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Time-dependent local perturbation in a free-electron gas: Exact results
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A localized perturbation moving through a homogeneous electron gas with a constant velocity is

studied. The time-dependent Schrodinger equation is solved by means of a Galileo transformation.
The energy dissipation rate is expressed in terms of the transport cross section for arbitrary veloci-

ties, temperatures, and strength of the perturbation. Expressions for the electron density and the
backflow pattern around the moving perturbation are given. Quantitative results are presented for a
hard-sphere potential.

I. INTRODUCTION

Electronic excitations play an important role for the
frictional losses of particles moving through metal films
or scattering from metal surfaces. If the scattering parti-
cle has a large mass M, the description of the heavy parti-
cle in terms of a classical trajectory often presents a
reasonable approximation. To calculate the frictional
force due to the creation of electronic excitations in the
metal, one has to solve an electronic problem with a lo-
calized time-dependent perturbation. Even if the elec-
trons are treated as noninteracting, this generally
presents a difficult problem and very few exact results are
known. ' Various authors have treated the model prob-
lem of a particle moving with constant velocity through a
noninteracting gas. ' When the velocity v of the particle
is small compared to the Fermi velocity Uz, the energy
dissipation due to the excitation of electron-hole pairs is
proportional to U and can be expressed in terms of the
phase shifts of the (spherical) potential presented by the
heavy particle. Recently one of the authors (K. S.) has
shown that these results can easily be generalized to arbi-
trary velocities v. In the following this publication will
be referred to as I. In I the time-dependent Schrodinger
equation for the electrons was transformed to a time-
independent equation by means of a Galileo transforma-
tion. The general expression for the energy dissipation
rate in an interacting electron gas is reduced to a simple
integral involving one-electron force matrix elements
with scattering states for noninteracting electrons. These
matrix elements can be expressed in terms of the
reAection coefficient R (p) in the one-dimensional case
and in terms of the transport cross section o „(p) or the
phase shifts 5t(p) in the three-dimensional case. In the
latter case numerical work is needed to evaluate the fric-
tion coefficient g(v), and quantitative results for g(v)
were presented in I only for the 1D case.

In this paper we present a detailed study of the friction
coefficient as a function of velocity and temperature for
the case of a hard sphere. As a simple formal expression
for the expectation value of an arbitrary one-particle
operator can be given, we also present results for the elec-
tronic density and the backfIow pattern due to the mov-
ing perturbation. In Sec. II we give a short but self-

contained derivation of the method used in I. Results for
the friction coefficient are presented in Sec. III. It is also
discussed how the results simplify in the classical limit.
Results for the density and the backAow pattern are given
in Sec. IV. It is shown that the large-distance behavior of
a weak scattering potential cannot be properly described
by a linear response theory.

Certainly the model of noninteracting electrons is
somewhat academic. But as there exist only very few ex-
act results for time-dependent quantum-mechanical sys-
tems with arbitrary strong perturbations, we nevertheless
consider it to be useful to present a detailed description of
our results. Also recent work on the physics of mesos-
copic systems indicates that fully-quantum-mechanical
calculations are necessary to describe transport proper-
ties in such systems. Some of our results are known in
the theory of the stopping power of a charged particle in
a plasma. The low-velocity result Eq. (17) has, for exam-
ple, been used for the case of highly degenerate plasma
where the transport cross section is evaluated using a
screened Coulomb potential.

II. MODEL AND EXACT SOLUTION

We consider a free electron gas with a potential
V„,= V(x vt) localized —at x=vt and moving with con-
stant velocity v. The Hamiltonian for this model is of the
form

H, =Ho+0(t —to) V„, ,

where Ho is the kinetic energy of the electron gas and the
potential is switched on at time t, (0. At I;, the electron
gas is assumed to be in an eigenstate of IIO described by
the occupation numbers n of the plane-wave states. In
the following we denote the Hamiltonian at time t =0 by
H and the corresponding potential localized in the origin
by V, i.e., H =IIo+ V.

