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Model of metallic cohesion: The embedded-atom method
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The embedded-atom method (EAM) [Phys. Rev. 8 29, 6443 (1984)] has proven to be a significant
improvement in simplified total-energy calculations for metallic systems. In the current work, the
ansatz used in the EAM is derived from the local-density functional for the energy. The expression
demonstrated here is most appropriate for simple metals and for transition metals with nearly emp-
ty or nearly full d bands. An embedding energy is defined as a function of an optimal constant back-
ground density, and an equation for that optimal background density is obtained. The cohesive en-
ergy is then related to the embedding energy and an electrostatic two-body interaction. It is shown
that lowest-order electronic relaxations can be absorbed into the same ansatz. Model calculations
are presented for fcc nickel within the Thomas —Fermi —Dirac —von Weizsacker model for the kinet-
ic energy, with local exchange and correlation and frozen-electron distributions. The model is
shown to provide a good description of the ground-state properties of nickel (e.g., energetics and
structure of vacancies and surfaces) and also a good framework for evaluating the approximations
used in justifying the EAM form. In particular, the model exhibits a simple relationship between
the optimal constant background density and the background density at the atomic site. Correc-
tions involving the gradient of the background density are shown to be important in the calculation
of the surface energy. This work then provides a basis for the use of the EAM in semiempirical ap-
plications.

I. INTRODUCTION

The theoretical investigation of the structure and
ground-state properties of complex metallic systems, un-
til recently, relied almost exclusively on the use of intera-
tomic pair potentials. In the pair-potential scheme, the
cohesive energy of a solid is given by a sum over pair
bonds, plus a volume-dependent energy (or an energy
dependent on some background electron-gas density).
Using pseudopotential theory, a perturbation series can
be set up which expresses the energy of the solid in suc-
cessively higher powers of the scattering. This systemat-
ic derivation shows how the interaction of atoms in jelli-
um can be expressed in terms of a one-body (or density-
dependent) interaction as well as the two-body and higher
interactions. These interactions are dependent on the
background electron-gas density, which could alterna-
tively be viewed as being determined by the volume.
From a phenomenological point of view, the one-body in-
teraction is required in addition to the two-body interac-
tions in order to describe the elastic properties of the
solid. However, the interatomic —pair-potential ap-
proach presents the problem of defining, in an arbitrary
situation, the local electron density or the volume on an
atomistic scale.

The use of interatomic pair potentials suffers from the
neglect of many-body interactions, which obviously play
a role in many interesting physical phenomena. For ex-
ample, the presence of impurities must affect the metal-
metal bond strength, involving an inherently many-body
effect. Similarly, two impurities in a metal interact
through the host via a many-body interaction. ' The in-

trinsic nature of the two-body approximation makes
suspect the application of pair potentials to interesting
defects.

Daw and Baskes have proposed recently a new frame-
work for calculating the energetics of metals, which they
call the embedded-atom method (EAM). In this ap-
proach, the energy of the metal is viewed as the energy to
embed an atom into the local electron density provided
by the remaining atoms of the system. In addition, there
is an electrostatic interaction. The ansatz that they used
1S

where I is the embedding energy, p' is the spherically
averaged atomic density, and (b is an electrostatic, two-
body interaction. The background density for each atom
in Eq. (1) is determined by evaluating at its nucleus the
superposition of atomic density tails from the other
atoms. Equation (1) combines the computational simpli-
city needed for defects and amorphous systems with a
physical picture which includes many-body effects and
avoids the ambiguities of the pair-potential scheme. This
method has been applied successfully to such problems as
phonons, liquid metals, defects, alloys, ' impurities,
fracture, " surface structure, ' ' surface adsorbate order-
ing, ' surface segregation, ' surface order-disorder tran-
sitions, ' surface ordered alloys, ' and surface phonons. '

The computer time required for the EAM is not
significantly more than that required for pair-potential
calculations.
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The EAM ansatz was preceded by the independent
work of Ndrskov and Lang (effective medium' ) and of
Stott and Zaremba (quasiatom' ). Ndrskov and Lang
showed that the heat of solution of a light, interstitial im-
purity (H and He, in particular) in metals could be calcu-
lated by replacing the host with a suitable effective medi-
um, which in this case was jellium. Ndrskov and his co-
workers have had great success in calculating from first
principles the heats of solution and heats of chemisorp-
tion ' of hydrogen in metals, the primary information be-
ing the energy gained by putting a hydrogen atom into
jellium (i.e., the embedding energy). The optimal density
of the jellium was determined by weighting the back-
ground metallic density by the Hartree potential of the
metal ion. Stott and Zaremba arrived at a similar con-
cept, based on viewing the impurity as a quasiatom in a
nearly uniform electron gas.

Daw and Baskes made a significant generalization
with the EAM by proposing to view the cohesive energy
of a metallic solid as comprised of the embedding energy
plus electrostatic interactions. In this view, each atom in
the metal is embedded into the electron gas created by
the other atoms. Atoms near a defect such as a surface
are embedded into an electron gas of different profile than
atoms in the bulk. The process of embedding each atom
is made symmetrical, so that the cohesive energy is mani-
festly symmetrical in the atomic index. They suggested
the ansatz which will be discussed here. They then ob-
tained the functions empirically by fitting to properties of
the bulk metals. The generality of the functions was test-
ed by applying them to surfaces and other defects. This
generalization allowed calculations of complex metallic
structures to be done within the approximate embed-
ding-energy framework. The EAM incorporated
significant many-body interactions, but the complexity of
the calculation was no worse than the traditional two-
body potentials. The EAM has thus become a popular
replacement for interatomic pair potentials in the calcula-
tion of metallic defects.

