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Magnetic pairing in a lattice of Kondo ions: Application to Upt3

M. R. Norman
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 28 November 1988; revised manuscript received 16 January 1989)

Recently, several groups have calculated possible superconducting solutions for UPt3 from mag-

netic Auctuation pairing by utilizing the band-structure Fermi surface and experimental dynamic

susceptibility as input. The resulting solutions do not have proper periodicity in reciprocal-lattice

space, though. In this paper, a more fundamental derivation of the pairing interaction is given by

treating a lattice of interacting Kondo ions. Proper inclusion of umklapp processes leads to odd-

parity solutions for UPt3, with order parameters of A [, or El„symmetry preferred.

I. INTRODUCTION

Several years ago it was suggested that antiferromag-
netic spin fluctuations could be mediating the supercon-
ductivity seen in some heavy-electron metals, ' and this
viewpoint has become increasingly favored. ' The author
showed that Fermi-surface information from band-
structure calculations along with dynamic susceptibility
information from neutron scattering could be used to
determine realistic superconducting solutions. " This for-
malism treated the frequency dependence of the interac-
tion so as to estimate transition temperatures, but treated
the susceptibility and Fermi surface in an axial approxi-
mation, leading to anisotropic s-wave solutions for UPt3.
Recently, Putikka and Joynt solved the gap equations us-
ing the simpler formalism of Ref. 1, but included the
dependence of the susceptibility in the basal direction as
recently determined by Goldman et al. , and found d-
wave solutions for UPt3.

The reason for the above diA'erence involves the
momentum dependence of the susceptibility. Experimen-
tally, the susceptibility g peaks at the first reciprocal lat-
tice vector in both the basal and k, directions, reflecting
antiferromagnetic correlations between the two U atoms
in the unit cell. In the earlier work of Ref. 4, only the
k, dependence was treated, and it was assumed that the
susceptibility had a periodicity of two reciprocal-lattice
vectors in this direction. In Ref. 5, the basal dependence
was included, causing an additional assumed periodicity
of three reciprocal lattice vectors in the basal direction.
The difference in the symmetry of the solutions is due to
the fact that in Ref. 5 the k-vector sum was confined to
the first zone, whereas in Ref. 4 the sum was done over a
double zone in the k, direction and thus covered the as-
sumed periodic range of g.

In reality, the solutions of both Refs. 4 and 5 are in-
correct due to the fact that they are not invariant under
translation by a reciprocal-lattice vector. (This can be
seen by noting that the gap functions in both references
have the same periodicity as g. ) This in turn implies that
the gap equations should be altered so as to project from
the pairing interaction a lattice periodic part. Moreover,
the pairing interaction itself is suspect since it is not
damped at large k vectors. This indicates that a more
careful derivation of the pairing interaction is in order.

In Sec. II a new pairing interaction is constructed by
considering a simple model involving a lattice of interact-
ing Kondo ions, with the parameters being determined by
fitting to neutron scattering data. This interaction has the
advantage of being damped at large k vectors. In Sec. III,
the resulting gap equations are introduced, numerical
methods for solving them outlined, and the various solu-
tions and their nodal structures discussed. Finally, in Sec.
IV, various improvements to this simple model are sug-
gested, with some conclusions being rendered in Sec. V.

II. THE MODEL

A simple model of a lattice of interacting Kondo ions
has been successfully used to explain neutron scattering
data. In this model, the dynamical susceptibility of a
bare Kondo ion is characterized by a frequency I, with in-
teractions between the ions being described by the func-
tion I(k) This lead. s to the following formula for the
g(k, rp):

g(k, cp) =gpr/[I (k) iso], —

where gp is the bare ion susceptibility, and I (k)
I [1 —E(k)gp]. I(k) can be determined by Fourier

transforming 1(r,r'). A standard approximation is to set
I(r, r') equal to a constant U if r and r' refer to the same
site, and equal to a constant J if r and r' refer to near-
neighbor sites. This, in fact, has already been done in Ref.
5 [the function is identified there as g(k), but it is actually
I(k)l. The result for the UPt3 lattice is

Ip(k) =U+ Jcos(k, c/2)

x [cos(k„a/J3)+2cos(k„a/412)cos(ki, a/2)] .
(2)

This function has the property mentioned in the introduc-
tion that it peaks at the first reciprocal lattice vectors in
both the k, and basal directions (if J is negative), and has
a periodicity of two reciprocal vectors in the k, direction,
and three in the basal direction.