We want to calculate expectation values ( P( t)
~

2 ~P(t) )
where A is an arbitrary one-particle operator and ~P(t) )
is the solution of the time-dependent Schrodinger equa-
tion. To solve the Schrodinger equation for t ) to we per-
form a Galileo transformation which puts the potential at
rest in the origin. The transformed state

~ P( t) ) T
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with the unitary operator
—iv (Pt —M X)/AT (3)Tv t=e

where X is the center-of-mass position operator and Mz
is the total mass, obeys the Schrodinger equation

iA ~y(t) & =H~(()(t) &

dt
(4)

X Az-e

where Az- is the transformed observable

AT= Tv t ATv t

with the time-independent Hamiltonian H which has the
perturbation located at the origin. Therefore the formal
solution of Eq. (4) is trivial. The expectation value of an
arbitrary observable A is given by

& y(t) I
A Iy(t) ) =

& y(t, )l &., ..e'

~„',, ly(t, )),

Using our initial condition Eq. (5) reads for a one-particle
operator A (x,p)

(P(t)(A ~Q(t)) = f n (p m—v(e
—iH( t —to ) /R

X A(x+vt, p+mv)e

X~p —mv)dp ',

where the momentum states
~ p ) have the usual 5-

function normalization (p~p') =5(p —p'). If one is in-
terested in the transient behavior after switching on the
potential, complete sets of scattering states ~p+ ) for the
potential V can be inserted and the calculation of the ex-
pectation value of A is reduced to integrations. In this
paper we only study the stationary behavior at Gnite
times when the limit to~ —~ is performed. The time
development operators in Eq. (7) can then be expressed in
terms of Me{lier operators" of scattering theory which
transform the momentum state ~p

—mv) into scattering
states ~(p —mv)+). As the scattering states are eigen-
states of H, this leads after averaging over a grand canon-
ical ensemble to

(P(t)~ A~/(t)) = ff(r~)((p —mv)+
~
A(x+vt, p+mv)~(p —mv)+ )dp, (8)

where f(ez) is the Fermi function and E&=p /Zm. This
equation is the basic result of our paper and is studied for
various choices of A in the following sections.

III. FRICTION COEFFICIENT

In Sec. III. A we derive general results for the friction
coeScient for a three-dimensional spherical potential and
present detailed numerical results for a hard sphere in
Sec. III B.

A. General results

The rate of energy transfer to the electron gas at time t
1S g1ven by

BV 1p+ v. p+ =, (p.v)tr„(p),(2M)' m
(12)

where o,„(p) is the "transport cross section" defined as

o „(p)—:f (1 cosO)o ~(9)d—Q (13)

and o~(8) is the diff'erential cross section corresponding
to V. Details of the derivation of Eq. (12) are given in

Appendix A. This leads to

dependent.
In the following we discuss the frjction coeScient for

spherical symmetric potentials V and spinless particles.
Then the force matrix elements can be written as

(«), =&&(t)II„,IP(t)& . (be), = — f(a@+ „)(v.p) cr„(p) dp
(2M)'

(14)

X p —mv+ av—v ip —mv)+)dp .
Bx

From (11) one can see that the ETR has become time in-

From this energy-transfer rate (ETR) the friction
coefficient q(U) of a heavy particle of mass M can be cal-
culated,

(«),
ri(U) —=

MU

Using (8) the ETR can be expressed in terms of force ma-
trix elements

(&r. ), =ff(E~) o.,„(p)= z g (l+1)sin [5&+,(p) —5i(p)] .4m

(p/iit)' i=o
(15)

The result (14) for the ETR is exact for arbitrary veloci
ties, temperatures, and strength of the potential In vari-.
ous limiting cases this expression can be simpli6ed fur-
ther. For velocities small compared to the Fermi velocity

As indicated in I for the 1D case this result has a very
simple interpretation in terms of the energy transfer in a
single binary collision and the corresponding scattering
probabilities. This is discussed in Appendix B.

The transport cross section can be expressed in terms
of the scattering phase shifts 5t(p) using the well-known
expression of the diff'erential cross section o (8) in terms
of the phase shifts. This yields
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I 2m
ri(v) =

M 3 1rt o

df s o.,„(E)de .

UF, the Fermi function can be expanded and leads to an
ETR proportional to v, i.e.,

Eq. (14) for arbitrary velocities it is desirable to study the
result for a "smooth" transport cross section. This is the
case for a hard- (inpenetrable) sphere potential. This
textbook example allows the exact evaluation of the
scattering phase shifts (k:—p /1rt)

At T =0 the derivative of the Fermi function is a (nega-
tive) 5 function and one obtains for v « uF

j1(ka)
tan5, (k)=-

n&(ka)
(23)

m
g(u) = ncuFo, „(pF), (17)

For high velocities u)&max(uz, +k&T/m ) the force
matrix element at p=mv can be removed from the in-
tegrand in (14) and leads to

vy(u)= n, /u /o„(m /u /), (19)

where we have used ff(sz)d p=(2rrI't) no.
In the classical limit Pi~0 the Fermi function goes

over to the Maxwell distribution %Vc(E ),

f(Ev)
, ~no%'o(a ) .