Even more recently, Jacobsen, N@rskov, and Puska,
Manninen, and Kress and DePristo reexamined the
ansatz used in the EAM with arguments based on the
effective-medium approach. Jacobsen et al. demonstrated
how the cohesive energy of a metallic system could be re-
lated to the embedding energies, with corrections ac-
counting for the d-d hybridization in the transition met-
als. Their approach showed that with the neglect of the
d-d hybridization (valid for simple metals and also
presumably for early and late transition metals), the
EAM expression is recovered. The density of the
effective medium was taken to be an unweighted average
of the background density over the Wigner-Seitz cell of
the atom. Kress and DePristo suggested using as a
weighting function the electron density of the atom itself,
so that the background density is related to the overlap of
charge densities. A correction to the embedding function
based on a local-energy functional was used in their
corrected effective-medium method to correct for inaccu-
racies in the definition of the optimal effective-medium
density.

In this paper we show an alternative means of relating

the cohesive energy to embedding energies. The ap-
proach is valid for systems where the kinetic, exchange,
and correlation energies can be well approximated by a
semilocal functional, and the electron density in the solid
is not far from a linear superposition of single-atom den-
sities. We expect therefore that the result is justified for
systems where the d-d hybridization is negiigible. The
result is a definition of the embedding function, electro-
static contribution, and optimal electron density. The
derivation is performed first assuming that the electron
density in the solid is given by a superposition of atomic
densities; then the same form is shown to hold to lowest
order in the electron redistribution. The advantage of the
current approach is that the approximations in the
derivation can be tested within a model energy function-
al. We therefore set up a model energy functional for fcc
Ni, based on the Thomas —Fermi —Dirac —von Weizsacker
(TFDvW) kinetic-energy functional and assuming a su-
perposition of atomic' densities. We then calculate the
energetics of defects in Ni, such as vacancies and sur-
faces, and show that they agree well with experiment.
Then we obtain the EAM functions directly from the
model energy functional, and show that the resulting
EAM energy faithfully approximates the energetics cal-
culated from the model energy functional. Finally, we
show how these EAM functions obtained from the
TFDvW model are very similar to the earlier, semiempir-
ical EAM functions.

This paper is organized as follows. In the Sec. II the
EAM ansatz is derived from approximations to the densi-
ty functional for the energy. In Sec. III we present the
model energy functional for Ni, and defect calculations
based on this model are described. Embedded-atom func-
tions are obtained from the functional and applied to the
same defect calculations. Here the approximations in
Sec. II are tested and shown to be valid. The last section
contains some concluding remarks.

II. DERIVATION

Our goal is to derive an approximate expression for the
cohesive energy of a metallic system which is an explicit
function of the positions of the atoms and which is simple
to evaluate. To do this, we will start with the electron
density of the solid, p(r), and the energy functional of the
electron density, E[p]. We will assume that the kinet-
ic, exchange, and correlation contributions to the energy,
G [p], are semilocal:

G[p)= J dry(p(r), Vp(r), V p(r), . . .),

where the integral is understood here and elsewhere to be
over real space. In what follows, we will rely on its semi-
local nature by dividing 6 into a sum of contributions
from individual volumes. We will abbreviate the function
y(p(r), pV(r), Vp(r), . . . ) by simply g(p(r)), keeping in
mind that y is also a function of the derivatives of the
density. The cohesive energy of a solid is then
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where the sums over i and j are over the nuclei of the
solid, the prime on the summation indicates omission of
the i =j term, and Z; and R, are the charge and position
of the ith nucleus. Starting with Eq. (3), we will make the
approximation that the charge density in the solid is only
slightly different than a superposition of the atomic
charge densities. This approximation is reasonable pro-
vided that covalent bonding in the metal of interest is
negligible. We will therefore consider the derived equa-
tions to be valid only for simple metals and for early or
late transition metals. The case of approximately half-
filled d bands must be treated elsewhere.

We will now give a heuristic derivation of the EAM
from Eq. (3). First, in Sec. II A the derivation assumes
that the charge density in the solid is exactly a superposi-
tion of the atomic charge densities. The embedding ener-
gy is defined and the equation for the optimal back-
ground density is derived. In Sec. IIB we extend the
proof to include lowest-order relaxation in the charge
density. In Sec. II C the equation for the optimal back-
ground density is examined, including the limiting case
generally assumed in the EAM, In Sec. II 0, a different
grouping of terms in the energy gives an alternate,
though equivalent, definition of the embedding function
which is often used in practice. In Sec. II E we summa-
rize the derivation.

A. Derivation using linear superposition of densities

and

U;, =far, far, '

~i2

n (r)=p,'(r —R,. ) Z;6(r —R,. ) .—

The first two terms in Eq. (4) involve the difference in ki-
netic, exchange, and correlation energies in going from
the case of isolated atoms to the solid. The last term is
the electrostatic energy of the overlapping charge distri-
butions.

