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Electron transmission across an interface of di8'erent one-dimensional crystals
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An exact solution is obtained for the quantum-mechanical reflection and transmission coefficients
for the electronic motion across the boundary of two different one-dimensional crystals, each de-
scribed by a Kronig-Penney model. The result is compared with those obtained in the envelope-
function (plane-wave) approximations with different degrees of refinement. It turns out that, in gen-
eral, neither the simplest such approximation, corresponding to a continuous envelope function N
and a discontinuous gradient 4' (with a single-parameter matching of the electron flux m
across the interface), nor the re6ned procedure, originally proposed by Harrison (corresponding to a
two-parameter matching of discontinuous N and N subject to the flux-continuity condition), pro-
duce an adequate description. Only with a special assumption about the size of the crystal cell at
the interface do these procedures provide a consistent approximation; for this case we have derived
an explicit expression for the matching coefficients in terms of "crystal" structure parameters. For
arbitrary sizes of the boundary cell, the exact solution for the reflection coefficient in the vicinity of
the band edges can be modeled with a three-parameter envelope-function approximation.

I. INTRODUCTION pC& continuous, a(B@/Bx ) continuous

The problem of electron transmission through a
boundary of two different crystals' often arises in hetero-
junction electronics as well as in transport properties of
polycrystalline materials. Rigorous solution of such
problems is intractable without extensive numerical
work, since one must know both the exact Bloch func-
tions in constituent materials and the evanescent states
near the interface. ' The common approach, there-
fore, has been to replace the Bloch functions by envelope
functions (plane waves) and use the effective-mass ap-
proximation. Of course, the envelope function 4 and its
derivatives need not be continuous across the interface,
and the appropriate matching conditions are not known
either. In principle, these conditions would follow from a
valid expression for the current operator in terms of the
envelope functions. Such an expression, if it exists, in
turn depends on the proper form of the effective kinetic
energy operator acting on the envelope functions and val-
id in regions where the band structure is rapidly varying
(or, in the limit, abruptly changing across an interface).
Although a number of self-consistent choices for this
operator have been discussed in the literature, '" ' it
has never been generally derived from the first principles.
Instructive results, however, have been obtained' ' in
theories based on the Kane k p model and the tight-
binding approximation.

Following Harrison, ' a number of authors have used
the matching condition of continuous electron flux, ex-
pressed by the continuity of $4& and (mg) 'V@, where
m (x) is the effective electron mass and g(x) is a scalar
parameter —hopefully not too strongly dependent on the
energy near the band edge in each crystal. For one-
dimensional crystals, Harrison's conditions in their most
general form, '

can be justified by the fact that the effective Schrodinger
equations, defining the envelope functions in each crystal,
are second-order differential equations, and therefore
their solutions can be matched with two parameters, a
and p. However, one relation between these parameters
follows from the conservation of flux. For example, if
one assumes the following form of the current density

J =—
X 2lmp

, aB(p@) aB(p4' )

Bx ax

and if the effective-mass approximation is used for the
electron energy spectrum, then the current continuity re-
quires that apm be continuous across the interface. The
matching problem thus reduces to one unknown parame-
ter (besides the effective mass m, regarded as known; of
course, the Aux continuity requirement will reduce the
dimensionality of the parameter set to 1 with any as-
sumption for the current density). It should be em-
phasized therefore, that one cannot expect, in general,
that such a par ameterization scheme wi11 reproduce
correct results (with any value of the remaining parame-
ter, e.g. , the above g)—unless the form of the current
density is rigorously justified (derived from first princi-
ples). Nevertheless, this scheme is widely used and in
many publications, especially those dealing with semicon-
ductor device structures, g is simply set equal unity.
Although this approach is not rigorously justified, it has
the advantage that the boundary conditions are defined in
terms of the only known quantity m.

