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Electronic damping of spin waves in disordered itinerant ferromagnets
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The effect of impurity scattering on the damping of spin waves in itinerant ferromagnets at
zero temperature is studied. Spin-independent impurity scattering leads to a damping term pro-
portional to q, and spin-flipping impurity scattering processes lead to an additional q damping
term. This, in light of the temperature-independent, q spin-wave linewidth observed recently, in-
dicates the significance of intrinsic spin-wave broadening mechanisms. Comparison of estimates
made for the damping term with experimental results for the spin-wave linewidth strongly sug-
gests that diffusive relaxation is the relevant mechanism for spin-wave broadening when only
spin-independent scattering processes are present.

Recent inelastic neutron scattering experiments' on the
spin dynamics of amorphous Fe9O —„Ni„Zrto have re-
vealed a temperature-independent spin-wave linewidth
and within experimental resolution the linewidth data
have been shown to fit equally well a q and a q function-
al form. This insensitivity to temperature is contrary to
the T dependence expected from the contribution to
damping of spin waves by magnon-magnon interaction.
The temperature independence of the spin-wave broaden-
ing was taken to be suggestive of the relevance of intrinsic
broadening mechanisms arising possibly due to magnetic
disorder in the system. It is known that within a ran-
dom Heisenberg model of localized spins, the scattering of
spin waves off Auctuations in the exchange term leads to a
temperature-independent spin-wave damping which goes
as q . On the other hand, in a disordered, itinerant-
electron system there exist, in the paramagnetic as well as
in the weakly ferromagnetic phases, fluctuations in the
spin density itself, the nature of which is rendered
diffusive by impurity scattering processes. In the absence
of any spin-Aip impurity scattering process, spin diffusion
is the only intrinsic mechanism for relaxation of the long-
wavelength, low-frequency modes of spin-density Auctua-
tions. This diffusive relaxation causes a damping of spin
waves (proportional to the spin-diffusion constant) which,
as we show here, goes as q .

Despite the fundamental differences between these two
mechanisms for spin-wave damping, the closeness of the
two functional forms makes it difficult to distinguish ex-
perimentally solely on the basis of the q dependence.
Comparison of estimated magnitude of the damping term
within the Heisenberg model with results for transition
metal-metalloid systems has revealed an order-of-
magnitude discrepancy. Our estimate for the spin-wave
damping term, relative to the spin-wave energy, compares
well with the experimental linewidth data and clearly in-
dicates the importance of diffusive relaxation in weak,
itinerant ferromagnets as an intrinsic broadening mecha-
nism for damping of spin waves at low temperatures.

Spin-Aip processes associated with spin-dependent
(spin-orbit or magnetic) impurity scattering provide an
intrinsic spin-relaxation mechanism in addition to
diffusive relaxation and this leads to an infinite-

wavelength broadening of the spin response and an addi-
tional q term in the spin-wave damping. We have ex-
tended our study of the combined effects of normal disor-
der and electronic correlation in an itinerant ferromagnet-
ic system near the magnetic instability by including
spin-dependent impurity-scattering processes. The
dynamical transverse magnetic susceptibility for the in-
teracting system can be written in the form of a random-
phase approximation-type expression:

g; p+(q, co, a)
I —&g mp+(q, co,~)

Here g;~p+(q, co, A) is the impurity-averaged transverse
spin susceptibility for the noninteracting system, evalu-
ated in the ferromagnetic phase. U is the Hubbard in-
teraction strength and d, = —U(n 1 n i), w—here n

denotes the electronic density. If no spin-Aipping impurity
scattering is present, h, also measures the relative band
shift between the majority and minority spin bands, and
there are no minority spin states up to energy h. measured
from the bottom of the majority spin band. However, if
spin-Aip processes are present the band edges of the two
spin bands have to coincide, although if spin-Aip scatter-
ing is small the density of states in the minority spin band
does become significant only outside this region. For en-
ergies far from the band edge, 5,, apart from a renormal-
ization, still measures the band shift.

Evaluation of the impurity-averaged susceptibility,
g;~p+ (q, co, d, ), has been discussed earlier. The collective
modes representing the spin-wave instability are obtained
by setting the denominator in Eq. (I) to zero, from which
we obtain the equation for the spin-wave mode:

(A i [(4/3)z—sF'+Dq /[I+ (Zr) ]])aq
12kF

The relaxation rates are given by re '=2trN(0)tv,
rsF'=2ttN(0)ysF, '

y& and ysF being the strengths of
normal and spin-Aip impurity scattering processes.