Consider the region around atom i. Let us define the
background density for atom i to be pb, (r)

In order to make Eq. (3) useful, we will express the
electron density p explicitly in terms of the positions of
the nuclei. %e start by assuming that the electron densi-
ty of the solid can be described as a linear superposition
of the densities of the individual atoms [p, ( r )

g;p,'(r —R—, )]. The effect of charge redistributions will
be considered in Sec. II 8. Substituting p(r)=p, (r) into
Eq. (3) gives

E„„=G gp'; —QG[p';]+ —,'g'U, ',
/J

with

Using the embedding energy, we can rewrite the cohesive
energy as

E„h=QG;(p;)+ —,'gU; +E„, , (6)

where the error is

E„,=G gp'; —QG [p;'+p; ]+QG [p;]

p
— up+a + Np

l

Setting E„,=O provides a definition for the optimal
background densities p, For a homogeneous, homonu-
clear solid, each atom experiences the same environment,
so that p,- =p for all i. However, for inhomogeneous envi-

ronments, we need an equation for each p;. This is pro-
vided by breaking up the integral in Eq. (7) into integrals
over the region around each atom i,

X f„[«pi+Pb„) «P;'+P;—)+g(P;)]
l

sp;+p; —Rp;
l

where the region around atom i is Q, and 00 —0; is the
remainder. In practice, the solution to Eq. (8) is not very
sensitive to the choice of 0;. Here we require that each
term in the summation vanish independently, giving a
separate condition for each p; which depends on the envi-
ronment local to atom i. The solution of this equation is
discussion in Sec. II C. For now we will note that p; is a
functional of pb;.

P; =P;[P~„]
where the functional depends on the nature of g and p', .

Equations (5), (6), and (9) now provide a relationship
between the embedding energy and the cohesive energy.
The difference between these equations and Eq. (3) is that
the evaluation of the functional G[p] for the solid is re-
duced to evaluating the embedding function G(p;) for
each atom. This is an advantage only if the functiorial in
Eq. (9) can be approximated in a relatively simple way.
In that case, atomistic calculations become very straight-
forward.

B. Kft'ect of charge relation

The effect of charge redistributions can be absorbed
into equations of the same form as Eqs. (5), (6), and (9),
provided the redistributions are small enough to be treat-
ed in lowest order. To demonstrate this, let us denote the

=g. ~~,p' (r. —R ). In most of this region, the density p';

dominates in p, ; p&,.(r) is small and slowly varying com-

pared to p';. Thus it seems plausible to approximate pb;
by a constant P;. (The best value of P; will be determined
later in this section. ) Let us therefore define the embed-

ding energy for an atom in an electron gas of some con-
stant density P (neutralized by a positive background):

G;(p; )=G—[p;'+P;] G—[p;'] G—[p; ] .
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redistribution by A(r). Substituting p(r) =p, (r) +b(r)
into Eq. (3) gives V,"(r)=

—Z; p;'(r' R—; )+ dl
r [r —r'/

E„h=G gp', + b, ( r) —gG [p', ]

+ —,'g'U + f dr V, (r)h(r)

is the Hartree potential of atom i.
For a homogeneous crystal the equation for 6 is (to

first order in b, )

with

h(r, )h(r, )+ —,
' dr, dr2 (10)

g'(p, (r))+ f dr'g "(p,(r),p, (r'))&(r')

+ V, (r)+ fdr', =p,b, (r')
/

r r'[—

and

V, (r) =—g V'(r), where 6 depends on the chemical potential p, which is
determined by requiring that f n i))(r)dr=0 Her. e we
have denoted

g'(p(r) ) = 6[p]= —V +V'
~

—. . y(p(r), Vp(r), V p(r), . . .),
5p r Bp BVp

(12a)

(j2y (Py
g "(p(r),p(r'))—: , 6[p]=5(r —r') —2V.

5p r 5p r' gp2 ()Vpgp o

a'r+V V, : 5(r r')—
BVp

+ ~ ~ ~ (12b)

with o.=(r+r')/2.
Consider again the region around atom i. As before,

we note that in most of this region pb, (r) is small and
slowly varying compared to p', (r), so it .seems plausible to
approximate this by a constant p;. That is, we take
p, (r)=[p,'(r)+p;]+[pb;(r) p;] and treat —the second
group as a perturbation on the first. We also treat
V, perturbatively: V, (r)= V; (r)+ Vb;(r), where Vb,.(r)

V'(r —R ) is the contribution to the Hartree po-
j (&i)

tential in region i from the neighbors of atom i [We.
could have introduced a V;, analogous to p;, but a con-
stant background potential has no effect on the charge
redistribution. So, in fact, the perturbation on the poten-
tial is the nonuniformity of Vb,.(r) rather than its magni-
tude. ] Carrying out a perturbation in pb; —p; and Vb,
changes Eq. (11) to

g'(p,'. +p;)+ fdr'g "(p', +p, )h(r')+ V + fdr'

+O((pb; —p;), Vb;). This suggests approximating h(r)
by h, (r)=[+,h, (r R—)]., The error is expected to be
the largest in the bonding region between the atoms.

The error in the cohesive energy caused by replacing 6
bye, is

dl dI g p r,p r +
r —r'

X [b,(r) —h, (r)][6(r') b.,(r')] . —

This error is second order in the error in the electron
redistribution, and we have assumed that the redistribu-
tion itself is small. In the region dominated by an atom,
the error is smallest. The largest contribution to the er-
ror comes from the bonding region between atoms, where
the superposition has the largest error. This echoes the
previous statement that the EAM approximation is not
expected to work well where covalent bonding is strong.