The purpose of the present work is to investigate the
validity of such approximations by comparing them with
an exact solution derived for the model problem of elec-
tron transmission across the boundary of two one-
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dimensional crystals. These crystals are considered in the
Kronig-Penney model as periodic arrays of 5-function
potential peaks. Both the strength of these peaks and the
periodicity can be made di6'erent in the two crystals and
in addition one can have a potential discontinuity at an
interface plane. This permits us to isolate the band-
structure effects from those associated with a potential
step at the interface. The exact model and the envelope-
function approximations will be compared with respect
to the results they yield for the r exsection and the
transmission of electron waves incident on the interface.

II. ELECTRONIC %'AVE FUNCTIONS IN TWO
KRONIG-PENNEY CRYSTALS

where

fiq, =+2moE and fiq2=+2m&&(E —V),

mo is the free-electron mass, E the electron energy, and V
a potential barrier at the interface. The (+) sign in the
5-function argument is used when i = 1 and ( —) when
l =2.

The Bloch solutions of Eq. (1) satisfy the relation

(P'"(0)= ' ')I)'"( —d )
[ 1

(2)
)I)(2)(d )

—e 2 2)I)(2)(0)
2 "2

From Eq. (2) and a similar relation for the wave-function
derivative one obtains the well-known Kronig-Penney
dispersion equations

sin(q;d; )
cos(k;d;)=cos(q;d;) —U;, i =1,2

1

where

(3)

mo
U;=—

This section serves mainly to introduce the model un-
der consideration. The model is illustrated in Fig. 1. The
left "crystal" is labeled 1, the right 2. The crystals
represent arrays of 5 functions of strength P, and periodi-
city d, , i = 1,2. An important characteristic of the
boundary is the size b=b, +b2 of the cell containing
"atoms" of both crystals. This is a source of uncertainty
even in our model problem, because the reQection
coeKcient will be a strong function of b. In real crystals
the situation is still more complicated because in the vi-
cinity of the boundary the pseudopotential is distorted.
We shall not restrict ourselves to any speci6c value of b,
except in examples; for simplicity of presentation we shall
assume that the gap between the two crystals is not too
large: b &dj+d2. Then we can always choose the crys-
tal unit cells so that they abut at x =0 without a gap or
overlap. The Schrodinger equation in these abutting cells
is of the form

d 4k' 2moP+ q; + 5(x+5; ) )I)(k'=0, i =1,2
dx I

1( 1P 1P 1P

d

I

b Ib 2

I

I

I

2d

FIG. 1. Illustration of the model. Two crystals, adjacent at
x =0, are formed by periodic arrays of 5-function potentials of
the fortn —P; 5[x'(b; +nd;)], n =0, 1,2, . . . , where the (+)
sign refers to the left crystals (i =1) and the ( —) sign to the
right crystal (i =2).

—i&,q;+k; &d;, iq; l~+&; t

where the (+ ) sign corresponds to i =1 and ( —) to i =2,
and Ak are normalization constants. Normalizing the

wave functions to unity over one unit cell, we obtain

sin [(q, —k, )d ) /2)
sin [(q, +k, )d, /2]

Besides the Bloch solutions (5), there exist evanescent-
wave solutions of Eq. (1), exponentially localized near the
interface. These states, corresponding to electron ener-
gies in the bands forbidden by (3), do not affect the elec-
tron motion in the allowed bands. The fact that evanes-
cent states can be ignored in our treatment of electron
transmission across an interface of two crystals is a spe-
cial feature of the one-dimensional case. In three (already
in two) dimensions, the evanescent solutions mix with the
Bloch functions at a given energy and play an essential
role in the transmission process; ' ' without them it
ould be impossible to match the solutions across a con-
tinuous boundary (line or surface).

III. DETERMINATION OP THE REFLECTION
COEFFICIENT

The eigenfunctions 4'k" and 4'k ' correspond to the

electron motion with group velocities vk and vk in the
1 2

left and the right crystals, respectively. In each crystal
these functions are normalized to 5(k; —k,'). Considering
the reQection of a band electron incident on the interface
from the left, the total wave function can be written in
the form

0'(x) =
"2'

and the wave functions are of the form
—i(q,. +k,. )d,.

