude of the parti-
cles; it is seen to be quite small compared to the varia-
tions during particle insertions and subsequent relaxa-
tion. During insertion the displacement function in-
creases more or less linearly, which is not unexpected
since there must be significant local rearrangernents fol-
lowing every interstitial introduction. During relaxation
the displacement increases even more strongly, which
means that the rearrangernents are even more active dur-
ing this phase. Since stage 4 shows only a slight increase,
one can conclude that the simulation has run long
enough.

The structural response of the system is depicted in
Figs. 5 and 6. The loss of crystalline order during parti-
cle insertion is to be expected, but, unlike the density and
the potential-energy responses, during relaxation there is
continued disordering instead of recovery. It is
noteworthy that the latter disordering is apparently asso-
ciated with the large particle displacements observed in
Fig. 4(c). The results from stage 4 indicate that further
change is unlikely, which is consistent with the other
responses. .

The radial distribution function g (r) is defined to be

g(r)=(1/4m¹ 5r) g' f dr'5(rj r') . —
S,J =1

Three distributions are shown in Figs. 7—9: the total dis-
tribution function g, (r), the distribution gtttt(r) of 8-type
particles relative to a 8 particle at the origin, and the dis-
tribution g„tt(r) of 8 relative to an A particle, respective-
ly. Also shown in each case is the cumulative distribu-
tion
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G (r) =I dr'4~(r') g (r') .
0

Since particle species are not distinguished in g, (r), one
sees in Fig. 7 the behavior appropriate to a one-
component system. From stage 1 the distribution shows
the first four neighbors in a fcc lattice, with G (r) giving
the first three coordination numbers at 12, 6, and 24. It

may seem that the second-, third-, and fourth-neighbor
peaks have not been smeared out during stage 2; this ap-
pearance is mostly caused by the contributions from the
early configurations, which contain only a few intersti-
tials and the lattice was effectively still crystalline. The
shape of g (r) obtained from the relaxation stage is remin-
iscent of a liquid. Note, in particular, the absence of the
second-neighbor peak of a fcc lattice and a second max-
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FICx. 1. (a) xy projection of atomic positions after insertion of a number, N;, of interstitials into an ordered A3B lattice at T =0.2,
P*=O, and fast insertion rate (series I'); N; =0 (top), 20 (middle), and 40 (bottom). Open and solid symbols denote atom species A

and 8, respectively. (b) Same as (a), except projection is xz.
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FIG. 2. Time response of system density during the four stages of simulation (series F) of interstitial insertion and relaxation. (a)
Thermal equilibration of A3B ordered lattice, (b) insertion of N; =40 interstitials, {c)relaxation with no further interstitial insertion,
and (d) further relaxation. Time scales are one unit equals 10 time steps in (a), (c), and {d), and one unit equals about 200 time steps
in (b). Entire simulation is carried out at T =0.2 and P =0.

imum in g (r) replacing the previous third- and fourth-
neighbor peaks. This behavior has been observed in the
study of the one-component lattice.

The distribution gzz(r) is quite different from g, (r) in
the 238 lattice. As seen in Fig. 8(a), gs~(r) has only two

peaks, one at the second-neighbor position and the other
at the fourth-neighbor position. The extent to which
these two peaks are smeared out is difFicult to tell from
Fig. 8(b) because of the contributions of the early
configurations. One suspects that at the end of the inser-
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FIG. 3. Same as Fig. 2, except the response is that of potential energy per atom (in units of c.).
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FIG. 4. Same as Fig. 2, except the response is that of mean-squared displacement of all the atoms. Unit of 6'r (MSD) is 0.01o'.

tion stage gzs must be closer to Fig. 8(c) than anything
else. In Fig. 8(c) one has essentially a completely
different structure from Fig. 8(a); the distribution now is
quite similar to g, (r).

The cross correlation g„z(r) also differs from g, (r ) ini-
tially, but its transformation is less drastic by comparison

to gs~. As shown in Fig. 9(a), the 238 lattice gives a
peak in g„~(r) at the nearest-neighbor position with the
expected coordination number of 4, and another peak at
the third-neighbor position with coordination number 8.
After insertion and relaxation, g„z(r) also tends to a dis-
tribution similar to that of g, (r) and gzz(r).
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FIG. 5. Same as Fig. 2, except the response is that of the order factor p(K), with K=(2~/L, )(0,0, n), with n chosen to give the
maximum value of S(K).
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FIG. 6. Same as Fig. 2, except the response is that of the static structure factor S(K).