(2M)
(20)

The transport cross section in (14) has to be replaced by
the one evaluated in classical scattering theory. This
yields

(ha) = —nc J 'lVO(c+„)(,v p) o,",(p)dp .

At T=O the Maxwell distribution is a 5 function and
leads to a friction coefficient which vanishes linearly with

~ v~ in contrast to Eq. (17),

vp"(u)= n, ]u/cr,'I(m/uf) . (22)

This expression holds generally for u/Qk&T/m &&1.
In the opposite limit u/Qk~T/m &&1 the Taylor ex-
pansion of the Maxwell distribution in (21) leads to a con-
stant friction coefficient. For the case of a hard sphere
(see Sec. III 8) the corresponding expression was derived
by Cunningham at the beginning of this century and
used in his interpolation formula for the theoretical
description of Millikan's oil drop experiment.

where no is the density of the electron gas and pF =mvF
is the Fermi momentum. The Fermi velocity UF is given
by

fi 2)1/3 1/3
np

Numerical results for the dim ensionless function
F= ~u~ri(u)/[uF1'l"(u)] as a function of u/u„ for various
values of kFa are shown in Fig. 3. The results smoothly
interpolate between the two limiting cases known from
Eqs. (17) and (19),

UF , kFa
VF

g (kFa ):cr,„(pF )/m.—a for « 1
UF

g kFa for
UF UF

v »1.
(25)

G=10
G=5
G 1

where a is the radius of the sphere and j& and nr are the
spherical Bessel functions and Neumann functions. Ex-
plicit results for the scattering wave functions are given
in Appendix D. The behavior of the total cross section
o„,(p) = fo (8)dQ as a function of p is well known. It
starts at 4m.a, i.e., four times the geometrical cross sec-
tion, at p =0 and decays monotonically to 21ra (ttuice
the geometrical cross section) in the limit p —+ oo, i.e., the
value of the classical cross section o'„',(p)=n. a is not
reached. There is always a cone of small angle in the for-
ward direction within which the scattering is nonclassi-
cal. This "anomaly" is suppressed in the transport cross
section. Due to the additional factor (1—cos8) the
weighting of forward scattering goes to zero and cr,„(p)
approaches o'„'(p) =ma in the limit p ~ Oo. This is
shown in Fig. 2 where g(x) =o„(x)—/mais pl.otted as a
function of x =pa /A'.

We begin our discussion of the friction coefficient with
the zero temper-ature limit. Then g(v) has the form

g(u)= ncu~na F,kFa
m U

(24)
UF

B. Hard-sphere potential

. The transport cross section o„(p) of a given potential
V(r) determines the friction coefficient according to Eqs.
(10) and (14). As a function of momentum o„(p) can
have a rich structure. This is shown in Fig. I for the case
of scattering from a potential hole ("soft attractive
sphere" ). In the limiting cases discussed in Eqs. (17) and
(19) this structure shows up directly in the corresponding
friction coefficient. To obtain a simple understanding of

0
2 4 8 10

ka
FIG. 1. Normalized transport cross section for a soft

attractive sphere as a function of pa/A=ka, where a is the
sphere radius, Vo = (Pie ) /2m the potential depth, and
i =a [1—tan(ca }/ca ] the scattering length.
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FIG. 2. Normalized transport cross section [solid line:
g(x) =o„(x)/ma, x—:ka] and total cross section [dashed line:
g(x) =o„,(x)/ma'] for a hard sphere.

FIG. 4. Comparison of the normalized friction coefficients at
zero temperature [Eq. (24)] for the Fermion (solid line), Boson
(dashed line), and classical cases (dashed-dotted line).

q"( )=unQUTna I((u/uT) ), (26)

where UT=—+2ksT/m is the thermal velocity and the
function I(a) is given by the integral

For sphere radii a small compared to the average dis-
tance between electrons (kza «1) the quantum effects
are most pronounced. The diferent behavior of the
quantum-mechanical case [(14)] and the classical case
[(21)] is due to two effects: the different momentum dis-
tribution and the difFerence between o.„and o'„'. At
T=O a system of noninteracting bosons leads to an ex-
pression for r)(u) which is "intermediate" between the
classical and the fermion case: the distribution is a 6
function as in the classical case, but the quantum-
mechanical expression for the transport cross section has
to be used. A comparison of all three cases is shown in
Fig. 4.