A better approximation is to include the spatial depen-
dence of the f electrons by multiplying U and J by
p(r)p(r') where p is the wave function for the local f
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TABLE I. Values of I(k) and S(k) = I/[I —I(k)gp] for vari-
ous k values derived from Eqs. (1)-(3) with U=O. SI and
I= —0.11. I(k) is in units of I . Units are 4'/ j3a for k„and
2x/c for k, .

0,0,0
0,0, 1

0,0,2
0,0,3
1,0,0

0.5,0, 1

I(k)

0.20
0.70
0.13
0.29
0.58
0.47

S(k)

1.25
3.29
1.14
1.40
2.40
1.90

III. GAP EQUATIONS AND THEIR
SOLUTIONS FOR Upt&

From the work of Ref. 4, the gap equation at T, is

h(k) —In(1.13co,/T, )+8'(k') V(k —k' —Q)h(k'),
(4)

state. This has the effect of changing Eq. (2) to

I(k) Io(k)f (k), (3)
where f is the form factor of the uranium ion. This func-
tion has been experimentally determined for UPts by
Stassis et al. ,

' and is in agreement with theoretical calcu-
lations for either an f or f ion. " Such a function is rap-
idly damped in momentum space, as desired.

We now describe a fit of this function to neutron scat-
tering data for UPts. Experimentally, one measures the
imaginary part of g(k, ro) multiplied by f (k). As noted
in Ref. 6, if one extracts f (k) out by using the data of
Ref. 10, then the measured g(k) increases with increasing
k. This is due to multiphonon contamination in the data,
so one must be careful about which data points one uses to
fit to. First, the parameter U can be fitted theoretically by
noting that with J set to zero one has a lattice of nonin-
teracting Kondo ions. Assuming a Wilson ratio of two for
such a case, then from Eq. (1) we see that U must be I /2
(in units where go is equal to 1/I ). To determine J, we
need to compare data at two k points. We choose these
points such that (i) there is substantial k dependence of g
between them, (ii) they are close together in k space such
as to avoid differences in multiphonon contamination, and
(iii) they are away from phonon peaks in the data. Two
such points from Ref. 6 are k =(0.5,0, 1) and k =(0,0, 1)
with k„being in units of 4n/v 3a and k, in units of 2x/c.
From Ref. 10, f (0.5,0, 1) is about 0.85, and f (0,0, 1)
about 0.87 [with f(0,0,0) =1], whereas from Ref. 6,
g(0, 0, 1)/g(0. 5,0, 1) is about 1.74 (using again the above
form factor values). Combining this information with
that of Eqs. (1)-(3), one easily derives that J is about
—0.1r.

In Table I, I(k) and S(k) =1/[1 —I(k)gp] are shown
for various k values. One sees peaks at k =(0,0, 1) and
k = (1,0,0) as expected. Moreover, the variation with k is
consistent with the data of Ref. 6. Finally, we can esti-
mate 1 itself. From the data of Ref. 7, I (0,0, 1) is about
5 meV. From Table I, we see that I"(0,0, 1) is about 0.3I,
therefore, 1 is about 190 K.

with the sum being over k' and Q where k' is in the first
zone and Q is the set of reciprocal lattice vectors. IV(k')
is the density-of-states (DOS) weighting and V(k) is the
pairing potential, with ru, being equal to I"(k —k' —Q).
In the case considered here, one obtains equivalent numer-
ical results by using just I for co,. The gap equation is in-
variant under the replacement of k by k+ Q as long as the
k-k' part of the argument of V is translated back to the
first zone. Finally, there should be a factor of g in Eq.
(4), where g is the vertex for the scattering of a quasipar-
ticle from state k to state k' from a local moment fiuctua-
tion. This factor will be discussed in Sec. IV.

To solve Eq. (4), we perform the zone sum using the
tetrahedron method, ' with the calculated band structure
of Ref. 13 being used for the Fermi surface of UPtq. As
was shown in Ref. 14, this Fermi surface is in good agree-
ment with de Haas-van Alphen data. The number of
tetrahedra used is 4608 in the first zone (3912 of which
contain the Fermi surface), with the function IV(k') being
the contribution from each tetrahedron. Actually, the
DOS in Eq. (4) is the quasiparticle DOS N(0), which is
larger by about a factor of 17 than the band DOS, so the
actual W(k') used in Eq. (4) are normalized such
that their sum over the zone is N(0). The product
V(k —k' —Q)h(k') is evaluated at the center of mass of
the Fermi surface inside each tetrahedron. ' For compu-
tational purposes, we approximate the form factor by
cos(hark/10) where k is the length of the vector in recipro-
cal units, and keep all Q vectors in Eq. (4) such that the
magnitude of Q is less than or equal to some cutoff'. One
can solve Eq. (4) in each irreducible representation (there
are six of these for a hexagonal crystal).