Rewriting Eq. (10) using 6, in place of 5, gives

+ g" P'+P, Pb, r' —P,- +Vb; =P . (13) E„b=6 g(p';+6;) —QG[p';]+ —,'g'U, '
E l i) J

The lowest order form of this equation (neglecting the
terms in large parentheses),

g'(p', +p, )+f dr'g "(p';+p, )b, , (r')+ V

b, , (r')+ dr' —,=p, 14

describes the electronic redistribution around an atom in
a constant background electron gas of density p;. The
solution to Eq. (14) (b, , ) differs from the solution to Eq.
(13) (b, ) only to first order in pb, —p; and Vb; [these are
the terms in large parentheses in Eq. (13)]. Therefore,
in the region dominated by atom i,

+g fdr V,'(r)b, (r)
I,J

h, (r, )AJ(r2)
+-,'y fdr, f dr,

l) J riz
(15)

From here the argument proceeds as before. We define
an embedding energy allowing for charge relaxation:

6;(P,*. )
—=G[p,'+ b,; +P,*. ]—6[p';]

—G[p,*]+fdr V,'(r)h, (r)

b., (r')A, (r)
+-,' fdr fdr'
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where U; is defined similarly to UJ [following Eq. (4)],
but with p'+b, replacing p'. Equation (17) is valid, pro-
vided that the error

E„,= g p'+5;

—gg(p,'+P,*+&; )+gg(p,*)
l l

(18)

vanishes. This is the same as Fq. (7) with p';+6, ; replac-
ing p';, so that the solution is

(19)

where 4b; is defined analogous to pb, . and the functional

P,* is different from p; because of 5,
Using Eq. (17) involves solving Eqs. (14) and (19) itera-

tively, and also U;. depends on h. However, the charge
redistribution b, is relatively independent of p (Ref. 26),
so that the modification due to electronic relaxations does
not really change the qualitative form of the EAM ex-
pression. Therefore, charge redistribution would be ab-
sorbed quite naturally in an empirical determination of
the EAM functions, provided that the charge relaxations
are small.

C. Determination of the optimum background density

We turn now to the problem of solving Eq. (8). [The
solution to Eq. (18), which allows first-order charge redis-
tribution, is analogous. ] In general, there is no simple
solution to this equation. We will discuss in this section
various approximations to the solution, and in Sec. III we
will solve this equation numerically for a specific model
function g.

Because p',. decays exponentially, the integral in the re-
gion outside of Q, is of secondary magnitude and a good
solution to Eq. (8) is provided by neglecting the contribu-
tion from ~ —0;. Thus let us examine

fn [g(P +Pb„) g'(P +P )+g(p—;)]=o
l

(20)

to get an idea of the nature of the solution.
The kinetic-energy part of g dominates the integrand in

Eq. (20). Near the nucleus of atom i, the kinetic energy is
largely due to the orthogonalization of the valence states
to the core states. In the statistical Thomas-Fermi mod-
el, g(p)-p . Kress and DePristo suggest approximat-
ing g(p) —p by c,p+c2p . Substituting this into Eq.
(20) gives

[The embedding energy in Eq. (16) is indeed minimized
by the charge redistribution b,; because of Eq. (14).] We
can rewrite the cohesive energy as

(17)

In the limit of both P; and pb, (r) «p';, we find that

w, (r) =g'(p', (r)) f g'(p', (r))dr
l

(21)

This weighting function is largely determined by the or-
thogonalization to the core states near the nucleus, and is
therefore largely localized. The use of a localized weight-
ing function is approximately justified. But, in general,
the background density is not small compared to the den-
sity of the central atom on the edge of Q;, so that the
weighting function solution to Eq. (20) has some error.

Another. way of examining the solution to Eq. (20),
which is equivalent, is to assume that the background
density is largely constant with small variations. That is,
we approximate the background density

pb(r)+ b b(r) —=p(r) =p(0)+ r.Vp(0)+ —,'rr:VVp(0),

and expand in a Taylor's series involving powers of Vp(0)
and VVp(0). We find that the gradient term does not
contribute to first order, leaving

p=p(0)+aV p(0),
with

(22)

6f B7'

Higher-order corrections can be made similarly. To
second order,

proximate solution of Kress and De Pristo: p,= Jdr w, (r)p„, (r) with w, (r)=p', [fdrp', (r)] ' playing
the role of a linear weighting function.

Previous approaches have used various linear weight-
ing functions. Ndrskov originally argued thatp should
be determined by weighting the p&; by the Hartree poten-
tial of the atom: w; (r)=Vh;(r)[ Jdr Vh;(r)] ' Ja.cob-
sen et al. proposed to simply average the background
density over the cell, so that w;(r) = 1/Q; for rH Q; and 0
for r&Q;. The extreme in localization, of course, would
be w;(r)=5(r —R;).

However, in fact, no linear weighting function solves
Eq. (20) in general. In the region between atoms, near the
edge of 0;, the kinetic energy is largely due to the few in-
terstitial electrons, so that the form of g(p) is more like
~VP~ /p. To the extent that this term is non-negligible,
the optimum p cannot be obtained by a weighted integral
over the background dens&ty.

This is made clearer by examining the functional
derivative of p:

w;(r)—: =g'(p', (r)+pb(r))5p
5pb(r)

X g'p';r+p —g'p

P=P(0) +a'V p(0) +P ~ Vp(0) ~
(23)

Again, these relations are only approximate, due to the
breakdown in the Taylor's-series expansion near the edge
of 0, .