For Pnite temperatures we start with a discussion of the
classical friction coeKcient. As ot,'=era is independent
of p, it can be removed from the integrand in (21). After
performing the angular integrations one obtains

I(a)= '

1+—+6(a )
3&+

&a 1+—+81 1

a CX

for a((1

for a&&1 .
(2g)

If the value I(0) is used in (26) for small velocities one ob-
tains Cunningham's formula discussed at the end of Sec.
III A. The function I(a) is monotonically increasing
with a as shown in Fig. 5. Therefore rl"(u) increases
monotonously as a function of u/UT, as shown in Fig.
6(a), where for large u/ur the result (22) is recovered. If
rl"-t/TI(mu /2k~T) is plotted as a function of T for
fixed U, it increases linearly with T for small T and pro-
portional to t/T for large T. This is shown in Fig. 6(b).

In the quantum-mechanical case the condition of fixed

oo —a(x+ 1)I(a)= — x [(1+2ax )e
2&7r

—(1—2ax)e '" " ]dx . (27)

In the limit a « 1 and a)) 1 the function I(a) takes the
form

'0
V VF

I

4
0 10

I

20

FIG. 3. Normalized friction coefficient F in the zero-
temperature limit [Eq. (24)] as a function of U/U„ for various
values of k~a.

FICx. 5. Dimensionless function I{a) [Eq. (27)] which deter-
mines the classical friction coefficient for arbitrary tempera-
tures.
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In the classical result [Eq. (26)] the radius a of the hard
sphere only enters in a factor presenting the geometrical
cross section. This is different in the quantum-
mechanical case because of the p dependence of the trans-
port cross section cr„(p) shown in Fig. 2. To demonstrate
this nontrivial a dependence and the difference between
the classical and quantum-mechanical results we show in
Fig. 8 the "reduced" friction coefficient rI=(M!m)q/
(no~a ), which has the dimension of a velocity, as a func-
tion of temperature for various values of UF —n 0 . With
units m = 1 =A we choose the velocity of the hard sphere
as the unit velocity U =1. For the small value OF=0. 1

the Fermi function is "close" to a Maxwell distribution
and the curve for g looks similar to the classical result in
Fig. 6(b). The quantitative difference between Figs. 8(a)
and 8(b) is due to the fact that the function g(x) describ-
ing the momentum dependence of o.„varies by a factor of
4 between x =0 and x ~~. For vF (& U and U = 1 one
obtains from Eq. (19) g(T =0)=g(a). The ratio of the rj
values for T =0 are therefore roughly given by
g( —,')/g(4)=2. 9. For increasing uz the deviations from
the classical result become larger
[ rl( T=O)= kg( kz a) for u~))u] and the temperature
dependence of q becomes weaker for small temperatures.
The classical }/T behavior is only reached at very high
temperatures. From (16) it is easy to see that the

FICx. 6. Reduced classical friction coefficient [Eq. (26)]. 6(a)
shows g—= (3v'm /8)I((v /vz) ) as a function of v /vr, 6(b) shows

q =&yI(1/y ) as a function of y—:kT/(mv /2).

j2
(0)

p(T)=ksTG(Anno) . (29)

For x «1 one has G(x)=lnx while for x ))1 G(x) is
proportional to x2/3. A plot of G(x) is shown in Fig. 7
where it is compared to the classical value G(x)=lnx for
all values of x.

particle number determines the chemical potential p as a
function of temperature. With the thermal de Broglie
wavelength Az 2v'nk/. m——uz it can be expressed in terms
of a universal function G(x),

'0 I

2
kT

VF= 1
VF= 3
VF= 5

I

3

2

0

0

v 3p
VF=5

I

3

—4
0

I

2 4
K

6 10

FIG. 7. Universal function 6 (x) which determines the chem-
ical potential [Eq. (29)) in the Fermion (solid line) and classical
cases (dashed line).

FIG. 8. Reduced friction coefticient g:—(M/m }q/(non. a ) in
the quantum-mechanical case as a function of the temperature
for four different values of the Fermi velocity uz. We used the
units m =1=% and the velocity of the hard sphere v=1. For
the sphere radius a we choose a = —' (a) and a =4 (b).
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friction coefficient increases i equantum-mechanical fnc ion c
(kT) for small temperatures in thee case v/v «w ic
is numerically confirmed (Fig. 8 .