Atomic configurations can be characterized by Voro-
noi polyhedra, the construction of which leads to quanti-
tative measures of the volume associated with each atom
and the topology of its nearest neighbors. We have
developed a program to compute these polyhedra given
an arbitrary collection of particle positions. Figure 10

shows the fractional distributions of the Voronoi volumes
of 3 and 8 particles. In the ordered lattice there is only
a slight difference between the two distributions. As a re-
sult of interstitial insertion, the difference becomes con-
siderably greater; polyhedron volumes of the larger
species are decidedly larger. This suggests that as the lat-
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i

{c)
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0 -0

FIG. 7. Radial distribution function g, (r) and corresponding cumulative distribution G, (r) for the four stages of simulation (series
I'") of interstitial insertion and relaxation; (a) equilibration of 338 ordered lattice, (b) insertion of 40 interstitials, (c) relaxation with
no further interstitial insertion, and (d) further relaxation. All results are averages over contributions calculated periodically during
each stage. Reduced distance is in units of a.
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FIG. 8. Same as Fig. 7, except the distribution function is g~~( r).

tice structure is destroyed the volume distribution be-
comes governed by the particle size as one would expect
in a disordered environment. Figure 11 shows the distri-
butions of the number of faces of the Voronoi polyhedra.
Again, one sees that after insertion and relaxation the dis-
tributions separate, with the polyhedra for the larger par-
ticles having mope faces.

Another measure of local variations in particle ar-
rangements is the atomic-level stress, ' defined by the

second-rank tensor

cr;=(I/O;) rn;v;v; —g (V,'/r; )r; r;.
j (&i)

where 0; is the volume of atom i. In this study the local
stresses are transformed into principal stresses, a„cr2,
and o 3, which are then used to obtain the hydrostatic
stress,

20

(b)

$0

{c)

VQ

p
0

4

- 'IO

2-

0

FIG. 9. Same as Fig. 7, except the distribution function is g»(r).
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FIG. 10. Normalized distribution of volume of Voronoi polyhedra for the four stages of simulation (series F, see Fig. 7). Open and
solid symbols denotes atom species A and B, respectively. Reduced volume is in units of a .

tain the hydrostatic stress,

P =(o,+o2+o3)/3,

and the von Mises shear stress, '

s =[[(o&—oz) +(o2—o3) +(o3—o, ) ]/6J'

Figure 12 shows the distributions of the hydrostatic
stresses acting on the two species. In the ordered lattice
the larger particles (8) are subjected to a compressive
stress, while the smaller particles ( A ) experience a slight
tensile stress. After insertion and relaxation, both species
experience the same distribution, which is now centered
about zero stress.
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FIG. 11. Same as Fig. 10, except the normalized distribution is that of number of faces of the Voronoi polyhedra.
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The mechanical properties of a solid can be
tuation formulas. The adiabatic elastic constants under th

an be measured m terms of elastic constants thatn s a can be calculated using Auc-
'c e as ic constants, under the condition of zero external stress, are given by

C;t, =(2N/PQ 5ilail . ( ik~jl+~il~jk( +PR~ij~kl)+((/f()(x (V / V //r r;r rkrt
a, y

T=1ay

where P=1/k T, and 5(m; „)=& „m„, &
—

&m,, &&a„, &.

e e astic-constant results are given i T bl II h
e contributions from the three terms in E . ~&12'j

shown seeparately. It is seen that the kinetic contribution

0.)2

I

rs small, fluctuations in the stress tensor ive a n t'
contrib

ive a negative

tion an

'
ution, and the Born terms dominate. Afte

ion and relaxation, there is an appreciable decrease in
», an increase in C,2, and a sharp reduction in C44. It

is seen also that tthese changes mainly occur as a result of
the greater Iluctuations in the stress tensor.

