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Isobaric electrical resistance along the critical line in nickel: An experimental
test of universality
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High-precision measurement of the electrical resistance of nickel along its critical line, a first

attempt of this kind, as a function of pressure to 47.5 kbar is reported. Our analysis yields the
values of the critical exponents a =a' = —0.115~ 0.005 and the amplitude ratios

~
A/A'

~

=1.17+ 0.07 and ~D/D'~ =1.2+ 0.1. These values are in close agreement with those predicted

by renormalization-group (RG) theory. Moreover, this investigation provides an unambiguous ex-
perimental verification to one of the key consequences of RG theory that the critical exponents
and amplitude ratios are insensitive to pressure variation in nickel, a Heisenberg ferromagnet.

One of the major features of critical-point phenomena
is the concept of universality, according to which the criti-
cal exponents, and certain amplitude ratios that describe
the singularities of various properties near the critical
point, depend only upon such generalities of the system as
its spatial dimensionality d, spin dimensionality n, and the
symmetry of the Hamiltonian. ' If a field variable, for in-
stance, pressure for the Heisenberg ferromagnet (d=3,
n =3) does not alter the symmetry of the ordered state; all
the quantities which characterize a given universality
class remain unchanged by the variation of this field vari-
able. Our motivation for this research is to test this idea
in nickel. There is no such high-pressure study reported
so far in magnetic materials to the best of our knowledge.

There is compelling theoretical and experimental evi-
dence that the magnetic energy is proportional to the
spin-dependent electrical resistivity. Hence a study of
the temperature derivative of the electrical resistivity will

lead to the similar critical parameters as deduced from the
heat-capacity measurements. Besides, electrical resistivi-

ty can be measured with a precision far better than that
realized in heat-capacity experiments.

High-pressure, high-temperature studies were per-
formed on 99.999% pure foils of nickel; the technique
developed here enabled continuous in situ pressure and
temperature calibration. The pressure cell, fully de-
scribed elsewhere s consisted of an opposed anvil device
and calibration was performed by following the phase dia-
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FIG. 1. Electrical resistance vs temperature at typical pressures of 20 and 47.5 kbar. The shape of transition seems changed under
pressure because of the substantial change in the Fermi surface across the magnetic transition (see Ref. 5 for details). The inset ex-
hibits the variation of T, with pressure up to 47.5 kbar.
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TABLE I. Comparison of the results for a =a', A/A', and D/D' derived from Eq. (2) at atmospheric
pressure with those predicted by the renormalization-group (RG) theory (Refs. 6-8) and the high-

temperature (HT) series expansion (Ref. 9). Also listed are the values obtained by Kallback et al. (Ref.
3) which should be compared with our analysis [using Eq. (2)] of their data. The rms error (m, ) is in-

sensitive to the uncertainties indicated into the best-fit parameters. See Appendix A regarding the
change in sign for the amplitude ratios.

Quantities
of

interest

Data of Kallback et al. (Ref. 3)
HT series Values reported by analyzed using our

RG theory expansion Kallback et al. (Ref. 3) program [Eq. (2)]
Ia=a

m,

1.24
1.13

—0.115~ 0.009 —0.14+' 0.06
—0.09 +' 0.04

1.52

—0.095 ~ 0.005

—1.52+ 0.05
—0.8 ~ 0.2

3.828 x 10

—0.097 ~ 0.005 '

—1.S9 ~ 0.05
—1.1 ~ 0.1

2.423 x 10

'T, =630.284+ 0.003 K, can=0. 1 K.

grams of bismuth, antimony, and iron. Appropriate
corrections for the effect of pressure on thermal emf's
were made and all runs in which signals produced by tem-
perature gradients exceeded 0.1/o of the sample voltage
were rejected. The electrical resistance R could be mea-
sured to a sensitivity of 1 in 10 .

At pressures of 0.001, 20, 40, and 47.5 kbar electrical
resistance was measured as a function of temperature T.
The temperature range scanned 1 && 10 ~

~
r

~

~ 2
x10 for T~ T, and lx10 ~ g~1.9x10 for
T~ T,+, where t =T/T, —1. Figure I displays a typical
run for the pressure of 47.5 kbar. For comparison, we
have given the data obtained on the sample at 20 kbar.
Shown in the inset is the critical line in the pressure range
encompassed by our study. The data points at each pres-
sure and for T T,+ are fitted to the expression

R =Co+Cir+C2r'+Ar ' (1+Dr'). (I)
Here Co, C~, and C2 refer to coe%cients pertaining to the
normal variation of resistance with temperature, A and D
are the critical amplitude and the correction-to-scaling
term amplitude, while a denotes the critical exponent for
specific heat, and h is the correction-to-scaling exponent.
Equation (.I) with prime coefficient and exponents is used
for T T, (see Appendix A).

R*(T,T„rr) =„~ R(T, T, —x)g (x) dx, (2)

where g (x) is Gaussian in x of width a. The integration
of Eq. (2) is performed numerically using a 15-point Her-
mite integration and o is also a parameter in the fit. The
best rms error is obtained with o.=0.1 K.

To test e5ciency of our nonlinear least-squares fit pro-
gram, using Eq. (2), we first analyzed the reported data of

By plotting the singular part of dR/dT as a function of
T, an initial estimate of the T, is obtained, e.g. , at 1 bar,
T, =630 K. While fitting the experimental data to Eqs.
(1) and (2), T, was varied around this value in steps of
0.01 K. The precise magnitude of T, was deduced from
the intersection of curves of a and a' vs T„where the scal-
ing law a a' hoMs. At 1 bar, a=a'= —0.115~0.005
and T, =630.268+ 0.003 K. A similar procedure was fol-
lowed at higher pressures. For a given iteration, T, and a
were held fixed and the value of 6, =h, ' was always taken '
as 0.57.

