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The relaxational dynamics of an initially flat (4 —1)-dimensional interface in a d-dimensional
system is modeled by the unweighted Gaussian model defined on a lattice and obeying Langevin

dynamics.

The interface width is calculated and is found to grow to its equilibrium value via

three distinct limiting regimes, each containing different growth laws. Results are presented for
d =2 and 3 with scaling properties and limiting behavior in full agreement with previous continu-
um models and simulations of kinetic growth models.

Over the last few years there has been a great deal of
interest in the kinetics of aggregation and growth process-
es.! Some of the systems studied include granular aggre-
gation,? solidification fronts® and vapor deposition.*>
Particular focus has been made on the way in which the
interface, which separates the growing material from its
environment, evolves in time. It is now believed, on the
basis of numerical simulations and analytic work, that
such an interface exhibits interesting scaling behavior.

In this Brief Report, we report on a systematic treat-
ment of the dynamical behavior of a (d —1)-dimensional
interface separating two phases in d dimensions. The two
phases could be, for example, liquid-vapor phases (when
d =3) or phases of opposite magnetization in an Ising fer-
romagnet. The interface is initially flat so that as time
progresses its rms displacement (henceforth referred to as
the interface width) increases until it relaxes into its equi-
librium value which scales with the side length of the in-
terface. This work differs from that of the first paragraph,
in that it is concerned with systems relaxing to thermo-
dynamic equilibrium, rather than a kinetic growth model
relaxing to its steady state.

We first consider the case for d =2. For the equilibri-
um properties there exists an exactly solvable model that
has been studied extensively, namely the planar spin- 5 Is-
ing model. In particular, Abraham has rigorously demon-
strated® that when coarse graining to length scales of the
order to the correlation length of the bulk phases, the
equilibrium probability distribution Pq of the heights 4;
(where h; € Rand j € Z (M [—L,L]) of the renormalized
interface can be expressed as

Peoiht =Z ~exp(—#1{n}), 1)
where
L—1
ﬂ{h}=%oAZL(h,-+1—h,-)2 )
=

and Z is the canonical partition function with respect to
the “effective” Hamiltonian # (actually a free energy
since internal degrees of freedom have been summed out).
(1) and (2) are sometimes referred to as the unweighted
or massless Gaussian model whose equilibrium properties
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are well known’ for both 4 =2 and the 4 =3 model to be
discussed later. o is the effective interfacial tension of
Fisher, Fisher, and Weeks,® given as o=1(0)+7"(0),
where 7(8) is the microscopically derived interfacial ten-
sion for an Ising interface at angle 6 from the lattice direc-
tions.’ Note that the interface has length 2L in units of
the bulk correlation length. Its boundary conditions im-
posed at the ends for all time are Ay =h —; =0.

Since we wish to describe how a nonequilibrium
configuration {h} relaxes to equilibrium we use the
Langevin equation of motion '°

0h; 97 {h}
—_— = —-._——.+
a " on,

where the Gaussian white noise 7;(¢) at site j has the usu-
al correlation properties

(n;(t))=0, (n;(t)n;("))=2r6;6(—1).

T]j(t) s (3a)

(3b)

The first term in the right-hand side of (3a) causes the in-
terface to relax to the minimum of 7# while the noise
n;(z) and the presence of I in both (3a) and (3b) ensures
that the correct equilibrium distribution (1) is obtained in
the static limit.'® Insisting that the evolution of the inter-
face obeys Langevin dynamics is the only approximation
that has been made in our approach (provided that length
scales are sufficiently large). From here on, everything we
present is exact and rigorous.

By substituting (2) into (3a), one obtains a linear
Langevin equation

%1}—=—or4h+ﬂ(z), @)

where A=(h—p+1,...,he-D)7, n()=(-L+:(),...,
ne+1(@)) 7, and Aisa (2L —1)x (2L — 1) tridiagonal ma-
trix whose elements are

2 fori=j,
—1 for |i—j| =1, (5)
0 otherwise.

A,’j=

It is quite straightforward to diagonalize A4 to obtain its
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eigenvalues

Ay =2(1 —cosq), q=%, n=12,...2L—1, (6)
and the corresponding normalized eigenvectors.'! It now

follows that for each normal mode g

oh .
a—t" = —oTAgh,+7,(t), (7a)

(g (2)) =0, (Ay(t)7,(t"))=2I6,,.6(t—1), (Tb)

where h, and 7, (¢) are normal coordinates.