An overall characterization of the vibrational proper-
ties o the system is provided by the generalized frequen-
cy distribution f (ro), which can be calculated as the

4
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FIG. 12.~ . Normalized distribution of hydrostatic stress I' for
the first three stages of series-F simulation. Results are averages

and B, respectively.

FIG. 13. Velelocity autocorrelation function it/(t) and its
Fourier transform f(co) of 238 lattice (series E, sta e I)

( e ies D, stage 1), and amorphized solid (series F stage
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TABLE II. Elastic constants of an amorphized A 3B solid obtained from simulation series F, stage 4. Contributions from the three
terms in Eq. (11)—kinetic, fiuctuation, and Born terms, respectively —are shown separately. Shown on the second line of each entry
are the corresponding values for the A 3B lattice without defects, sirpulation series F, stage 1.

Kinetic 4.0
4.0

Cz2

4.0
4.0

C

4.0
4.0

Ci2 C C44

2.0
2.0

Cs5

2.0
2.0

2.0
2.0

Fluctuation —191
—101

—185
—84.8

—198
—95.7

39.4
—20.7

75.8
—3.51

62.4
-22.9

—126
—21.8

—129
—26.5

—127
—23.6

Born

Total

Average

491
552

303
456

504
552

323
471

311
462

502
551

308
460

168
142

221
121

162
142

207
107

222
116

159
142

238
119

159
142

34.8
122

162.
142

35.1

118

38
120

168
142

43.0
120

Fourier transform of the velocity autocorrelation func-
tion,

f(&)= g (v;(&).v, (0)) g (vj(0) vj(0)) . (12)

Figure 13 shows P(t) and its transform f (co) for the A3B
ordered lattice prior to interstitial insertion and after in-
sertion and relaxation, along with the results for the AB
solid solution prior to interstitial insertion (see Sec. IV).
One can discern a slight enhancement of low-frequency
distribution in f (co) and a somewhat more pronounced
increase in the high-frequency end of the distribution as a
result of arnorphization. These effects are more evident
in the study of the one-component system. The low-
frequency enhancement is a feature that has been ob-
served in neutron inelastic spectra of metallic glasses. '

To complete the discussion of the A38 system, we
show in Fig. 14 a collection of properties calculated after
20 interstitials have been introduced. These intermediate
results help to confirm the above interpretations of the
system response during stage 2.

In summary, we find that the introduction of intersti-
tials into an initially ordered binary lattice drives the sys-
tern to a level of disturbance from which it relaxes into an
amorphous structure. Unlike the one-component system,
which shows an amorphization threshold in the insertion
rate, the binary lattice, for the present choice of size
disparity, is much less resistant to arnorphizat&on. In the
computer-simulation studies of the glass transition by
quenching a liquid, it is known that nucleation occurs
readily in the one-component system but not in the
binary system. ' Since we have followed the behavior
of different physical properties through the various
stages, we are now in a position to give a more complete
picture of the process of defect-induced amorphization.
This discussion will be undertaken in Sec. V after we con-
sider the study of the AB solid solution in the next sec-
tion.

IV. STUDY OF AB SOLID SOLUTION

The AB solid solution is constructed by taking a fcc
lattice and assigning on a random basis half of the lattice
sites to be occupied by type- A particles and the other half
by type 8. The system is then allowed to relax at the
temperature of interest, T=0.2 in this study. Because of
the size disparity between the two species, a certain
amount of disorder is already present in the initial
configuration. An indication of this can be seen from the
coordination number of the nearest neighbors as obtained
from the cumulative distribution function G(r), 12.96,
6.39, 6.60, 6.33, and 6.65 for g„g„q, g~~, g „~, and g~ q,
respectively. For the A3B ordered lattice without de-
fects, the corresponding values are 12, 8, 0, 4, and 12.

The AB system has been studied under the condition
of 40 interstitial insertions at the rate of 14.71 particles
per unit time ~, followed by two relaxation stages. Some
of the properties obtained from this simulation series are
given in Table I. Relative to the results for the A38 sys-
tem, there is only a slight decrease in density and increase
in potential energy brought about by the interstitial inser-
tion and subsequent relaxation. Even though the AB sys-
tem is initially more disordered, in the relaxed final state
structural disorder in both systems appears to be similar.