Characteristic to solids is the presence of imperfections
and lattice strains leading to a distribution in T, s. In or-
der to account for the above, we assume a Gaussian distri-
bution of T, 's and the data points are fitted to the equa-
tion

TABLE II. Best-fit values for a=a', fA/A'[, and (D/D'f and the associated rms errors (I,) de-
duced from Eqs. (I) and (2) using our data (Ref. 5).

P (kbar) T, (K)
/
A/A'f Eq. used

0.001 630.64
630.284

—0.115~ 0.006
—0.115~ 0.005

1.27 +' 0.02
1.13 ~ 0.07

1.2+ 0.1

1.2 ~ 0.1

3.8 x 10
1.1 x 10

20
638.26
638.369

—0.118~ 0.008
-0.117~ 0.007

1.23 +' 0.02
1.17 +' 0.07

1.2 ~ 0.1

1.2 ~ 0.1

6.3 x 10
9.7 x 10

(I)
(2)

40 648.33
648.663

—0.114+-0.008
—0.117+0.008

1.2S + 0.02
1.16 +' 0.02

1.2 ~ 0.1

1.2 ~ 0.1

9 6x10 4

3.0x 10
(I)
(2)

47.5 648.6 —0.115~ 0.005 1.24 +' 0.02 1.13 ~ 0.05 4x ].0 (2)
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Kallback, Humble, and Malmstrom on Ni at 1 bar. We
give the results of our analysis in Table I along with the
results obtained by them and find good agreement. Furth-
ermore, it should be noted that our root-mean-square er-
ror (m„) is better.

Turning now to the analysis of our data on Ni, the
same approach that yielded the numbers in Table I is fol-
lowed. The results obtained through Eqs. (1) and (2) are
listed in Table II. The use of Eq. (2), in contrast to Eq.
(1), improves the m„by at least an order of magnitude at
all pressures. . The pressure independence of a =a',

I
A/2'

I
and I D/D'I is articulated more convincingly by

Eq. (2) than Eq. (1). Figure 2 depicts the results ob-
tained using Eq. (2). The insensitivity of relevant param-
eters with pressure is evident. Also shown in Fig. 2 are the
reanalyzed data of Killback et al. (Table I) as well as
renormalization-group (RG) theory predictions. Fig-
ure 3 depicts the critical contribution to measured resis-
tance at 47.5 kbar using Eq. (2).

Our investigations quantitatively verify the crucial
inference of the RG theory that a field variable that does
not alter the symmetry of the ordered state should not
change the universality class to which the system belongs.
For instance, the values of a, a',

I
A/A' I, and I

D/D'
I

should remain invariant. This finding is a reflection of the
smoothness of the critical line for nickel (inset, Fig. 1).
An earlier investigation along the A, line of He(d=3,
n=2) led to a similar conclusion, ' but our findings are
the first ones in a magnetic system and also the first ones
at such high pressures. In case the critical line has an ex-
tremum, the quantities which characterize a universality
class shall be influenced by pressure or any other ap-
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FIG. 3. A log-log plot of the critical (singular) contribution
to resistance (Co—+C~—t+C2—t —R) vs t Values of. Co, C~,
and C2 are obtained from Eq. (2). Here + and —signify the
data points for T T,+ and T T, , respectively, and
t (T T, )/T, . T—his figure is drawn essentially to bring out the
quality of fit to the data at 47.5 kbar, since the change in slope
of these data in Fig. l is not as pronounced as that at 20 kbar.

propriate field variable in the neighborhood of that ex-
tremum. Such a situation can, indeed, occur near a dou-
ble critical point'' or near the Neel temperature of an an-
tiferromagnet. '

In summary, this work on the isobaric electrical resis-
tance near T, of nickel has quantitatively tested the fol-
lowing RG theory predictions: (1) the values of the criti-
cal exponents, amplitude ratio, and the ratio of the correc-
tion to scaling term are close to the theoretical values, and
(2) these parameters are invariant along the critical line.

~ This work 0 Kailbick et ol. ~R G Theory
~ Q
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APPENDIX A
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20 40
PRESSURE (kbcr)

60

The Eq. (1) signifies change in resistance in the critical
region such that

R =Co+ C ~t +C2t ~+At ' (I +Dt o 57)

FIG. 2. Results for a=a', I'2/2'I, and
I
D/D'I vs pressure.

For comparison, the reanalyzed data of Kallback et al. (Ref. 3)
(at 1 bar) and the RG theoretical results are also displayed.
The small error bars at 40 and 47.5 kbar for I A/A'

I may be an
artifact of the data analysis, that does not reflect the systematic
or other errors which may become important at such pressures.

and

for T) T, , (Ala)

for T (T, . (A lb)
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It can be shown that their derivatives with respect to t are

R
Ci +2C2t +At '((I —a) + (1 —a+0.57)Dt

I -CI+2Cpt

+A'I r I
'[(I —a')+ (1 —a'+0.57)D'I r I ],

and hence the temperature derivatives 8R/8T, 8R'/8T are

8R 1 8R 8R' 1 8R'
8T T, 8t 8T T, 8t

From the above equations, it is evident that when
R 8R/8T and R' 8R'/8T, the coefficients transform
by

A(1 —a), , (1 —a')A~ and —A'~ A'
Tc Tc

D(1 —a+0.57)
d D, D'(1 —a'+0.57)

(1 —a) (1 —a')

From the scaling relation a=a', it is obvious that the
quantities IA/A'I and ID/O'I are the same irrespective
of the fact of whether they are derived from Eqs. (1) or
(1').
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