' =re '+rsF' is the total relaxation rate, D =i /3r is
the diffusion constant, I is the mean free path, and 6, is
the renormalized relative band shift given by A =5/
[I+(2/3kFlsF) ].
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4(kFl) a
(kg. l ) '+ (a/2rop-) ' (3)

The q damping term is seen to be vanishing both in the
pure limit [(kzl) 01 as well as in the dirty limit
f (kpl ) ' ~j. The behavior of the coefficient
I v /(q/k~) with increasing (kpl) ' is shown in Fig. 1 for
different values of 4/cop.

Information about the Fermi energy, Fermi momen-
turn, mean free path, and the band shift can enable one to
evaluate the damping term from Eq. (3) and make quanti-
tative comparison with experimental data possible. The
ratio of the damping term to the spin-wave energy can
simply be written as

I q/coq =Dq /d

in the limit when (hz) «1. In view of the fact that
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FIG I. Variat. ion of spin-wave damping coefficient, I ~/
(q/kp), with increasing normal scattering strength.

The factor a, which is the coefficient of the q term in
the static susceptibility, is 1 in the pure limit and de-
creases with increasing disorder. Its behavior with. in-
creasing (kplsr) ' for diff'erent values of (kpl) ' has
been studied by direct evaluation of the static susceptibili-
ty. In the case when only normal impurity scattering is
present, the static susceptibility g; ~ (0,0) for q =0 is in-
dependent of disorder strength. Thus the behavior of a
with disorder indicates that for nonzero q the static sus-
ceptibility is enhanced by disorder —a simple example of
disorder-induced enhancement of spin fluctuations. The
factor a also effectively sets the length scale for the
paramagnon correlation length in the very dirty limit
(k,I«I).5s

The spin-wave stiffness constant is proportional to the
factor a which, in view of its behavior with disorder, indi-
cates that the spin-wave mode becomes softer with in-
creasing impurity scattering strength. The presence of an
imaginary part indicates that spin waves in this system are
damped and this leads to broadening and to an intrinsic
spin-wave linewidth I q.

In the absence of any spin-flip impurity scattering, I q is
proportional to q and may be rewritten, in units of the
Fermi energy, as:

diffusion constant is proportional to the mean free path [in
atomic units (6 =m=1), D=kFl/3 to lowest order],
correlation with resistive measurement can be done to es-
tablish the intrinsic nature of spin-wave broadening due to
normal disorder.

The range of values of I ~ shown in Fig. 1, measured
with respect to the spin-wave energy co~, and evaluated us-
ing parameters for a typical dirty ferromagnetic metal are
indeed of the same order of magnitude as seen in the ex-
periments. ' If one takes 6/2 —T, (= 300 K for these al-
loys'), then from the measured values of the stiff'ness con-
stant (=A/12k~) of -50 meV A we obtain kp-0. 2

Using q =0.12 4 ' from Ref. 1, kpl = 1,
6/2rop 0.25, we find I ~/2ro~ —0.2, which is roughly
where the experimental results seem to extrapolate to at
zero temperature.

Comparison for the intrinsic spin-wave linewidth ob-
served in experiments has been made in Ref. 1 with the
functional form q as well as with q and within experi-
mental resolution the fitting indicates that both forms
seem to adequately represent the linewidth data. As noted
in Ref. 1 temperature-independent spin-wave damping
proportional to has been predicted by the works of
Singh and Roth and Iskhakov in random Heisenberg
models. However, comparison of estimates for I ~/rov
made by Singh and Roth within their random Heisenberg
model with results for a transition metal-metalloid alloy
indicates that their estimates are an order of magnitude
smaller than the observed values. We now discuss these
earlier works as they diff'er from the present theory based
on the itinerant electron model of spin-wave damping in
weak ferromagnets.

The works in Refs. 3 and 4 deal with a random Heisen-
berg model of localized spins and the damping of spin
waves in such a system arises from their scattering-off
fluctuations in the exchange term. An approximate but
particularly simple way to understand the q result is to
transform the Heisenberg Hamiltonian into a free-bosonic
Hamiltonian (representing spin waves) by using the
Holstein-Primakoff transformation. The spectrum of the
nonrandom part of the one-particle Hamiltonain gives the
spin-wave dispersion relation and fluctuations in the ex-
change term appear as random diagonal and off-diagonal
terms which are, however, correlated. These impurity
terms lead to scattering of spin waves and, as a result of
the correlation, one finds that in momentum space the
scattering amplitude for low-momentum spin waves goes
as q . Impurity averaging of the self-energy correction in
the conventional manner and evaluation of the imaginary
part leads to a q result for spin-wave damping.