IV. DENSITY AND CURRENT DENSITY

(30)

(31)
F =0 the current density vanishe . '

gs. Usin (A3) foror v=
r))a the density takes the from &p(x)& —

o px &=n +5 (x)
with

e'""f ( —1)dp (32)5p(x)=Im z 2 2 j e p~-
o

where f ( —1) is t e sca er'h tt ing amplitude for backwar
oscilla-scattering. is ea sTh' 1 d to the well-known Friedel oscil a-

tions

5p(x) -cos(2kF r+ g) /r' . (33)

For the case of t e ar sp eh h d here the scattering wave func-
A en-re ex licitl known for all values of r (see ppen-

it obtains an angu-dix D). For finite values of v the densi y o
lar dependence with dift'erent wave g

~ ~

avelen th of the Friedel
oscillations in e oth forward and backward directions. T is

~ ~

1 ticall for a one-dimensional hardcan be shown ana ytica y
all for a three-"s here" (Appendix C) and numerically for a t ree-

I the 30 case at T=O it requires adimensional sphere. n e
er the azimutal angle and the ab-numerical integration over e

solute value of the momentum (Appendix D). T is ea s
to the densities shown in Fig.. 9.

The numerical efFort for v&
'

q
'0 is uite limited or t e

case of a Bose gas atg T=O. Then the momentum distn-
5( ) and the density is given bybution is proportional to 5&p an e e

n
l „(x)l . A plot of this density is shown in Fig.

1 be obtained for the currentSome analytical resu ts can e
As "(x) is a vector, it has to be adensity linear i'n v. s 'j x

f the vectors which are avai a e, i.e.,linear combination o e v i.e.
x and v. With the linearity in v this leads to t e orm

&j(x)&=x(x v)ho(r)+vh, (r

~

~have to be calculatedwhere the two functions of r =
l x~ have

from Eq. (31) which simplifies in the linear approxima-
tion to

(34}

& j(x)&=v&pgx) &l,=o

h' section we discuss the stationary density andIn this sec ion w
curren ent d sity in coordinate systems wi e p

ur eneraltion in the origin.h
'

This is equivalent of using ou g
value of theequation a(8) at t =0. For the expectation value o

density p(x) this yields with Pp(x . x p

&p»)&= ff(e„+,)lg, (x I'dp

and for the current density j,'x
& j(x) & =v& p(x) &

+ Im ff(s,+ „)g,*(x)VQ,(x)dp
m

To calculate the current densi yit near the hard sphere re-
heires a numerical integration

'
n see A endix D) and t ePP

results will be discussed below. For r )&a w)&a we can use t e
asymptotic form o e(A3) of the scattering wave functions.
U to terms 0(1/r ) this yieldsp 0

—.it/*(x) V1(~(x)
i

1 e eipr /fi —ip.x //A

p+pxf
(2vrA)

2—ipr/A ip x/A
l f

+pf„* +px (36)

We should note that (36}, as is it stands, is not systematic
(A3)of order 1/r, as we have neglected inup to terms o or er r,

r . It is easy toh rm of ~ which is proportional to 1/r . i
s ow a oes not contribute toshow that the corresponding term does no c

x a

as around the hard sphere atFIG. 9. Density of an electron gas aro
in the forward (pf ) and backward directionszero temperature in e

( b ) as a function o e
'

n of the distance x. %'e choose or e
locit ofvelocity vF =,v =5 t e sp ere ra ius

v=3 (dotted line), and v=10the sphere v=
z (dashed line), v= o e

ow and the three lower(solid line). The three upper curves s ow pf
show pb ~

+—Im f (p.v) 1f/~(x)VQ&(x)dp (35)
t T=O. In the picture theIG. 10. Density of a Bose gas at T=

a ht in the x direction with velocity u = 2.sphere moves to t e ng in

The normalized density is plotted in the z direction.
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leading order in 1/r after the p integration in (35) is per-
formed. This leading-order behavior is obtained by par-
tial integrations in the angular integral in (35) for the
second and the third term on the rhs of (36). This yields

x(xv) y~ df p
( )

dp + 1

r o ~E ~ (2vrfi) r 0-—
(37)

The leading order contribution is purely radial, i.e., the
function h, (r) in Eq. (34) vanishes like i for large dis-
tances. For weak potentials V the transport cross section
is proportional to V . Therefore it is obvious that the
1/r contribution to the current density cannot be ob
tained by linear response theory. In linear response one
gets a dipo1ar backAow pattern at large distances as dis-
cussed by Pines and Nozieres. They obtain