Note that Eq. (4) is not separable in k and k', so one
must solve the problem numerically. To do this, one takes
advantage of the fact that the effect of a group operation
is to multiply the gap function by a constant (in the case
of the two-dimensional representations, certain operations
will also cause a complex conjugation of the gap func-
tion). For a hexagonal crystal, these effects are tabulated
in Table I of Ref. 15. One can then write Eq. (4) in the
following form: '

ZMkl'~k =o, (5)

where k and k' are in the irreducible wedge of the zone
and the sum is over k'. T, is then defined to be where the
erst eigenvalue of M crosses zero. The resulting eigenvec-
tor is the gap function. We solved Eq. (5) using standard
EIspAcK routines. For the case of the one-dimensional
representations, M is a real symmetric matrix of order
163 for the Fermi surface grid considered. For the two-
dimensional representations, one has two equations for the
real and imaginary parts of the gap function, and M
reduces to a real symmetric matrix of order 326.

We erst looked at the even-parity case. Two forms for
the pairing potential were considered. The erst case
assumes that V(k) =I(k), which is the first term in a
ladder series. The second case assumes that V(k )

I(k)/[I —I(k)go], an ansatz for the full ladder sum.
(Note that there is no formal justification for this expres-
sion, unlike in the case where I is k independent. ) The re-
sults are shown in Table II. Tabulated is the coupling
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V1 V2

TABLE II. Coupling constants for the even-parity represen-
tations. Vl is the pairing potential V(k) I(k), and V2 is the
pairing potential V(k) =I(k)/[1 —I(k)@01. The cutoff for re-
ciprocal lattice vectors was set to three (139 reciprocal vectors).

TABLE III. Coupling constants for the odd-parity represen-
tations (the representation labeling assumes that the order-
parameter vector points along the z axis). The cuto[f for re-
ciprocal lattice vectors was set to three (first column, 139 re-
ciprocal vectors) and four (second column, 321 reciprocal vec-
tors).

A lg

Elg
E2g
82g

0.0276
0.0250
0.0194
0.0169

0.0155
0.0028
0.0058
0.0018

& lu

E lu

E2u
B2u

0.444
0.330
0.098
0.253

Q4

0.481
0.357
0.112
0.276

constant k for each representation, where X '=N(0)I
[n(1.13ro,/T, ) with N(0)I about 3.0 for UPt3. Only re-
sults for four of the representations are shown, as the X,'s
for the other two representations are in general small.
(Note in the separable case of Ref. 5, only four represen-
tations occur. ) As seen, the k's are small, and further-
more, those from the full ladder sum are smaller than
those gotten from just using V(k) =I(k). This result in-
dicates that even-parity pairing is suppressed, despite the
presence of antiferromagnetic correlations. To under-
stand this, note that V(k) peaks at a reciprocal lattice
vector. This is equivalent to umklapp scattering from
k =0. Therefore, the effective pairing potential (the sum
over umklapps of V) actually peaks at k =0, implying
odd-parity pairing.

For the odd-parity case, we used V(k) = I (k)go/—
[[—I (k)go], a:n ansatz for the sum over odd bubble dia-
grams. The odd-parity case is complicated in the presence
vf spin-orbit coupling since the order parameter vector is
locked to the lattice. ' For a general direction, the order
parameter is a sum of x, y, and z components. In the case
of UPt3, the moments are locked to the x-axis direction'
because of spin-orbit effects. ' We believe that a similar
effect happens for the order parameter vector (that is, that
the order parameter is locked to either the x, y, or z axis).
We will thus label the representations assuming that the
order parameter is pointing along the z axis (the other two
directions will simply relabel the representations). Note
that the assumption of a unique direction implies that no-
dal lines are possible. ' The appropriate matrix elements
under group operations can be obtained from those of Ref.
15, Table I by applying a sign change for every operation
involving a sign change in z.

In Table III, the results for UPt3 are shown for the odd
parity case for two cutoffs for the magnitude of Q. Again,
only four representations are shown since the coupling

constants are small for the other two. We note that the
coupling constants are an order of magnitude larger than
those in Table II. The one-dimensional A~„solution has
the largest X, with the two-dimensional E~„solution hav-
ing the next largest.