1 —e ' ' '
iq, (x+b, ). —. iq,. (x+b,).

1 —e
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where r and t are the refiection and the transmission am-
plitudes, respectively; these can be determined by match-
ing the wave functions and their derivatives at the inter-
face

e&„"(0)+r q '"„(0)= r q '„"(0),
1 1 2

e"'(0)+.e"' (o)= r ~'"'(0)
1 1 2

From Eqs. (8) it follows that

qi( & )(0)qg(2)&(0) y(1)&(0)@(2)(0)
k1 k2 k1 k2r=

y(&)' (())qp(2)(0) qy(1) (0)qy(2)l(0)
1 2 1 2

%" k, (0)%''I, '(0)—%""k,(0)%''k '(0) (10)

Substituting (5) into (9) we find the refiection amplitude in
the form

( + )(p(1)eI3{2)e ' (+) p(1) p(2) ' (+)) ( )(p(1)sp(2) '
( —) p(1) p(2)ee '

(
—))

( + )(p(1)+f3(2&e ' (+) p(1) p(2) ' (+&) ( )(p(1)ep(2) '
t
—) 13(1) p(2)e '

(
—))

where

13I+)=—1 —exp(2ia~(g) ), i = 1,2

2aI'+'~—= (q;+k;)d; o+ =qib&+q—2b2

Inasmuch as the group velocities of incident and reAected electrons are equal, the intensity reAection coefficient is sim-

ply given by

R=[r)'. (13)

Let us consider in more detail the case of a zero potential barrier at the interface V =0 (and hence q, =qz =—q). This sit-
uation is rarely occurring in heterostructure transmission problems, but it will allow us to discuss the questions of prin-
ciple regarding the effective-mass and the envelope-function approximations, without introducing additional complica-
tions peripheral to these questions. For V=0 we obtain from Eq. (11) the following expression for the transmission
coefficient T:—1 —8:

[sin (a"'~)—sin (aI"~)][sin (a' '
)
—sin (a' ' )]

T ——
[sin(aI+~)sin(aI+~) —sin(aI" ~)sin(aI '~)] +4sin(aI" ~)sin(aI+'~)sin(a~ '~)sin(aI+'~)sin y

(14)

q (d i +d~ )(1—g')

y = with g=
2 1 2

(15)

Note that although the wave functions (5) depend on our
choice of the origin (the breakdown of b into b, and b2),
this choice is irrelevant once we have made the assump-
tion of no barrier at the interface; consequently the
coefficients R and T depend only on b—:b, +b2 as can be
expected on physical grounds (the phase of r still contains
a dependence on b, —b2).

Figures 2 and 3 illustrate the situation when the
"conduction"-band edges of two crystals coincide. Fig-
ure 2 corresponds to the case d 2/d &

= 1.5 and the
strengths of the 5 potentials ( U, = —3m /2 and
U2=0. 3U, ) arranged so that the edges of the lowest
bands are at the same energy [see Fig. 2(a)]. The curves

1—3 in Fig. 2(b) show the dependence of R—:1 —T on
k, d „calculated from Eq. (14) for two different values of
the "phase" y, corresponding to b =d, (or b =dz, which
gives the same result) and b =(d, +d2)/2. Figure 3
shows similar dependences for the case d, /d2 =3 with
the potentials chosen so as to have the bottom of the
third band of the left crystal coincide with that of the erst
band of the right crystal ( U, = 3~/2 and U2 =—3U, /2).
Figures 2(c) and 3(c), discussed at the end of Sec. V, de-
scribe the reAection coefficient in the vicinity of the band
edges; these curves are calculated within the e6'ective-
mass approximation corresponding to rigorous matching
conditions for the envelope functions, derived in Sec. V.