Thus the trend is for p to reAect the profile of the back-
If we neglect the first and last terms in the large
parentheses compared to the second, then we get the ap-

p; = c, fdr pb;(r)+2c~ fdr p;'pl, ;(r)

+c2f dr [pb;(r)] 2cz f drp, '(r).



7446 MURRAY S. DA%' 39

ground density nearest the nucleus, but the profile of the
background density further away is not completely negli-
gible. In practice, however, the density over the whole 0
is related to the density tails at the nucleus, so that in fact
p may be closely related to the density profile near the
nucleus, even though the strict solution to Eq. (20) does
not make this apparent. This is demonstrated in Sec. III,
where we obtain the numerical solution for p for a model
g involving both the Thomas-Fermi and gradient terms.
The exact solution will be examined in terms of the sim-
ple approximations suggested here. Indeed, in that case,
there is a simple relation between p and the density at the
origin, which is approximately given by Eq. (22).

In the usual implementation of the EAM, there is as-
sumed a unique relationship between the p and the back-
ground density at the origin. Obviously this is true for
the extremely localized case of w;(r) =5(r —R; ). Howev-
er, it may also be a reasonable approximation even for
more complicated solutions. In that case, we simply re-
quire that the density at the origin be a reasonable moni-
tor of p.

D. An alternate de6nition

In this subsection we will describe an alternate group-
ing of terms in the total energy. Some of the interactions
contained in U; may be grouped with the embedding
function and the derivation carried through as before. It
is importaI|t to note that though the resulting embedding
function and pair interaction are different than before,
the resulting total energy is unchanged. The motivation
for the alternate grouping is purely for practical reasons,
which wi11 be discussed.

The functions in Eq. (6) differ somewhat from those
frequently used in practical implementations of Eq. (I).
As defined in Eq. (5), G(p) represents the embedding en-
ergy of an atom in a neutral electron gas (jellium), and
should be compared to calculations of an atom in jellium.
The explicitly electrostatic interactions occurring in the
solid are contained in U. An alternate way of partition-
ing the cohesive energy is to define an embedding energy
in an electron gas without the uniform positive back-
ground, as is the case in a solid. In this case, the electro-
static interaction of the background electron gas with the
Hartree potential of the atoms shouM be included in the
embedding energy. In this view, an alternate embedding
function is

is positive definite.
The calculation of the error is very similar. The back-

ground density is done in an analogous way, and for the
linear case the weighting function is modified to

w;(r)=Ig'(p';(r))+V (r)]

X g'p';r +V r
l

(27)

K. Summary of derivation

In summary, the cohesive energy can be written

E„h=QG;(p; )+—,
' g U

where U contains the two-body electrostatic interactions
and the embedding function is given by

The weighting function is still very localized to the nu-
cleus, because of the nature of the Hartree potential. Of
course, the same caueat applies to this weighting function
that was discussed in Sec. II C.

There is, in effect, no distinction between the two ways
of defining the embedding function. For practical
reasons, the (F,P) set [Eqs. (25) and (26)] has been used
most often in the past. ' In some work, the authors as-
sumed that the pair interaction between two different
types of atoms obeyed a geometric mean: p;l(R )

=[/;;(R)P~J(R)]', which, of course, required a
positive-definite function. This restriction was placed on
the functions solely to reduce the number offree parame
ters during the semiempirical fitting. For two similar ele-
ments, the error is reasonable. Actually, a somewhat
better approximation is an arithmetic mean:

P; (R)=—,'[P;;(R)+P (R)], wh"ich could be applied as
well to the (G, U) set. Therefore the traditional, practical
reason for choosing the (F,P) picture is not really a con-
cern.

There should be no confusion caused by two different
sets of embedding function and pair potential. In fact,
the transformation G (p)~G(p)+ 2cp and U(R )

~U(R) —cp'(R) for arbitrary c leaves the total energy
unchanged. Therefore, two different looking sets of func-
tions may, in fact, be very similar in their total energy.
The relationship between the (F,P) set and the (G, U) set
is simply an example of this transformation. We discuss
ways to compare different sets in Sec. III.

F;(p)—:G;(p)+p V;, (24) G;(p; ) =G[p,'+p; ] G[p—ll G[p;] .— —

E-h=XF (P )+22«'J (25)

where the pair interaction

where the average Hartree potential is V;. = I V . This
view changes none of the arguments, but simply includes
some of the electrostatic interactions in the definition of
an alternate embedding function.

The cohesive energy in terms of F is

The constant background density is given by solving

g P+Pb, g P+P +gP 0
t

for each atom. In general, a fairly good approximation
for p,. is given by a weighted integral of pb, , with the
weighting function given by

w, (r) =g'(p', .(r) ) I dr g'(p', (r) )
l

zz p';(r i )p,'(r2)
dr2

lJ 12
(26)

which is localized to the nucleus. This derivation is
based on the assumption that the charge distribution in
the solid is not very difFerent from a superposition of



39 MODEL OF METALLIC COHESION: THE EMBEDDED-ATOM METHOD 7447

atomic electron densities; thus this form is restricted to
simple metals and early or late transition metals.

We will demonstrate the procedure outlined in this sec-
tion by testing the approximations on a model system. In
particular, we will set up a model quantum mechanics
which describes fcc nickel quite well, and where the ap-
proximations assumed in this section are expected to be
valid. In particular, the equation for the optimum elec-
tron density is solved in detail and a simple relationship is
found between p and the background density at the ori-
gin. Thus the EAM form is heuristically justified.