A point to consider now is how well the most obvious
basis functions do in reproducing the numerical solution.
These are tabulated in Table IV for the odd parity case,
and are lattice periodic versions of those listed in Ref. 5.
Comparisons show that only the E2„basis function is a
good approximation to the numerical gap functions, indi-
cating the need for, several terms in the basis function ex-
pansion.

We now analyze the nodal structures for the four odd-
parity representations (remembering the assumption here
that the order parameter vector points along a unique
symmetry axis). The E&„solution has point nodes along
the k, axis. The 82„solution has line nodes in the k» 0
(and hexagonal equivalent) planes. The E2„solution has
point nodes along the k, axis, and line nodes in the k, 0
and k, =z/c planes, with the A ~„solution having the same
line nodes. Transverse ultrasound reveals that most likely,
each major Fermi surface sheet has a nodal line perpen-
dicular to the k, axis. ' This is consistent with both the
A~„and E2„representations. More recently, high-fre-
quency rf susceptibility measurements reveal an axial
state, consistent with the E~„representation. An advan-
tage of E~„ is that it is two dimensional, which can be
used to explain a second phase transition seen in supercon-
ducting UPt3 as due to a rotation in the two-dimensional
order parameter space. ' Alternately, this second transi-
tion may simply be due to a change in the weak spin-
density-wave ordering recently observed in Upt3. More
experimental work will be needed to clarify this matter.

TABLE IV. Basis functions for the odd-parity representations. Units are n/c for k, and 2»r/v 3a for
k„and k». f(x) is a+ b cos(x), and a and b are arbitrary constants.

&[u

B2u

E2u

Elu

a sin(zk, ) [cos(2»rk»/ J3)+ 2 cos(yak»/ J3)cos(zk„)]/J3+ b sin(xk, )

f(»rk, )'[sin (2zk»/ J3 ) —2 sin (zk»/ 4 3)cos(zk& )1/J3
2sin(»rk, ) [cos(2+k»/J3) cos(»rk»/J3)cos(»rk—„)1/J6
+ 2i sin (zk, )sin (zk»/ J3)sin (zk„)/ J2
2f (»rk, ) [sin(2+k»/W3) + sin(xk»/J3) cos(»rk ) I/W6

+2if(zk, )cos(xk»/J3)sin(zk )/J2
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IV. DISCUSSION

An obvious question to ask is, "Where do we go from
here?" Some important physics is still missing from the
model discussed in Secs. II and III. First, I(k) is an ex-
change integral, and the form-factor approximation used
in this paper may be inadequate. Anisotropy in the form
factor itself has been ignored in this paper as no experi-
mental knowledge of it is known at this time. Second, the
pairing potential considered in this paper is essentially
that due to local moment Auctuations. One would expect
that there are two additional contributions: one due to the
weak spin-density-wave state and the other due to quasi-
particle terms. The contribution of these terms to the dy-
namic susceptibility appear to be small, ' but it is possi-
ble that they could qualitatively change the results pre-
sented here.

The most important piece of physics which needs to be
explored is the vertex g„, (q, co) which represents scatter-
ing of a quasiparticle state y„k to a state y„k caused by a
local moment Auctuation, where q =k-k'+Q. This func-
tion not only includes the effects of spin-orbit scattering,
but also diff'erentiates between intraband and interband
scattering. g would essentially be a matrix element involv-
ing the two quasiparticle wave functions, the local mo-
ment Auctuation (presumably a local f state in a H4
configuration), appropriate combinations of moment op-
erators, and factors such as e' '. The machinery for
evaluating such matrix elements already exists, ' so when
an appropriate theoretical evaluation of this quantity is
made available such effects could be included. Note that
a factor of g enters into the gap equation. Comparisons
of T, 's extracted from the tables to experiment would in-
dicate that the average g has a value less than one, an en-

couraging finding.
Finally, we note that recently, a new fixed point for an-

tiferromagnetic couplings was discovered for the problem
of two Kondo impurities. This fixed point would be
characterized by a strong increase in the momentum
dependent part of the interaction given in Eq. (2), and
thus such a fixed point would mean an enhancement of the
superconducting instability discussed in the present paper.
Inclusion of such effects would therefore also be desirable
in the context of the current model.

V. CONCLUSIONS

In this paper, an approximate form of the pairing in-
teraction was derived from a simple model of a lattice of
interacting Kondo ions, with the parameters being evalu-
ated from neutron scattering data. The resulting gap
equations were solved numerically for UPt3 utilizing the
Fermi surface from band-structure calculations, with the
odd-parity solutions of A &„and E I„symmetry having the
highest T,. A more complete theory, which would include
the scattering vertex g, is necessary before more definitive
conclusions can be rendered.
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