It can be seen from these figures that in the limit
k„k2~0 the transmission coefficient vanishes, R ~1,
unless siny =0. This can be also shown analytically: Us-
ing Eqs. (3) in the limit of small k&d& and kzd2, we can
bring Eq. (14) into the form

tan(qd, /2)tan(qdz/2)

4k]d)k2d2

kid( k2d2 sin(qd, )sin(qdz )+ — +U]U~ sin ytan(qd, /2) tan(qd2/2) (qd, )(qd2)
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Only in the special case of sin y =0, corresponding, e.g.,
to /= 1 [or b =(d

& +d2 )/2], does the transmission
coe%cient tend to a finite value at small k. The smaller
the value of sin y the sharper is the rise of R near k —+0.
The strong dependence of T and R on b is noteworthy,
because it means that any realistic calculation of the elec-
tronic transmission must begin with an accurate evalua-

tion of the atomic positions near the boundary.
The sharp rise of R near k&d&=m, evident from Fig.

3(b) is owing to the fact that the tops of the allowed
bands of the two crystals in this example are close but not
equal to each other. It can be easily seen from Eq. (14)
that T—+0 if k, d, ~m while k2d2 & m.

kgdq
7r
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FICz. 2. Electron transmission across the interface of two Kronig-Penney crystals with coincident lowest-band edges. Structure
parameters: d2/d

&

= 1.5, U& = —3m/2, and U2 =0.3U&. (a) Dispersion relations in the two crystals; the energy is plotted in units of
HA' /2mod, . (b) Reflection coefficient, calculated with the help of Eq. (14) for b =d; (curve 1) and b =(d, +dz)/2 (curve 2, corre-
sponds to y=0). (c) Reflection coefficient in the vicinity of the band edges, calculated within the efl'ective-mass approximation Eq.
(29) with m, =1.25mo and m2 = 1.05mo calculated from (24b), and g, =0.745 and gz=0. 60 calculated form (28). Curves 1 and 2 are
labeled as in (b) and curve 3 corresponds to b =0.35(d

&
+d2).
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FIG. 3. Electron transnussion across the interface of hvo Kronig-Penney crystals for the case when incident electrons are moving
in a higher-lying band and transmitted electrons in the ground band. {a) Dispersion relations plotted as in Fig. 2 in units of
zr fiz/2modz, The structure pa.rameters, d, /dz =3, U& = 3'/2, and Uz =3U,—/2 are chosen so as to have the bottom of the third
band of the left crystil eoiricide with that of the 6rst band of the right crystal. (b) Re6ection coeScient, calculated with the help of
Eq. {14)for b =d; {curve l) and b =(d+dz )/2 (curve 2, corresponds to y =0). (c) ReAection coefficient in the vicinity of the band
edges, calculated within the e8'ective-mass approximation Eq. (29) with rn

&
=0.096mo (third band) and ~z =1.45mo calculated from

(24bj, and g, =0.745 and hz=0. 60 calculated from (28}. Curves 1 and 2 are labeled as in (bl and curve 3 corresponds to
b =0.35(d&+dz}.
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IV. REFLECTION COEFFICIENT IN THK
ENVELOPE-FUNCTION APPROACH

(k, /g, m, ) —(k~//2m~)r=
(ki /g, m, )+(k2/$2m2)

The full Bloch functions +k in the constituent crystals

are rarely known in practice. It is a common approach,
therefore, to replace 4 of Eq. (7) by an envelope function

C(x)=
lk)X Ek)X

e ' +re ', ~~0
sk2x

te ', x &0

which represents a combination of plane-wave solutions
to the effective-mass Hamiltonian,

a
2m(

describing electronic motion near the band edges E„"in
each crystal. The continuity condition (8) of the full
Bloch function 4 and its derivatives automatically
guarantees conservation of the particle Aux across the
boundary; this condition, however, cannot be applied to
4 and @'. In order to avoid contradiction, one can im-
pose the condition of continuity on N and
(1/m)(a@/ax), which insures the conservation of Ilux
since the group velocities of electrons in the effective-
mass approximation are given by haik;/m;. This approach
leads to a reAection amplitude of the form