Equations (7) constitute the well-known Langevin
equation for a Brownian particle'? of velocity h, with a
constant of friction equal to oT'A,4. It is then standard to
obtain the conditional probability distribution that the g
normal coordinate is equal to h,(¢) at time ¢ given that it
is initially at h,(0). This is done by deriving a Fokker-
Planck equation from (7), following Uhlenbeck and Orn-
st‘pin.13 By insisting that the interface be initially flat
[r,(0) =0 Vql, it is now possible'' to evaluate the mo-
ment generating function for moments of ko

(explifo(2) o)) =expl—as (£)¢?%], 8)

where
-1 l—exp{—4ort l—cos[izn;-Tl)’r H
aL(t)=E ( ) — .
n=0 2n+1)n
4 - ~en v IR
oL |1 cos[ 5L }

9

Clearly, (h§(£)) =2a. (¢) so ar(¢) provides us with an ex-
pression for the interface width squared. Also, if one is
considering an interface in a planar Ising model, one can
obtain an expression for the magnetization profile.'' This
is done by first deriving the probability distribution that
the interface height at j =0 passes through ho, which is
simply the inverse Fourier transform of the moment gen-
erating function. One can then use this to calculate the
magnetization at position (0,y) for time 7, m((0,y);t),
which turns out to be

m((0,p);t) =m*®diylda, (1)1 ~V3
(10)

d(x) = %Lxexp( —u2)du

where m* is the (equilibrium) spontaneous magnetization
for the bulk Ising model. Obviously, this assumes local
equilibrium on length scales smaller than the bulk correla-
tion length. It should be stressed that within Langevin dy-
namics and for sufficiently large length scales, expression
(10) provides us with a time-dependent generalization to
the static result obtained by Abraham and Reed. '

It is interesting to note that Eq. (9) is remarkably simi-
lar to the analogous expression derived by Plischke, Racz,
and Liu® who were using Glauber!® (as opposed to
Langevin) dynamics on a different discrete model.

We now calculate a; (¢) for an interface of infinite ex-
tent. Using Abramowitz and Stegun'é it can be shown

that
Llim a; (t) =Tte ~*""[Iy(40Tt)+1,(40T1)], (U1

where I and I, are modified Bessel functions. Their lim-
iting behavior !¢ gives

I't fort—0,
. 1/2 (12)
lim a;(t)~ I't
L— oo —_— for t— oo,
2ro

Thus, an interface of infinite extent will thicken diffusively
for initial times and then, for large times, the diffusive re-
gime will break down into one of slower nondiffusive
growth.

We next consider a; (z) for a large but finite interface,
for which (9) implies the following scaling behavior:

aL(t)——Lf G—rzt for L— oo, t— oo, 13)
o L
where
1 2 2
g & expl—ax Q2n+1)2x]
x)=7% [l—— . (4)
SO =3 n? ,?Qo (2n+1)>2
The limiting properties of f(x) are
1/2
[%] forx— 0,
e (15)
1 2 L
— —=exp(— 3 n°x) for x— oo,
4

where the x — O behavior was obtained using the Poisson
summation formula. Note that this limit coincides exactly
with the t— o case of expression (12). Hence, we have
established three distinct (limiting) scaling regimes:
t— 0; t— oo with t/L?— 0; and t/L?*— oo.

We now consider d =3. A three-dimensional version of
(2)is

L—1 L—1
ﬂ{h}=;—0' Z Z [(hm-+-l,rn'_'hrrt.rl)2

m=—Ln=-—L
+ hpn+1 = hm ), (16)
with boundary conditions

hiL,n"'hm.iL=0 VYn.m Ezn [_L,L] .

This is the Weeks columnar model!” and has been used to

describe the equilibrium structure of liquid-vapor inter-
faces although in this case we have ignored gravity. 18 1t
may also describe a coarse-grained interface in a three-
dimensional Ising model, but only when above the
roughening temperature (since 4., , € R). The dynamics
of the model can be studied using methods analogous to
d =2, from which one can obtain the moment generating
function for the moments of kg, for an initially flat inter-
face, which is

(explihoo(t)9]) =expl —aL ()91, a7n

where
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1 —exp{ — 40Tt |2 —cos Qn+Dz|_ A CmtDx
a, (t) Lil Lil 2t 2 (18)
ar\t)= .
n=0m=0 4oL ? Qn+1rx Cm+1r
oL“|2—cos T -~ Cos T

The analysis of @, (z) proceeds as before, where for an
interface of infinite extent we have

lim a () =—= [ axe ~2 110012 (19)
LmeaL 46 Jo xe o\lXx .

