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Exact mapping from a two-band model for Cu oxides to the single-band Hubbard model
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The energy spectrum of a mobile hole in a two-band model for Cu oxides, in the limit where

the virtual transitions of two holes on the Cu atoms dominate, is shown by using an exact map-

ping to be identical to that of an effective Hamiltonian of the strongly correlated single-band

Hubbard model.

One of the central theoretical issues in high-
temperature superconductors is the choice of the ap-
propriate microscopic model. Soon after the discovery of
superconducting Cu oxides, Anderson ' proposed that a
two-dimensional (2D) single-band Hubbard model should
be the starting point for studying these materials. Since
then this model has been studied extensively. Some other
physicists, on the other hand, have proposed that 0 holes
introduced in the superconductors generate an essential
difference. In a recent article, Rice and I derived an
effective Hamiltonian starting from a two-band model in-
cluding Cu spin degree of freedom and 0 charge degree of
freedom. We showed that a local singlet of square of 0
atomic holes and the central Cu + ion is formed due to
the Cu-0 hybridization. The singlet moves through the
lattice in a similar way as a vacancy in the single-band
effective Hamiltonian of the strongly interacting Hubbard
model. Based on this, we suggested that the essential
physics of a two-band model is equivalent to the single-
band model, in agreement with Anderson. ' There have
been various works closely related to the issue of the ap-
propriate model Hamiltonian. Recently Emery and
Reiter studied one 0 mobile hole in ferromagnetic spin
configuration, and interpreted their result as essentially
difrerent from the single-band model. Rice and I have
presented a series of arguments which lead us to conclude
that the ferromagnetic case they considered fully supports
rather than refutes the single-band model.

In this paper I shall examine this issue by studying a
special limiting case where the mapping between the two
models becomes mathematically exact. I shall show that
in the limit e~ and U ~, but U —

e~ finite, with e~ the
atomic energy difference between 0 and Cu holes, and U
the Cu on-site Coulomb repulsion, the energy spectrum of
a two-band model for a mobile hole is identical to that of a
single-band model. There is an exact one-to-one
correspondence between a local singlet in Cu oxides and a
vacancy in the single-band effective Hamiltonian. The
method I adopt involves using a set of non-orthogonal
basis states.

The two-band model to be studied is

In the above equations, d; and pi are the creation
operators of Cu and 0 holes at sites i and I in Cu-0 plane,
respectively, and summation over 1 in Eq. (2) runs over
four neighboring 0 sites around a given Cu site i P; . is

the symmetric combination of the 0 hole, and the phase
factor discussed in Ref. 3 has been absorbed in operators

pi for simplicity. And t~ t /e~, tz t /(U e~), w—ith t

the neighboring Cu-0 hopping amplitude. Equation (1)
can be obtained from an extended Hubbard model by
applying second-order degenerate perturbation theory in

t This. was implicitly used in Ref. 3, and explicitly used

by Emery and Reiter. In Ref. 5 the Hamiltonian was ex-
pressed in terms of the atomic 0-hole operators pi in-

stead of the symmetric combinations P;, but these two
expressions are identical.

In Eq. (1) Cu spin-spin correlations have not been in-

cluded. The spin-spin interaction of each pair is of fourth
order in t. In the case where the hole concentration is ex-
actly 1 hole per unit cell, the Hamiltonian for Cu oxides is

described by a spin- —,
' Heisenberg model, ' which is the

same as the effective Hamiltonian of the single-band Hub-
bard model in the large-U hmit. With one additional hole,
the change in the total spin-spin correlation energy is or-
der of t, much smaller than the contribution from H2.
Therefore, we may approximately use H2 to describe the
system, and regard Cu spins as providing a spin-
con6guration background.

In the following I shall consider a limiting case t~ 0.
Namely, the virtual transitions of two holes on the Cu-
atoms dominate. At t & 0, Eq. (1) can be rewritten as

H2 St2+Wi Y~l

with y; a spin singlet state given by

1
Yi (Pif di l Pi&dit ) .

2

Note from Eq. (2) that P; are normalized but not orthog-
onal. They obey the following anticommutation relations:

H2= 4ti g dtP;—P;t d; —4t2 g P;td;+;t P;
Ii,a, a

where

j~;.,P,.j -b..(S;,+ —,
' a«j)),

tP;.,P,.j -0 .,P,t. j -0,
(sa)

(sb)

(2) where B(ij) 1 if i and j are nearest neighbors (NN), and
vanishes otherwise. Using Eq. (5), we have commutation
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relations for y;, with

a„=&a„lH, la &; (i 2)

I t.+d,t,. l o), (7)
j 1

with l 0) the vacuum. These states are all independent,
but not orthogonal because of Eq. (5). Consider a sub-
space of the system, whose basis state consists of a singlet
given by Eq. (4) at one site (for instance, i) and Cu-hole
doublet elsewhere:

N

y;ted; Qd,t, lo&.
cr j= 1

(8)

The total number of such singlet-doublet states is
M=%2 ', a quarter of the total degrees of freedom in
the whole Hilbert space. We denote a state of Eq. (8) by

l 2„),with n=1, 2, ...,M. These states are independent of
each other, but not orthogonal. To find the relation to the
single-band model, let us consider a system of Cu holes in
a square lattice of W sites, whose Hamiltonian is given by
a single-band Hubbard model in the large U limit,

H, -rz g (1 dt d; )dtd,—
(ij),o

x (1 —d~~ d~ — )+ I-I.c.