(k, /mi) —(k2/m~)
r =

(k, /m, )+(k2/m~)
(19)

Qm, —Qm,
Qm, +Qm,

k] —k2

k, +k2

is different by the sign only from (and the reflection
coefficient is identical to) the well-known expression for a
free electron incident on a step potential barrier. This
approach is usually not supported by any justification, ex-
cept for the absence of relevant information specifying
the discontinuity in N, which would characterize a given
crystal interface. As discussed in the Introduction, a
more consistent approach' corresponds to letting both N
and N' be discontinuous at the interface,

pi@(0 ) =p2@(0+),
a, [ae(0-)/ax]=a, [ae (0+)/ax] .

(20)

In particular, if the edges of the two crystal bands coin-
cide, so that k, /mi =k2/m2, then the reAection ampli-
tude

4(k, /g, m i )( k2//2m 2 )T—
[(k i /Jim, )+ (k2//2m 2 )]

which depend on the ratio gi/$2 =—P, /Pz. This ratio
represents a (usually unknown) characteristic of the inter-
face. If g, /$2=1, then Eq. (22) coincides with (19). As
will be shown in the next section, for some model inter-
faces the g's can be expressed in terms of the crystal pa-
rameters and the band-edge electron energy; in general,
however, they have no direct relation to the Bloch func-
tions of constituent crystals.

V. EXACT RESULTS NEAR THE BAND EDGES;
THE EFFECTIVE-MASS APPROXIMATION

The effective-mass description of electronic motion in
each of the constituent crystals is applicable near the
band edges. Consider those edges which correspond in
the reduced-zone picture to k~0. In this limit, the
dispersion equation (3) has two types of solution, defining
the band edges E„—= fi q2/2mo (here we shall suppress
the indices i = 1,2 of the crystals),

qn
tan

U
(n =1,3, . . . ),

~n
(23a)

Qn
sin =0 (n =2,4, . . . ) . (23b)

mo

U 2U
(q„d ) (q„d) + U

(n =1,2, . . . ),

(24a)

For example, the band edges of the left crystal in Figs. 2
and 3 correspond to q, =0.716m/d, , q2=2n. /d„and
q 3 2.36 ir /d, . For the right crystal in Fig. 2,

q, =0.476m. /d2, and in Fig. 3 q, =0.787m. /d2. Similar
results can be obtained in a straightforward manner for
the band edges as k +n/d. Near —the k =0 band edges
the electron energy is approximately given by
E„+A' k /2m„. The odd bands, whose extrema are de-
scribed by Eq. (23a), possess a positive effective mass m„
for a repulsive 5 potential ( U (0), and a negative m„ for
U )0. The opposite is true for the even bands described
by Eq. (23b), cf. Figs. 2(a) and 3(a). The values of the
effective mass for the two types of bands can be readily
obtained from the dispersion equation (3), giving

Continuity of the flux (in the effective-mass approxima-
tion) in this case requires that mo

U
(n =2,4, . . . ) .

(mn )
(24b)

a,P,m, =a2P2m2 . (21)

The reAection amplitude and the transmission coefficient
are then given by the following expressions:

For our example in Fig. 2 the numerical values of (m„);
in units of mo are (m, ), =1.25, (m2), = —0. 12,
(m3), =0.096, and (m, )2=1.05, (m2)2= —0.036. For
the example of Fig. 3, the left crystal is the same as in
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Fig. 2 and the right crystal has ( m, )2 = l.45,
(m 2)2= —0. 18. Validity of Eqs. (24) relies on the follow-
ing two inequalities:

I

b

Ak(kd)'«1 and q„d «1 .
4m„E„

(25)