III. MODEL SYSTEM

To examine the arguments in the preceding section
more carefully, we will develop a simple model of fcc
nickel. We will neglect in this calculation the charge
redistributions, calculating instead the electron charge
density from the superposition of atomic densities. We
will calculate the cohesive energy from Eq. (4) and
demonstrate that the model also represents various sim-
ple defect energies of fcc nickel very well. We will then
show that Eq. (4) is represented well by Eq. (6). We will
examine the embedding energy and electrostatic interac-
tion. We will also examine the solution for the optimum
constant background density and show that it is related
in a simple way to the background density at the origin.

For this section, we will use the local-density function-
al for the energy, using local exchange and correlation,
and the Thomas —Fermi —Dirac —von Weizsacker
(TFDvW) functional for the kinetic energy. A similar en-

ergy functional combined with a pseudopotential gave
very reasonable values for cohesive energies and lattice
constants for the alkali metals. Here we will use the full
potential and charge density, with the assertion that the
TFDvW functional should work well also in the case for
Ni, which has an almost filled d shell. Explicitly, for this
calculation we take the kinetic-exchange-correlation-
energy density to be

adjustable in this work.
In calculating the cohesive energy of fcc nickel from

Eq. (4), one needs to specify the atomic density (i.e., the
atomic configuration) and the parameter A, . In this work,
we modify the 3d 4s atomic density for Ni by scaling
the 3d and 4s densities linearly according to a parameter
n, : pN;(r) =p„„(r)+n,p4, (r)+(10—n, )p3d(r). We then
adjust A, and n, to match the predicted equilibrium lattice
constant and cohesive energy to the experimental
values. ' This gives A, =0.384 and n, =1.33. Both of
these parameters are within their physically reasonable
ranges. (Also, A, is close to the value of 0.48 used in Ref.
28.) The following calculations use these values.

Equation (4) is solved numerically in the following way.
The kinetic, exchange, and correlation functionals were
integrated by a three-dimensional quadrature in. the ap-
propriate cell. For the bulk cohesive energy, for example,
44000 points were required in the irreducible Wigner-
Seitz cell to get good convergence. The calculations of
the vacancy formation energy and surface energies re-
quired over 2X10 points, because of reduced symmetry.
Also, for the vacancy and surface calculations, the energy
of atoms out to third neighbor were suSciently di6'erent
from the value in bulk that these changes had to be calcu-
lated. The electrostatic interactions were calculated sem-
inumerically by erst taking the Fourier transform of the
Clementi functions and doing most of the integration
analytically.

In Fig. 1 we show the cohesive energy of fcc nickel as a
function of lattice constant. (Recall that A, and n, were
adjusted to match the lattice constant and cohesive ener-
gy to the experimental values of 6.64 bohrs and —0.164
hartree. ) For comparison, Moruzzi et al. calculate
from the local-density approximation a lattice constant of
6.55 bohrs and cohesive energy of —0.206 hartree.

To test the reliability of the model proposed for nickel,
we have calculated the energy in Eq. (4) for a variety of

g(p) =t(p)+x(p)+c(p),
with the exchange-energy density

' 1/3
4j3

4

(28a)

and the correlation-energy density

c(p) =p —0.0575+0.0155 ln
3

4mp

1/3

(28c)

The kinetic-energy density is based on the von
Weizsacker gradient correction to the Thomas-Fermi
term:
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Perturbations around a uniform electron gas have a ki-
netic energy density of the form in Eq. (28d) in two limits:
1=1 for rapidly varying perturbations ' and A, =—,

' for
slowly varying perturbations. We will consider X to be.

FIG. 1. The cohesive energy of fcc nickel as a function of lat-
tice constant, calculated in the manner described in the text.
The contributions identified as kinetic energy, exchange and
correlation energies (G), and electrostatic energy (U) are shown
as dotted curves.



7448 MURRAY S. DAW 39

situations where experimental data are available. These
quantities are presented in Table I. The first two entries
(fcc lattice constant and cohesive energy) were fitted to
experiment. The remaining are predictions. The agree-
ment with available experimental data is quite good.
Note, in particular, that the surface energies are in good
agreement with the value obtained experimentally for an
"average" surface, and that the (111) surface is the most
stable, as should be. The energies of the bcc and hcp
phases are very slightly more positive than the fcc phase;
they are quoted as +0.00 to indicate that, to within the
accuracy of the numerical quadrature, the energy
diff'erences are essentially zero.

Also from the quantities in Table I, it is evident that
the TFDvW functional gives a good description of the
many-body character of the interatomic interactions. A
purely two-body interaction yields a vacancy-formation

energy equal to the cohesive energy, whereas experimen-
tally the vacancy-formation energy is about —,

' of the
cohesive energy. Similarly, the surface energy in a strict-
ly two-body interaction is much higher than is experi-
mentally observed. The many-body corrections in the
EAM, which have been discussed in detail elsewhere, '
come from the nonlinearity of the embedding function
(principally, the nonlinearity of the kinetic energy).

Given a reasonable model of defects and surfaces in Ni,
we will now use that model to calculate the correspond-
ing EAM forms described in Sec. II.