1
( j(x) ) LR - Vo V(v V)—,

where Vo is the q=O Fourier component of the potential.
This "hydrodynamic"-like backflow pattern does not pro-
vide the correct behavior of the current density at large
distances for the free-electron gas. For every finite value
of the potential the behavior (37) dominates at large
enough distances from the perturbation. We mention
that the 1/r term in the large r'expans-ion of P&(x) in
(A3) is needed to obtain the linear response result (38)
starting from Eq. (31). The asymptotic result (37) is also
confirmed by our numerical evaluation of Eq. (35) for ar-
bitrary values of r. Some additional details of the calcula-
tion are given in Appendix D. In Fig. 11 we show the ra-
dial component j„of the current density in the v direc-
tion as well as the angular component j6) in the direction
perpendicu1ar to v. These two plots completely deter-
mine the functions ho and h, in Eq. (34). A "qualitative"
picture of the backflow pattern near the sphere is shown
in Fig. 12. We have not performed calculations of ( j(x) )
for arbitrary values of v as they are numerically more
time consuming.

For noninteracting bosons at T=0 the calculation of

0.8

0.6

0.4

0.2

4 4 l I 1 & k,

I

0
x a

FIG. 12. Current density of an electron gas around the hard
sphere at zero temperature in the linear approximation [Eq.
(D4)]. The sphere moves to the right in the x direction. For the
parameters we choose a =1 and vF=1. The length of the ar-
rows gives the absolute value of the current density times an ar-
bitrary scaling factor.

the current density for arbitrary velocities is easy. For
r )&a one obtains

( j(x) )~ = —(Ux+ v)1 1

(2M)' r

XRe[f (~~,~p )e lm(UP+ v x)ls] +g

(39)

V. CONCLUDING REMARKS

We have presented exact results for various expecta-
tion values of observables of a free-electron gas in the
presence of a localized time-dependent perturbation of
arbitrary strength and moving with arbitrary velocities.
To make contact to realistic systems it would be neces-
sary to include the electron-electron interaction in the
calculation. Some of the results presented in I hold also
in this more general case. To further evaluate these for-
mal results it seems necessary to use standard many-body
techniques. Another interesting area of further research
is to go from the case of the infinitely heavy perturbation
treated in this paper to a description which includes the
dynamics ("recoil" ) of a very heavy particle of mass M.
In the path-integral description of such a system the cou-
pling to the "electron bath" is usually described in per-
turbation theory or in the adiabatic approximation, " i.e.,
not as general as in the M= ~ limit discussed in our pa-
per.

0.0
2

r a

FIG. 11. Radial component j„(solid line) of the current den-
sity in the v direction and negative azimutal component jQ
(dashed line) in the direction perpendicular to v. We used the
parameters vF = 5 and a = 1.

APPENDIX A

In this appendix we present two different derivations of
the relation [Eq. (12)] between the force matrix elements
and the transport cross section o„(p). First we start
from the time-independent Schrodinger equation for the
scattering wave function g (x) —= (x~p+ ) and
differentiate it with respect to x;. This leads to
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8~,~z i i ~~~~
Bx; 2pl Bx; Bx;

For large x the scattering wave function can be expressed
in terms of the scattering amplitude f~(x p), where x and

p are unit vectors in the directions x and p,
By Green's theorem the force matrix element can then be
expressed as a surface integral over a large sphere

p+ p+
1

ipr /fi

g (x)= e'i'" "+f (x p)
(2iriri)

+0
r.2

(A2)
Straightforward differentiation leads to

( p+ = —p, lim f [(p v)(p. x)r'+pv xlf, (x p)l'
Bx (2m'�).

( 1 +p x)f4(x p)e EPIlAe/P'xlf'l

+ —,'x vp(1+p x)f (x p)e'"" "e '~" ]dQ„. (A4)

The integrand on the rhs of (A4) can be simplified using

J(v x)f(x p, r)dQ„=(v p) J(p x)f(x p, r)dQ„, (A5)

which holds for arbitrary functions f(x p, r ). The first term on the rhs of (A4) integrates to zero and one obtains

r

~
~ ~

~ ~ ~p+ v. —p'+ = — lim p.x x.p +—l+p x * x.p e '~" e']' " "+c.c. dQ„.
Bx m (2~iii)3 r m ~ 2

(A6)

If a partial integration is performed in the angular in-
tegration of the second term of the integrand, the corre-
sponding contribution to the integral can be expressed in
terms of the imaginary part of the forward scattering am-
plitude in the limit r~~. Using the optical theorem
this finally leads to Eq. (12).