Considering the electron transmission at V=O and
small k, and k2, we can express the result (16) in terms of
the effective masses m, and m2. [Here and below we
shall suppress the band index n in the effective mass
m; —= (m„), , i = 1,2.] To do this we replace in (16) the en-

ergy parameter q by q„and use the dispersion relation.
For the case when the bands of both crystals are of the
type, described by (23a), we find

(k1d1)(q„d1) (k2d2)(q„d2)
4

Ui U2

(kidi)(q„di ) (k2d2)(q„d2)
+sin y

For y=0 we can reduce (26) to a form reminiscent of
(22):

2
(ki /$1mi ) —(k2/$2m2 )

kl 01~1) (k2C2m2)
(27)

where

2U,

U1,2+('q d1,2)

Ui 2 mo

(q„d, 2)
(28)

Thus, the coefficients g1 2 acquire a concrete form. We
see that for higher-lying bands, where q„d, 2 &)

~ U1 2~,
these parameters tend to unity and the simplest
envelope-function approximation (19) becomes applic-
able.

For y&0, using the definition (28), we can express (26)
in the following form:

4(ki /g, m 1 )(k2/$2rn2)

[(ki /(1m 1 ) (+k /2g m2)]2+(q„/mo)sin y
(29)

Comparing Eq. (29) with (22) we see that although these
equations coincide at y =0, in general they are different.
This shows that the interface of two one-dimensional
crystals can be such that the Harrison matching condi-
tions (20) are inadequate. For our numerical examples in
Figs. 2 and 3, the reflection coefficients R =1—T calcu-
lated with the help of Eq. (29) are plotted in Figs. 2(c) and
3(c), respectively. Numerical values of the coefficients m
and g, calculated from Eqs. (24a) and (28) and used in the
evaluation of (29), are indicated in the captions to these
figures.

In the envelope-function approximation, the result (29)
can be modeled by considering the transmission of a par-
ticle from a medium governed by the Hamiltonian H'" to
that governed by K' ' [Eq. (18)] through a "vacuum" gap
of thickness b, where the particle is assumed to have the

FIG. 4. Illustration of an envelope-function model which re-
sults in the same transmission coef5cient as that given by Eq.
(29) if Harrison's matching conditions (20) and (21) are used at
each interface.

free-electron mass mo, see Fig. 4. Assume that the "band
edges" coincide and have a vanishing affinity,
E„'"=E„' '=0, so that there are no potential steps at the
vacuum interfaces. Application of Harrison's matching
conditions (20) and the continuity conditions (21) at each
interface (taking, without a loss of generality, for the vac-
uum ao=P0=1) then leads to an expression of the form
(29), with y:qb, —q—= (2moE/ih'), and g;—:p;. Thus we
conclude that in the general one-dimensional case the
envelope-function matching can be accomplished with
three parameters: a, P, and y (equivalently, in the
effective-mass approximation with m, g, and y).

VI. FURTHER EXAMPLES; IMPEDANCE MATCHING

In the numerical examples given so far we have con-
sidered the case where the band edges of two crystals
were degenerate at the interface. Let us now look at the
more general situation. A misalignment of band edges
can be produced by varying the crystal parameters (U
and/or d) or by introducing a potential step at the x =0
plane defining the interface. Such a potential step can be
thought of as produced by an interfacial layer of
infinitesimal extent.

Consider this situation erst. Figure 5 shows the wave-
vector dependence of the electron reflection coefficient
for two identical crystals ( U, = U2 = 3n /2, d, =d2 —=d)
with a potential step V at the interface
V=/(m 112'/2mod ) and /=0. 05 [Fig. 5(a)] or /=0. 1

[Fig. 5(b)]. Curves 1—3 in Figs. 5(a) and 5(b) were calcu-
lated using a general expression for R following from Eq.
(ll). An interesting feature seen in Figs. 5 is the ex-
istence of perfect transmission (R =0) at a certain "reso-
nant" energy but only for "ideal" interfaces correspond-
ing to y =0. Note that the reflection coefficient calculat-
ed in the envelope-function approach,

ki k2
2

ki+&2

[curves 4 in Figs. 5(a) and 5(b) exhibits no perfect
transmission at any energy.