For an overview of the particle configurations before
and after interstitial insertions, we show in Fig. 15 projec-
tions of all the particles in the simulation cell. One can
see the system is already quite disordered by the 20% size
disparity between the two species. The distortion effect
of the interstitials noted in Fig. 1, namely fluctuation in
local density, is even more pronounced in this case. The
response of S(K), shown in Fig. 16, reveals that some
disordering occurs during the insertion stage, but very lit-
tle change seems to take place during relaxation. The
same behavior is indicated by the radial distribution func-
tions g, (r), given in Fig. 17, and the volume distribution
of the Voronoi polyhedra, given in Fig. 18. The distribu-
tion of hydrostatic stresses, given in Fig. 19, shows the re-
lief of compression on type-8 particles and tension on
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type-A particles as a consequence of the interstitial inser-
tion, an effect also observed in the A 3B system.

Elastic constants calculated for the solid-solution sys-
tem are given in Table III. Relative to the ordered A3B

600

400-
O

O

La

200-0
O

h

M

0
)0 20 30 40

Time

60

4-

-20
L

CO

0.2

0.0
0.8 0.9 $.0 1.2

Volume v

FIG. 14. System responses of A 3B lattice with 20 interstitials
inserted at r=14.71. Top, time variation of S(K) during stage
3 [compare with Fig. 6(c)j, time in units of r; middle, g, (r) after
stage 3 [compare with Fig. 7(c)); bottom, distribution of volume
of Voronoi polyhedra after stage 3 [compare with Fig. 10(c)].

system, C&& and C44 are significantly smaller, while C,2 is
larger before the introduction of interstitials. Notice also
that there is significant deviation from cubic symmetry.
These effects are clearly due to the structural disorder as-
sociated with the solid solution. The presence of intersti-
tials causes only a slight change in the various elastic
constants, in the direction to be expected.

In summary, we find the AB solid solution studied here
to be a system already quite disordered without the intro-
duction of any extrinsic defects, and the effect of inserting
a high concentration of interstitials is small but con-
sistent with that observed in the A3B system.

V. DISCUSSION

By means of molecular-dynamics simulation we have
carried out a systematic study of the structural disorder-
ing effects of introducing self-interstitials into solids com-
posed of two atomic species. By varying the iriitial struc-
tures and monitoring the evolution of each system
through a variety of physical properties, we have ob-
tained a comprehensive collection of results pertaining to
the process of defect-induced amorphization. In consid-
ering the significance of these results, it is relevant to also
refer to similar investigations ' ' of amorphization of a
pure element where the effects of chemical ordering are
totally absent.

A general behavior of all the systems studied is the
overexpansion of the solid when interstitials are first in-
troduced. This density decrease is clearly associated with
the disruption of crystalline order as observed through
the quantities which measure structural properties, S(K)
and p(K). In Table I one sees that this correlation be-
tween structural order and density also extends to the po-
tential energy; there is an increase in potential energy
when the system becomes disordered. One may ask
whether the density and potential-energy responses will
cease to vary with further defect insertions when the sys-
tem is totally disordered. Such a leveling off has been ob-
served in simulations on monatomic lattices at higher in-
terstitial concentrations; ' ' we can expect the same be-
havior in the present study. Further investigation of the
correlation between volume expansion and structural dis-
order can be extremely enlightening in view of the possi-
ble existence of a fundamental connection between melt-
ing and amorphization. ' Work along this direction is
currently in progress. '

Perhaps the most interesting aspect of this study is the
role of chemical disorder. We have adopted the simplest
model of chemical ordering by assuming the potential
functions all have the same well depth and the same mass
for particles of both species. This eliminates any prefer-
ence for particles to associate with one species over the
other as well as inertial effects in particle interactions due
to mass difference. Any chemical ordering effect in the
model therefore arises entirely from the difference in the
particle size.

We find that size difference plays a crucial role in the
amorphization process. It gives rise to new contribu-
tions, such as residual hydrostatic stresses, to the driving
force for destabilization of a lattice, which-, in turn, are
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responsible for the significantly different threshold condi-
tions for amorphization relative to the single-component
lattice. We have found that amorphization of a pure ele-
ment is dependent on both the rate of defect insertion and
the defect concentration. ' ' In the binary solids we find
that arnorphization is essentially insensitive to the inser-
tion rate, and while the dependence on defect concentra-
tion remains the threshold value is appreciably reduced.