A more direct approach to derive Eq. (12) is obtained
by use of the Lippmann-Schwinger equation (LSE)

p+ v p+

=—[(p v)(&pl Vlp+ &
—&p+ I Vlp&)

+2mi & p+ I V(v p)5(E Ho) Vlp+ &] . —(A9)

Ip+ =&I p& IG (E +i0)vip+&, (A7)

where Go(z)=(z Ho) ' is the unpertu—rbed resolvent.
The force matrix element can be expressed as a commuta-
tor of V with the momentum operator p,

The first term on the rhs is proportional to the imaginary
part of the scattering amplitude. Using the LSE again
this term can be brought into a form similar to the
second term. Inserting a complete set of plane-wave
states Ip' & between the V operators leads to

p+ v p+
p+ v p+ = —&p+I[p.v, V]lp+& .BV i

Bx
(AS)

I I & p'I Vlp+ & I v (p —p')5(e~ —
E~, )dp' .

Now we use the LSE for &p+ I
in the first term of the

commutator and for Ip+ & in the second term. This
leads with [Go,p]=0 to

(A10)

If we denote the differential cross section for scattering
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from p=pn to p'=pn' by o (n', n) we obtain for general
potentials V

p+ v p+

(AE), = f v (.p' —p) — o (n n')f(s ) dn' .dp
('+ " (2M)'

(85)

1
~ f v (p —p')o (n', n)dn' .

m (2~A)'
(A 1 1)

For spherical potentials o. depends on n' and n only via
n' n. Then (All) leads with (A5) to Eq. (12).

APPENDIX B

b,E= (p' —p )=v (p' —p)= 1

2m
(81)

as the scattering is elastic ( ~p'~ =
~p~ ). The total energy-

transfer rate using scattering probabilities is given by

In this appendix we show that the stationary
(to~ —~ ) result for the ETR for a spherical potential
presented in Eq. (14) can be given a very simple interpre-
tation in terms of the energy transfer in a single binary
collision and the corresponding scattering probabilities.
The derivation of Eq. (14) presented in I and this paper
can therefore be considered as a proof of the widely held
belief that such a use of probabilities instead of probabili-
ty amplitudes is allowed under special circumstances.
Limitations of this approach are pointed out for more
general potentials.

The momentum p of an electron can be decomposed as

p =m v+p, where p is the momentum in the "center-of-
mass" system moving with the perturbation. If an "elec-
tron" is scattered from p to p', this leads to an energy
transfer

The n' integration can be carried out and leads with (A5)
and (13) to the result for the ETR presented in Eq. (14).

If the scattering potential is not spherical the
differential cross section o. (n' n) depends on n and n'
separately. Then Eq. (85) with o~(n' 5) replaced by
o (n', 5') follows from (82') and (83) only if o is sym-
metric in n' and 5. In the absence of a magnetic field this
is guaranteed if the potential V has inversion symmetry
V(x)= V( —x). This condition shows the restricted va-
lidity of the "probabilistic approach" in the quantum-
mechanical case, i.e., for nonvanishing e. The exact solo-
tion for the ETR given by Eqs. (11) and (All) is linear in
the electron distribution, while the probabilistic approach
of this appendix leads to an additional bilinear term in
the distribution if the potential has no inversion symme-
try.

APPENDIX C

In this appendix we discuss the electron density in the
1D case for arbitrary velocities v and zero temperature at
time t =0, i.e., when the potential V(x) is located in the
origin. We assume the potential to be nonzero only for
~x~ ~ a. According to Eq. (g) the density at T=O is deter-
mined by the scattering wave functions g (x):—(x ~p+ ),

(bE), = f v (p' —p)N(pn'~p)dpdn', (82)

PF 772 V

&p») &=f lg (x)l'dp,
pF mv

(Cl)

where N(pn'+ —p) is the rate of scattering events from p
to p'=pn' and n' is the unit vector in the scattered direc-
tion. This rate can be expressed in terms of the
differential cross section o. (n' n),

where p~ &0 is the Fermi momentum. In the following
we assume that v )0. For p & 0 the scattering wave func-
tions have the form

N(p'+ p) =no o—(n'. n)P(p) [1+aP(p') ],
m

(83)