Next, we consider the situation when the misalignment
of band edges occurs entirely due to different band struc-
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tures of constituent crystals without a potential step at
the interface. In this case, illustrated in Figs. 6 and 7,
calculation of the reAection coefBcient can be done,
directly from Eq. (14) for the examples of Figs. 2 and 3.
Figure 6 describes a case, similar to that presented in Fig.
2 (d2/d& =1.5 and U& = —3m/2), except that now
U2 =0.5U„producing a higher lowest-band edge in crys-
tal 2 as shown in Fig. 6(a). This example describes the
transmission between the ground bands of both crystals.
Again, for y =0 we observe perfect transmission at a cer-
tain energy. The possibility that quantum reQections at
an abrupt heterojunction interface may vanish for some
energy has been discussed by Levi and Chiu in connec-

k„d,
10

kpd,
7r

tion with the fundamental limits of hot-electron transis-
tors; by analogy with microwave transmission lines this
situation was termed "impedance matching. " In the
simplest plane-wave effective-mass -approximation de-

0.08—
I-
R
UJ

0.06—
UJ
O

O

0.04—

6—
LLI

Uj

R
O
I-o 4—
LLJ

UJ

0.02—
I I I I I I I I I I I I I

NAVE NUMBER kqdg

0 i

till�

&t&)l iii i I

0 0.1 0.2 08 0.4 0.5 0.6 0.7 0.8 0.9

wAYE NUMBER kid g

0.8—

0.08

I-
UJ

0.06—
U
UJ

X
O
o 004—
LLI

U
UJ

LLIo
0.6—

U
LLI

O

O

o
UJ

U
UJ

0.2—

0.02— p I I I I

0.5 0.6 0.7 0.8 0.9

WAVE NUMBER kI CI1

p t I I I I a s s I l I I I I I I I I I I l I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WAVE NUMBER k4dq

FIG. 5. Reflection coefficient for two identical crystals
(U& =U2= —3m/2, d& =d2=d) with a potential step V at the
interface V—:g'(m fi /2mod ) [(a) /=0. 05 and (b) g'=0. 1].
Curves 1—3 are calculated with the help of Eq. (11) and curves 4
within the envelope-function approach using exact dispersion
relations.

FIG. 6. Electron transmission for the case when incident and
transmitted electrons are moving in the ground band of the
respective crystals, but the band edges are not aligned at the in-
terface. (a) Dispersion relations in the two crystals plotted as in
Fig. 2 in units of m A' /2mpd] ~ The structure parameters are
similar to those in Fig. 2 except for U2=0. 5U, . The effective
mass in the lowest band of the right crystal in this example
equals 1.09mp. (b) Reflection coefficient, calculated with the
help of Eq. (14) for b =d; (curve 1) and b =(d&+d2)/2 (curve 2,
corresponds to y =0).
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i

scribed by Eq. (19), the impedance-matched condition
arises when the electron velocities k; /m; are the same on
either side of the junction.

Figure 7 illustrates the situation similar to that con-
sidered in connection with Fig. 3, when the transmission
occurs from a higher-lying band of crystal 1 to the
ground band of crystal 2. The structure parameters
(dI/dz=3, UI= —3m/2, and U2=1. 8UI/2) are again
chosen so as to produce an upward step in the corre-
sponding band edges, as shown in Fig. 7(a). As seen from
Fig. 7(b), no perfect impedance matching happens in this
example for any value of y. That this was going to be the
case could be surmised already from the band-structure
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FIG. 7. Electron transmission across the interface of two
Kronig-Penney crystals for the case when incident electrons are
moving in a higher-lying band and transmitted electrons in the
ground band. (a) Dispersion relations in the two crystals, plot-
ted in units ofay /2mod, The str,ucture param. eters are simi-
lar to those in Fig. 2 except for U~ =1.8U, . The e6'ective mass
in the lowest band of the right crystal is 1.96mo. (b) Reflection
coeScient, calculated with the help of Eq. (14) for b =d; (curve
1) and b =(d&+d2)/2 (curve 2, corresponds to @=0).

diagram in Fig. 7(a): At all coincident energy levels in
the allowed bands of the two crystals, the electron group
velocity is manifestly higher in the left crystal.