For the A3B ordered lattice amorphization is induced
at interstitial concentration of 7.0% but not at 3.5%.
The lower concentration, however, is sufficient to cause
the transition in the partially disordered AB solid solu-
tion. This shows that the structural disordering effects of

the interstitials play the same role as the initial structural
disorder in the solid.

We have seen that different initial systems give rise to
amorphous structures with somewhat different density
and internal energy. On the other hand, the elastic con-
stants of the two relaxed amorphous structures, series D
and F, are quite similar (cf. Tables II and III).

The present work points out the importance of the re-
laxation stage in the amorphization process. During this
stage there is partial recovery of the density and the
internal energy in the case of the A 3B system, while there
are large atomic displacements (Fig. 4) and further disor-
dering (Figs. 5 and 6). This behavior is different from

TABLE III. Elastic constants of an amorphized AB solid obtained from simulation series D, stage 4. Contributions from the three
terms in Eq. (11)—kinetic, tluctuation, and Born terms, respectively —are shown separately. Shown on the second line of each entry
are the corresponding values for the AB lattice without defects, series D, stage 1.

Kinetic

Fluctuation

Born

Total

Average

4.0
4.0

—181
—156

493
464

315
312

Cz2

4.0
4.0

—151
—190

492
509

345
322

318
326

4.0
4.0

—210
—179

500
517

293
343

Cia

44.1

34.8

165
177

209
212

Ci

7.35
34.2

160
176

233
211

216
208

C23

40.2
82.7

164
119

205
201

C44

2.0
2.0

—97.8
—73.6

164
119

68.5
47.0

Css

2.0
2.0

—117
—87.1

160
176

44.3
91.3

54
66.4

2.0
2.0

—118
—118

165
177

48.4
61.0
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FIG. 16. Same as Fig. 6, except system is AB solid solution.

those during the defect-insertion stage, where loss of or-
'der is accompanied by density decrease and energy in-
crease. It is interesting that the average displacements
during defect insertion when significant rearrangements
are expected to take place turn out to be smaller than
those during relaxation. This indicates that at the end of
stage 2 the system has not evolved sufBciently to reach its

final state. This also suggests that it is possible that sys-
tems which have not become amorphous during irradia-
tion may later amorphize during annealing.

The overall behavior of the AB solid solution is in
marked contrast to the A3B ordered lattice, with quite
pronounced changes in the latter as amorphization takes
place but relatively minor changes in the former. The
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FIG. 17. Same as Fig. 7, except system is AB solid solution.
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origin of this is clearly the initial disorder that is present
in the solid solution. It is also interesting that the amor-
phous structures produced in both cases have very simi-
lar elastic constants.

Since the disorder in the initial AB system arises from
the particle-size difference, we see that the nature of this
disorder as observed through the various physical proper-
ties is the same as that of the disorder produced by the
presence of interstitials. In this respect there is no dis-
tinction between chemical disorder and structural disor-
der in the present study.

The present work shows that binary systems are much
less resistant to amorphization than monatomic solids.
This characteristic of the binary system is well known
and is usually attributed to the fact that with two species
of the proper size ratio nucleation and recrystallization
become more difficult than in the case where all the parti-
cles are of the same size.

Recently, it has been reported that hydrogenation is
another process which can induce amorphization. '

Since the hydrogens take up interstitial positions in this
case, it would be of interest to look for a connection be-
tween our simulations and this type of experiment. A
possible difference which should not be overlooked is that
in the measurement the interstitials are introduced at the
same time and not sequentially as in the simulation. This

can lead to different modes of lattice relaxation which
could affect the disordering.

There are several directions in which further work
would be of interest. A point-defect complex has been
proposed as the mechanism for destabilizing the lattice. "
The validity of this model can be tested by constructing
such a complex with proper interatomic potential and
carrying out molecular-dynamics runs to determine its
stability and inAuence on structural disordering. It
would be useful to continue the study of the effects of
chemical ordering by using potential functions with
different well depths, and by monitoring the system
evolution through the Warren-Cowley and Bragg-
Williams order parameters. '
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