Ipx /A'+ g —ipx /fi
1

B„e'~ /", x)a(x)= (C2)

where P(p) is the normalized probability density for the
initial state to be occupied. The factor p /m takes care of
the fact that collisions with high relative velocity are
more frequent. The constant a is the last factor on the
rhs of (83) depends on the statistics of the particles. Ac-
tually the value of a turns out to be irrelevant for the
case discussed, as the term proportional to a does not
contribute to the ETR given by (82) because the corre-
sponding integrand is antisymmetric in n and O'. For
noninteracting fermions the probability distribution P(p)
is proportional to the shifted Fermi function

while for negative momentum one obtains

ae 'p' x& —a
1

~p~ (2 g)f/2 le/A+ g elpx/s )a
ih (x) = (C3)

W, =—[ ~, /e'", (C4)

where /1~ = —A~*(B~ /B~ ) and B~ =B by time reversal
invariance. We introduce the phases u and o'. byp p

f(e+ „)
P(p)=

no(2vrfi)

This leads to

(84) To calculate the density (p(x) ) we have to distinguish
the cases v & vF and v vF. With the reAection cpefBcient
R (p) =

~ A~ ~
Eqs. (Cl) —(C3) lead for u (u~ to



7422 L. BONIG AND K. SCHONHAMMER 39

pF+mu pF
—mu—f R (p)dp+2 f &R(p)cos(2px /A' —a~ )dp, x (—a

(p(x) ) 11o= —pF+muf R(p)dp+2 f &R(p)cos(2px/Pi+a )dp, x )a
pF mV pF mv

(C5)

and for U UF

pF mV

Rp p, x& —a
PF mU

(p(x)) no= pr —mv pF mv

f R(p)dp+2 f &R(p)cos(2px/A'+a )dp, x )a .
PF mU PF mU

(C6)

Explicit expressions can be given for an infinitely high square-well potential which has a unit reAection coefficient
R (p) = 1 and a~ = m —2pa /A'=a~. Then the integrations in (C5) and (C6) can be easily performed and yield for v ( vF

2(pz —mv )(x+a )
sin x& —a

&p(x)) =

no 1+
Vy

1
sin

2m(x —a )

2(pF +mv )(x —a } x)a
(C7)

and for U &UF

0, x& —a

(p(x))= 1 1 2mv(x —a)
2nD —— cos sin[2kr(x —a)], x )a .~x —a

(C8)

These results have a simple interpretation. All electrons
are totally rejected from the infinitely high barrier. For
v (vF a fraction (1—v /vF) of the "right-moving" elec-
trons is faster than the perturbation and the density to
the left of the perturbation is diminished accordingly
while- to the right it is increased by the total reAection.
The Friedel oscillations presented by the second term on
the rhs of (C7) have diFerent wavelengths ("Doppler
shift") in front and behind the perturbation. For v ) v~
the density behind the potential is zero as it started to
move in the infinite past.

APPENDIX D

The purpose of this appendix is to derive explicit ex-
pressions for the density and current density, which were

used in the numerical calculations. We consider a free-
electron gas at zero temperature. The scattering wave
functions can be expressed in terms of radial wave func-
tions fi (r)

j&(pr )pl(pz ) j&(pa )p&(pr )—
f,p(r)=

nl(pa)+ij &(pa )
(D2)

As we mentioned in Sec. IV, the numerical calculation of
the density at T=0 in front and behind a three-
dimensional hard sphere requires a double integration

g&(x}= g (21+1)i'f& (r)PI(x p),(2~a)'" i=o

where I'& is the Legendre polynomial of degree I. For a
hard-sphere potential the exact radial functions are

mu+JF [p —p —(mu) ]/(2mvp)

(p(x)) =
z 3 f dp p f du g (2l+1)i fI (r)P&(+u ) (D3)

where we used (30) and (Dl). The upper (lower) sign corresponds to the forward (backward} direction.
From (35) the current density for T =0 can be obtained,

(j(x))=v(p(x)) ~„0—fipFIm f (p v)f*(x)VQ (x)dQ& (D4)

It is useful to split the current density into its radial and azimutal component. Together with (A5) and (Dl) this yields

for j,
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2

& j„(x)&=(x.v) &p(x)&~„o+ Re g (1+1)[fi'+&z (r)f/'r (r) fi—r (r)f/'+~ z (r)] (D5)

and for j

& jo(x) & =(ee.v) & p(x) & ~.=o
Ap~m

2

Im f sin'Or gp(x) gp(x)der o r ~ t) cosO
(D6)

The derivative of the scattering wave function in (D6) is given by

Qp(x)= 3q2 g (21+1)ii'f, (r)[Pi, (cosO ) —cosO Pi(cosO )] .1 1

r) cosO& (2~) sin 8
(D7)
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