By again using the limiting properties of /( one obtains
I't fort—0,

Llim ar(t)~14 1

8no

(20)

In(40Tt) fort— oo,

showing a logarithmic growth in the nondiffusive regime.
For the case of a large but finite interface we have that

1
no

ol't
L 2

ln(2L)—ig for L— o, {— oo,

ar(t)~ 2

@

where

g=43 3
" n=0m=0

Qn+1)2+QCm+1)?
(22)

The limiting behavior of g(x) was determined to be (us-
ing the Poisson summation formula for small x)

- L1nx forx— 0,
8n

gx)~ (23)
— exp(—n?x) forx— .
V(4

Again, one can see that g(x) for x — 0 coincides exactly
with (20) for t— . Hence, just as with d =2, we have
identified three limiting scaling regimes.

To summarize then, we have been able to derive expres-
sions showing how the interface width of an initially flat
interface increases with time. This was done for both two
and three dimensions using an unweighted Gaussian mod-
el (defined on a lattice) obeying Langevin dynamics. In
particular, there are three limiting regimes of diffusive
growth, (hg)xt, for ¢— 0; nondiffusive growth,
(hdYxt?(ec Int) when d=2(=3), for t— o with
t/L*— 0; and exponential relaxation to the equilibrium
thickness (h§)e<L(e<InL) when d=2(=3), for
t/L*— oo,

The growth in the region where ¢t — o with ¢t/L2— 0
can be alternatively understood by an argument due to
Villain'® which goes as follows. One assumes that for
large ¢, an interface of infinite extent contains along it a
characteristic length &,(¢) which grows according to some
power law. Guided by theories describing late stage

expi— + 22 [Qn+ 1)+ Cm+1)%

f

growth of clusters in systems such as binary alloys, 20 this
can be assumed to be & &z '3 when the order parameter
is conserved and & et 172 for unconserved order parame-
ters. One then conjectures that the interface width w(z)
scales with &;(¢) in the same way that the width of a
finite-size interface at equilibrium scales with its side
length; that is w2(¢) e &(¢) for d =2 and w?(z) &cIn&; ()
for d =3. Using these arguments one is able to reproduce
the correct scaling form in expressions (12) and (20) for
t— oo [including the prefactors of the logarithm in (20)]
if one takes &, ¢ 172 independent of d (unconserved order
parameter). That the correlation length &,(z) takes this
form has been confirmed for our model by evaluating the
correlation function {ho(¢)h;(¢)) for both two and three
dimensions. '

The limiting properties derived in this paper are in full
agreement with results derived from continuum models
attempting to describe surfaces of granular aggregates?
and random deposition with surface diffusion.* Indeed, it
is easy to see that Eq. (4) and its three-dimensional ana-
log become stochastic diffusion equations when making
the continuum approximation. Such equations have been
studied?* although with different boundary conditions
(VR =0 at the ends of the interface instead of #=0) and
with finite-size effects incorporated by use of an “in-
frared” mode cutoff. The present approach avoids such
an approximation.

The simulations of Family* for the two-dimensional
random deposition model also give scaling behavior con-
sistent with our d =2 results. This might suggest (as im-
plied by Plischke et al. °) that both thickening to equilibri-
um of an Ising interface and growth due to random depo-
sition with surface diffusion, fall into the same universali-
ty class (which is different to that of the Eden cluster and
ballistic deposition; believed to be due to the presence of a
nonlinear term in their associated Langevin equations®').
In any case, it is hoped that the results of this paper,
which are by no means restricted to the limiting regimes
alone, might act as a guide to, for example, Monte Carlo
simulations on Ising models containing interfaces. It has
also been suggested?? that our model could provide some
understanding to the kinetics of roughening, although for
systems with unconserved order parameters as opposed to
the previously studied kinetic roughening models which
conserve particle number. 3
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