The embedding function GN;(P) is calculated from Eq.
(5). This is done numerically, but the quadrature here is
reduced to one dimension by symmetry. The result is
plotted in Fig. 2. The embedding function has the
desired behavior: simple minimum at lower densities and
nearly linear upward slope at higher densities.

TABLE I. Values of quantities calculated using the TFDvW method (see text), compared to experi-
ment where available, and also compared to the first-principles EAM (FP-EAM) calculations using
functions based on approximations to the TFDvW method.

Quantity

fcc lattice constant (bohrs)
Cohesive energy (hartree)
Bulk modulus (Mbar)
Elastic constants (10' ergs/cm )

Ci2
C44

Vacancy formation (eV)
Vacancy volume (Qo)
Divacancy binding (eV)
Surface energies (ergs/cm )

(100)
(110)
(111)

Surface relaxations (A)
(100)
Az)2
bz23
(110)
Az)2
Az, 3

Az34
(111)
Az, 2

bz23
bcc-fcc energy difference (hartree)
bcc lattice constant (bohrs)
hcp-fcc energy difference (hartree)

TFDvW

6.64
0.164
1.2

1.4

2398
2585
2305

+0.00
5.25

+0.00

Experiment

6.64'
0.164b

1.8'

2.465'
1.473'
1.247'
1.6

0 33'

2380'

0.00g

—0.06 to —0. 10g

—0.025 to 0.0g

+0.002"

+0.0004"

FP-EAM

6.61
0.163
1.4

1.544
1.307
0.602
1.4

—0.38
0.12

1682
1810
1571

—0.03
—0.02

—0.09
+0.01
—0.01

—0.03
—0.002
+0.00

5.26
+0.00

'Reference 34.
Reference 35.

'Reference 37.
Reference 38.

'Reference 39.
Reference 40 (Value is estimated from liquid-solid —interface energy and represents an average of sur-
face orientations. )

gSummary of data detailed in Ref. 7 and references therein. Experimental errors are generally quoted
as +0.02 A.
"Reference 41.
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FIG. 2. The embedding energy for nickel as a function of the
background electron density, calculated in the manner de-
scribed in the text.

The electrostatic interaction, UN; N;(R), is calculated
and shown in Fig. 3.

The embedding and electrostatic energies (Figs. 2 and
3) sum to the total energy (Fig. 1), provided the p satisfies
E„,(p)=0. For the case of the homogeneous environ-
ments (fcc, bcc, and hcp), we note that all p;=p, and
divide the solid into equal Wigner-Seitz cells Q. We then
evaluate

pi+ pj g pi+p +g p
j («)

—g g(pj+p)+ g g(p)
j (Ai) j (xi)

numerically by three-dimensional quadrature and search
for a zero in the function. For the inhomogeneous envi-
ronrnents, such as a surface, the value of p; will depend
on the distance from the defect. Here we assume that
p; =p,„,f for atoms which are on the surface and p; =

pb„&k
for all other atoms. This is reasonable, in that the
second-neighbor contribution to p is much less than that
for the first neighbor. In that case, we evaluate for an
atom i on the surface:

Pi + Pj g Pi +Psurf +g Psurf
j (Ai)

—g g(p,'+P, )+ g g(P, )

j (&i) j (&i )

where Pj =P,u,f for j on the surface and Pj =P&u&k for j
otherwise. We then find a p,u,f which makes this function
zero. We have thus found p for the following environ-
ments: fcc and bcc lattices at several lattice constants
and the (100), (110),and (111)surfaces of fcc lattices.

Anticipating that the dependence of p on the back-
ground density is mostly localized, we have plotted in
Fig. 4 the values of p for these various environments
versus the background density at the nucleus. There is a
reasonable correlation between P; and pb;(R;), for a
surprising range of environments. Most notably, the p is
very similar for fcc and bcc lattices with the same density
at the nucleus, and also for surface atoms. Fitting a
linear function through the points near the equilibrium
for the fcc lattice gives p,. =0.96p&,.(R,. ) —Z. 443
X 10 /bohr, and this line is plotted on Fig. 4. The de-
viation from this fitted line is small for all points, largest
for the surfaces.

The linear relationship can be mostly understood in
terms of the localization of a linear weighting function.
To emphasize the localized nature of the solution to
E„,=O, we have plotted in Fig. 5 the linear weighting
function from Eq. (21) and the background density for
the case of bulk fcc nickel at equilibrium. Figure 5
demonstrates that the weighting function is most sensi-
tive to the background density near the nucleus. We can
estimate from Eq. (22) the first-order correction due to
the nonuniformity of the background density, and this
gives p; =0.95pb, (R, ), which has about the right slope as
compared to Fig. 4.
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FIG. 4. The optimal background density (p) vs the back-
ground density at the nucleus Qb(0)] from a linear superposi-
tion, for various atomic environments. The pb(0) for fcc lattice
at equilibrium is 6.7X10 a.u. ; for the bcc lattice at equilibri-
um, it is 6.9 X 10 a.u. There are several points at higher densi-
ties not shown on this plot, which show that the linear relation-
ship holds beyond pb(0) =0.05.
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by calculating changes in the total energy due to distor-
tions in the system. For small distortions, the change in
the energy within the EAM is equivalent to the change in
the sum of effective two- and three-body interactions:

y, ( R ) = —,
' ( I U, ( R ) +26,'(P, )pi (R )

+6,"(p, )[pl(R)] I +(i~j )), (29a)

Jk(R, .,RJ, Rk )—:[6, '(p; )pj'(R,
&

)pk(R;k )+c.p. ] . (29b)

Note that these interactions are independent of the trans-
formation discussed in Sec. II D, and represent quantities
which can be directly compared between different sets of

FIG. 5. The effective weighting function from Eq. (21) for a
nickel atom, and the background density in a nickel lattice site
as a function of distance from the nucleus. The two lines for the
background density represent the range of values spanned by
the variation with angle.