Unlike the case of a localized spin model, in an itinerant
electron system there exist fluctuations in the spin density
in the paramagnetic and the weakly ferromagnetic phases.
These spin-density fluctuations are strongly affected by
impurity scattering and in the diffusive limits of small
momentum (q«1/I) and low frequency (roz«1), the
mechanism of diffusion provides a mode for spin relaxa-
tion leading to a damping of spin-density fluctuations
which goes as Dq /4 relative to the spin-wave energy. A
description of spin-wave damping in terms of an itinerant
electron model is more appropriate physically for metallic
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weak ferromagnets in which the impurity parameter kFl
and the band shift d/coF play important roles. Many
transition-metal-metalloid systems are believed to be
itinerant, weakly ferromagnetic (unsaturated) systems
and the Invar behavior exhibited by the Fe9o —„Ni„Zr~o
alloys studied' are one of the characteristics of such sys-
tems. 9 That our estimate for I v/2cov is close to the ob-
served values in these systems strongly supports the con-
clusion of our theory that diff'usion of spin-density fluctua-
tions plays an important role in spin-wave damping.

Spin-wave damping in the itinerant ferromagnetic sys-
tem is much stronger if spin-Aip impurity scattering is
present, and in this case the damping term I v" is propor-
tional to q . The coefficien I v "/(g/kF) in units of the
Fermi energy, may be written as —, (kFIsF) 'a. Varia-
tion of (kFlsF) a with increasing spin-flip impurity
scattering strength is shown in Fig. 2 and indicates that
spin-wave damping appears to saturate with increasing
strength of spin-Aip scattering.

Spin-orbit effects show up experimentally when the im-
purity atoms have a large atomic number (e.g., Au, Pb,
etc.). However, with such impurities one needs to consid-
er the disorder in the strength of the Hubbard correlation
term also. This has been shown to lead to infinite-
wavelength damping of spin waves' which will probably
overwhelm any q dependence in damping for small
momentum. Spin-dependent scattering processes, in gen-
eral, tend to work against ferromagnetism due to spin Aip-

ping and furthermore when magnetic impurities are
present systems tend to form more complicated ground
states such as spin glasses. This may account for why it is
hard to see the q dependence of spin-wave damping.

Due to the quantum mechanical interference of scatter-
ing amplitudes of a diffusing particle, weak-localization
effects lead to a reduction in the diffusion constant from
its bare value (I /3r). Therefore, in view of Eq. (4)
wherein the spin-wave damping is proportional to the
diffusion constant, it is important to study weak-
localization effects. Weak-localization corrections are
very significant experimentally and lead to well-known
dependences of the diffusion constant on system scale,
temperature, and frequency. "

Efl'ects of weak-localization corrections in the fer-
romagnetic phase have recently been studied for normal
disorder. Localization corrections to the transverse mag-
netic susceptibility in the ferromagnetic phase have a
qualitatively different nature from those in the paramag-
netic phase due to the presence of the band shift h. For
the transverse magnetic susceptibility the relevant propa-
gator involves antiparallel spins and so in the diffusion
pole co gets replaced by co —6,. For the Cooper propagator
in the antiparallel spin channel one obtains,

(5)

Therefore, as co 0, the presence of 5, removes the in-
frared singularity, and the system-size (L) dependence
which comes in the localization correction through the
lower limit of the Q integral is removed provided
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FIG. 2. Variation of (kFlsF) a, with increasing spin-Aip
scattering strength.
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h»D/I. . Localization corrections to the diflusion con-
stant thus lead to a reduction in the spin-wave damping;
however, these corrections are not singular due to the
presence of d, and do not lead to any scale dependence (or
temperature dependence) as long as A»D/L~ (or r;„',
the inelastic scattering rate). On the other hand, for
Stoner excitations which have energies of the order of 6,
the localization corrections are singular. This results in a
quantum-mechanical suppression of the diffusion constant
associated with Stoner excitations.

In conclusion, it has been shown that impurity scatter-
ing processes lead to damping of spin waves in disordered
itinerant ferromagnets. This is the prominent broadening
mechanism at low temperatures as the contribution due to
magnon-magnon interaction goes as T . In the weakly
ferromagnetic limit spin-independent impurity scattering
has been shown to lead to a zero-temperature damping
term proportional to q which, in light of the recent obser-
vation in Fe9o —„Ni„Zr~o of a temperature-independent
spin-wave linewidth which goes as q, seems to cor-
roborate the significance of intrinsic broadening mecha-
nisms. Our estimate for I ~/2'~ is close to the experimen-
tally observed values for spin-wave broadening in these
systems and strongly supports the conclusion of our theory
that diA'usive relaxation of spin-density Auctuations in
weakly ferromagnetic systems plays an important role in
spin-wave damping.
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