The Hilbert space of this system with a vacancy at one site
and every singly occupied Cu hole elsewhere, can be con-
structed from W2 ' basis states,

gd,.+d,', lo&. (io)
0 j=l

The states of Eq. (10) are all orthonormal. By compar-
ison with Eq. (8), there is a one-to-one correspondence on
the expression of the singlet-doublet state [Eq. (8)] and of
the vacancy-doublet state [Eq. (10)]. Therefore, we may
denote Eq. (10) by l Bn) in the same sequence as for lan),
with n running from 1 to M.

It then can be shown that (a)

(Hz+Srz) I&„&= X .„.l&.

(6b)

Because of these commutation relations, Hamiltonian (3)
is not diagonal in the y; representation.

We now consider one 0 hole in the Cu-spin background
(every Cu site singly occupied). The complete Hilbert
space of the system can be constructed from 2N2 bases
(N is the number of Cu sites), each of which is of the form

(b) it follows from (a) that Hz+ St 2 contains the full spec-
trum of Ht, (c) the rest of the spectrum of Hz, besides
that in (b), is a degenerate zero-energy level. Thus, the
low-energy physics of a mobile hole in the two-band model
is identical to that in the single-band model.

We now prove (a) to (c). To justify (a), we evaluate
the left-hand side of Eq. (11). Using Eqs. (3) and (6),
one obtains

lV

(H +Sr )ytgd; +d,~, lo&
o j=l

N

yktgdk d;td; Qd~t, lo).
k E NN of i cr, cJ' j=1

The resulting state in the right-hand side is also within the
singlet-doublet subspace. Therefore, this subspace forms
a closed set under Hz. From Eq. (13), besides a self-
energy —St2, H2 describes a hopping process of a local
singlet to its NN sites. Applying H, of Eq. (9) on the cor-
responding state in the single-band model, one has

H, gd;. Qd, ',. lo)
a j=l

= —t g g dk dt d; +d.

halo).

k E NN ofi a, o' j= 1

(i4)

By comparison of Eqs. (13) and (14), we find that the
one-to-one correspondence of l An) and l B„)remains val-
id under Hamiltonian operators 02+St2 and H„respec-
tively. Therefore, if H, l 8„)=g a„ l

8 ), then
(Hz+Srz) la. )=g a. Ia ). Si«e a a««thonor-
mal, a„ is given by Eq. (12).

We now prove (b). Let E be an eigenvalue of H„and
g„p„ l 8„)be its eigenstate

H, gp„ l a„& =Earp„ l a„&,

we then have

ZPnanm =EPm.
n

Using Eqs. (11), (12), and (15),

(H2+Sr 2)Zp. I &.) =2 a. p. I ~ ) =Earp. I &.1
m, n

(is)

(i6)
From Eq. (16), g„p„lA„) is an eigenstate of Hz+Stz,
corresponding to energy E. (b) is justified. Note that the
orthogonality is not required to prove (b) from (a).

To show (c), we act Hz on an arbitrary state Eq. (7), in

the complete Hilbert space of the two-band model, and
find that

N N

H ~.gd, '., 0)=4&~, ,td, .+-,' g )d, . gd, , lo&. (i7)j=l k G NN ofi,j=1

The state in the right-hand side of Eq. (17) is within the singlet-doublet subspace. It follows that if a state
l p) is orthog-

onal to the singlet-doublet subspace, then &p l Hz l any state ) =0, or Hz l P) =0. There are'3%2 ' states orthogonal to
the singlet-doublet subspace in the complete Hilbert space of the two-band model, they are all degenerate with energy ei-
genvalue zero, higher than the energy levels in the singlet-doublet subspace.
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The derivation given above leads to the conclusion that
the relevant spectrum of a mobile hole in the two-band
model of Eq. (1) in the limit t i ~ 0 is identical to that of
the single-band model.

As an example, we discuss the solution of the model in
the ferromagnetic (FM) spin configuration. The eigenen-
ergies and eigenstates of H, of the single-band model in
the FM case with all Cu spin down are trivially given by

Es(k) = —2t2[cos(k )+cos(k~)l, (18a)
N

@s(k)=N ' +exp(ik R;)d;1 Pdtt, (0) . (18b)
j

By using the mapping discussed above, the eigenenergies
and the eigenstates of H2 of the two-band model in the Cu
spin FM configuration, with total-spin z component
Sz =

2~ (N —1), are given by

E (k) —8t z
—2t z [cos(k„)+cos(ky )], (19a)

@(k)=N 'I'+exp(ik R;)tlrtd;1 pe, ~0). (19b)
j=l

The results for the two-band model are the same as the re-

suits obtained by Emery and Reiter, who have studied
the same Hamiltonian in FM configuration. They argued,
however, based on these results, that the physics of the
two-band model is different from the single-band model.
Since the solution of Eqs. (19a) and (19b) can be ob-
tained from an exact mapping between the two models,
these results in fact fully support the single-band picture.

In summary, I have shown rigorously that the low-
energy physics of the two-band model in a limiting case is
identical to that of the single-band model. The Hamil-
tonians for the two-band model and for the single-band
Hubbard model are related by a unitary transformation.
This limiting case provides an example in which the
theoretical proposal by Rice and me on the effective
Hamiltonian for superconducting Cu oxides becomes
mathematically exact. At t & &0, the mapping between the
two models is approximate from the mathematics point of
view. In a separate paper Rice and I have argued that
the essential physics of the two inodels in that general case
should still be the same.

I wish to thank T. M. Rice for many useful discussions.
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71f we define an operator S(i) Sc,(i)+So(i), with Sc„(i) the

Cu-spin 2 operator at site i, and SQ(i) —,
'

(P;)P;1 —P;iP;i),
SP(i) P;1P;&, So (i) P~jP;i, then S (i)yt ~0) =0, implying
tvt to be a local spin singlet. Note that S (i)yjt[0&AO for
NN of i and j, because of Eq. (5).