There are some deviations of p from an exact relation-
ship with the background density, most notably the sur-
faces compared to the expanded lattice. These deviations
indicate that the concept of a linear weighting function
solution is only approximate, as discussed in Sec. II.
Also, the nonzero offset is inconsistent with the simple
weighting function solution, and is a result of the non-
linear nature of Eq. (20). However, we can make use of
the approximate relationship between p and the back-
ground density at the origin. All we need to make use of
Eq. (4) is a relationship between p for atom i and the posi-
tions of its neighbors. This is provided to a good approxi-
mation by the linear fit shown in Fig. 4. In the following,
we use this linear fit, noting that the error in the fit is
largest for the surface.

We therefore have constructed EAM functions, ob-
tained from nearly first principles, to describe Ni. Pre-
dictions of defect properties using these EAM functions
are presented in Table I. Most of the properties are
represented rather well, the worst being the elastic con-
stants. The surface energies in the EAM differ from the
TFDvW values because the linear relationship between p;
and pb;(R;) is worst for the surface. The small devia-
tions in Fig. 4 between the correct values for p, at the
surface and the linear relationship are responsible for the
discrepancy between the surface energies calculated in
the TFDvW functional and the EAM. A better form,
such as p=p(0)+aV p(0)+f3~Vp(0)~, probably better
represents the p in most environments.

The values of the calculated properties shown in Table
I are quite a bit off when compared to the values that can
be obtained semiemprically. It seems interesting there-
fore to compare the functions to the semiempirical func-
tions which are fitted to such properties as the elastic
constants, etc. Because of the linear transformations dis-
cussed in Sec. IID, a direct comparison of embedding
functions, etc. is not physically meaningful. Rather, a
measure of the energetics of defects can best be obtained
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FIG. 6. Effective interactions for three EAM functions for

nickel. "DB"are the Daw-Baskes EAM functions from Ref. 7
and were fitted to the lattice constant, elastic constants, sub-
limation energy, vacancy-formation energy, and bcc-fcc phase
stability. "FBD" are the Foiles-Baskes-Daw EAM functions
from Ref. 10, and were fitted to the lattice constant, sublimation
energy, elastic constants, vacancy-formation energy, a simplified
equation of state, and dilute heats of alloying with other fcc
metals. "FP-EAM" are the first-principles EAM functions from
this work, and were obtained from the TFDvW model, which
was adjusted to fit the lattice constant and sublimation energy.
(a) Effective two-body interaction in the fcc bulk. (b) Effective
three-body interaction of atoms in an equilateral triangle, in the
fcc bulk.
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EAM functions.
Actually, the interactions in Eqs. (29) allow us to recall

that the effective interactions within the EAM are envi-
ronment dependent, in that the interaction between two
atoms depends on the slopes of their embedding func-
tions, which depend on the p for each atom. This, in fact,
is the strength of the EAM, and is directly connected to
the nonlinearity of the embedding function.

We have therefore plotted in Figs. 6(a) and 6(b) the
effective pair and trio interactions for three EAM sets of
functions for Ni: the original semiempirical functions
developed by Daw and Baskes, the semiempirical func-
tions developed by Foiles, Daw, and Baskes for fcc alloys,
and the functions developed in this paper from the
TFDvW-model energy functional. The results show that
the effective energetics of the three functions are rather
similar, and that the semiempirical functions are qualita-
tively quite similar to what one gets from more funda-
mental considerations.

In summary, we have developed a model energy func-
tional for nickel and shown that the model gives a reason-
able description of the energetics of basic defects. We
have then obtained EAM functions from this model and
demonstrated that the EAM form can reasonably repro-
duce the energetics of this functional. We examined the
weighting-function solution for the optimum constant
background density and found that it is approximately
correct, with the error in the solution being most
significant for the surface. An improvement to the
weighting function solution was proposed, which includ-
ed corrections due to the derivatives of the background
density.

IV. CONCLUSIONS

A simplified expression for the cohesive energy of a
solid can be derived from approximations to density-
functional theory. The energy can be divided into an
embedding-energy contribution with an electrostatic,
two-body correction. The procedure defines an optimal
constant background density, p, fop the embedding func-
tion, in terms of the actual background density p&(r) at
each site. An approximation to p is given by a weighted
average over pb(r) Th.e weighting function is sufficiently
localized that it may be approximated by a 5 function, so
that p-pb(0), where 0 is the position of the nucleus. Us-
ing the Thomas —Fermi —Dirac —von Weizsicker model
for Ni, we have derived a new set of EAM functions from
first principles (in contrast to previous semiempirical
functions). These new functions reproduce the TFDvW
calculation of the energetics of defects of the solid.
Within the model, p was found to be adequately de-
scribed by c, +c2pb(0), except for the surface. A correc-
tion to p was suggested which involved derivatives of
pb(r). The new functions are qualitatively similar to pre-
viously obtained semiempirical functions.

The expressions developed here for the EAM can serve
as a basis for the parametrization of the functions used in
the semiempirical technique.
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