VII. CONCLUSIQN

Using the simplest soluble Kronig-Penney model of
two one-dimensional crystals, we have obtained an exact
solution for the problem of electron transmission across
the interface of such crystals. This solution allowed us to
compare and assess the widely used envelope-function
(plane-wave) approximations of different degrees of
re6nement. It turns out that neither the simplest such ap-
proximation, corresponding to a continuous envelope
function 4& and a discontinuous gradient II&' (with a
single-parameter matching of the electron Aux m
across the interface) nor the refined procedure, proposed
by Harrison' [corresponding to a two-parameter match-
ing of discontinuous @and II&', cf. Eq. (20), subject to the
fiux-continuity condition], produce in general an ade-
quate description. Even near the band edges where the
effective-mass approximation in the constituent crystals is
excellent, a rigorous plane-wave approximation requires
three parameters: Harrion's a and P and another
coefficient y describing the size of the crystal cell at the
interface. The geometric meaning of y within our model
is discussed at the end of the Sec. V; for a more general
one-dimensional model y can be expected to provide a
reasonable phenomenological parameterization of the
transmission problem. Only for a special type of bound-
ary, corresponding in our model to y =0, does Harrison's
description provide a reasonable approximation. In this
case, we were able to derive an exact expression for his
coefficients a and 13 near the band edges. This expression
gives the dependence of these coe%cients on the band-
edge energy and shows that for the higher-lying bands
even the simpler one-parameter effective-mass matching
of N' becomes adequate.

In practice, the question of electron transmission
across the interface of distinct crystals arises mainly in
the analysis of heterostructure transport problems. To
the extent that our essentially one-dimensional analysis
can shed any light on these problems, we can expect that
lattice-matched heterostructures do correspond to a spe-
cial type of the boundary with @=0 and consequently
Harrison's approach is relevant. However, as has been
appreciated by a number of authors, ' ' in three dimen-
sions it is impossible to match the Bloch solutions of two
different crystals across a continuous boundary surface,
which corresponds to the fact that for a given energy in
the allowed band, Bloch solutions do not form a complete
set in the double crystal. In that case, inclusion of the
evanescent states, exponentially localized near the inter-
face and degenerate with the allowed-band Bloch states,
is mandatory. As brieAy discussed at the end of Sec. II,
the evanescent states do not come into play in the
transmission problem for band electrons in the one-
dixnensional case considered here. The reason we are
able to get away without taking these states into account
is due to the fact that in one dimension the evanescent-
state energies are strictly within the forbidden gaps and
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so they do not mix with the Bloch states, in contrast to a
three-dimensional (or two-dimensional) situation.
Perhaps the e6'ect of the evanescent states in three dimen-
sions could be modeled phenomenologically with a vacu-
um gap parameter y, as in Fig. 4. It is an interesting and
largely open question, whether one could obtain a reason-
able description of the general three-dimensional inter-
face transmission problem in an envelope-function ap-
proach with three phenomenological parameters, a, P,
and y

Note added in proof. After submitting this manuscript
for publicaton, we became aware of two papers by Witold

Trzeciakowski: Phys. Rev. 8 38, 4322 (1988); 38, 12493
(1988), where questions of the effective-mass approxima-
tion arid the boundary conditions in heterostructures are
discussed on the basis of a one-dimensional analysis, in
some respects similar to ours. While we share many of
Trzeciakowski's conclusions, most of our results do not
overlap.
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