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Domain growth and scaling in the two-dimensional Langevin model
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A numerical simulation of the Langevin model for spinodal decomposition is carried out in two
dimensions. The pair correlation function is found to exhibit dynamical scaling to a good first ap-
proximation. It is found that the domain growth law asymptotically approaches t ', in agreement
with previous results for the kinetic Ising model with conserved order parameter. The Langevin,
cell dynamics, and spin exchange kinetic Ising models are shown to belong to the same dynamical
universality class for the range of domain sizes studied here.

Numerical simulation methods have been used for some
time to study the kinetics of first-order phase transitions.
These include Monte Carlo and molecular dynamics
simulations and numerical integration of stochastic differ-
ential equations (such as the Langevin equation). It has
been recognized for many years that such studies are use-
ful in obtaining qualitative insights (e.g. , the role that
conservation laws play in ordering processes), but is has
proved difficult to determine precisely the asymptotic
universal properties such as domain growth laws and scal-
ing functions. The main limitations are due both to
finite-size effects and related finite-time limitations im-
posed by current computer capabilities. The lack, in
most models, of any theoretical predictions makes such a
determination even more difficult. Recent theoretical de-
velopments, however, have led to renewed interest in sys-
tems which undergo spinodal decomposition and coarsen-
ing, such as occurs following a quench below a critical
point at a critical value of the order parameter. On the
one hand, it has been argued ' that for such a quench the
asymptotic growth is described by a modified Lifshitz-
Slyozov law in which the characteristic length R(t),
which is related to the average size of ordered domains,
behaves like R(t) = t", with x = —,', and including an im-
portant correction term arising from surface dift'usion

along the interfaces of the interconnected structures. On
the other hand, numerical simulations together with
renormalization-group ideas have been used to study both
the spin exchange kinetic Ising (SEKI) model with a con-
served order parameter and the continuum Langevin
model in two dimensions. The conclusions of that work
were that the two models belong to diff'erent dynamical
universality classes. The growth law obtained for the
Langevin model is a power law with an exponent x =

4 . '

Recent extensive Monte Carlo studies ' of the SEKI
model show evidence for a power law with a growth ex-
ponent close to x = —,', once the correction term for dif-
fusion along the interfaces has been taken into account.

Therefore, it is of interest to perform similar extensive
studies of the Langevin model in order to clarify two ma-
jor issues: (i) whether the model exhibits dynamical scal-
ing, and (ii) whether the continuum Langevin model, the
SEKI model, and perhaps other models of first-order
phase transitions such as the Oono-Puri cell-dynamics
model, "belong to the same dynamical universality class.

In this Brief Report we present the results of a com-
prehensive numerical simulation of spinodal decomposi-
tion and coarsening for the two-dimensional Langevin
model. As discussed below, we calculate the pair-
correlation function and show that to a good first approxi-
mation dynamical scaling is satisfied. We also find that
our data for the characteristic length scale is consistent
with the modified Lifshitz-Slyozov law. Furthermore, the
scaling function that we obtain for the Langevin model is
almost identical to the scaling functions for the SEKI
(Ref. 10) and the Oono-Puri cell dynamics" models, both
at a critical value of the order parameter. The three scal-
ing functions differ by, at most, 2% in the range of domain
sizes studied (see Fig. 1 inset). Thus, within this uncer-
tainty, these three models appear to be in the same
dynamical universality class. The same scaling function
for the Langevin model has been obtained in an indepen-
dent work by Rogers, Elder, and Desai. ' Our largest
simulation time exceeds theirs by nearly an order of mag-
nitude. However, in the range of overlap the scaling func-
tions are found to agree. We have also compared our
scaled structure factor with that of Amar, Sullivan, and
Mountain and find very good agreement. '

The Langevin equation for the case of a conserved order
parameter c (x, t ) is

8,c(x, t) =iMV„'H —EV„'—a)c(x, t)+uc'(x, t)l

where M is a kinetic coefficient, E', a, and u are positive,
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FIG. 1. The pair-correlation function g(r, z) plotted with respect to r/Rr(z), to test the scaling ansatz. The dimensionless times z
are indicated in the legend. Note the early time (z =50) breakdown of scaling. We find that only when z ~ 1000 are we safely in the
scaling regime. Note also that g(r, z) is close to but not exactly one for r/Rg(z) ~ 0, even at the latest times studied. The inset shows
a comparison of our results with those found for the SEKI and the cell dynamics models of Refs. 10 and 17, respectively.

phenomenological coefficients, and the noise g(x, t) is as-
sumed to be Gaussian distributed, with zero mean and
&g(x, t )((x', t ')) = —2ktt 'i'Y„8(x —x') 8(t —t'). The first
term on the right-hand side of Eq. (1) is MV„(BF/6c),
where F(c) has been taken to be the usual Ginzburg-
Landau free-energy functional with two independent pa-
rameters. We have chosen' to introduce dimensionless
variables as follows: y du/a(c —co), r=da/K'~;"a'nd

(2Ma /K')t, where co is the initial average value of
the order parameter and v'a/u and 4K'/a are proportion-
al to the mean-field values of the order parameter and
correlation length, respectively. Equation (1) then be-
comes

B,i'(r, z) = —,
'

V,'[(—V,' —1)y(r, z)+ y'(r, z)]

+dog(r, z),
where we have set the constant co =0 corresponding to the
critical quench studied in this paper. The scaled noise
ri(r, z) satisfies a scaled version of the Auctuation-dissi-
pation relation, with the intensity given by e =k+Tu/aK'.
The parameter t. is the quantity normally used in the
Ginzburg criterion to determine the validity of mean-field
theory in critical phenomena. Note that with this particu-
lar scaling, e contains the only dependence on the original
parameters of the Ginzburg-Landau free energy. This pa-
rametrization is useful for small e, i.e., for quenches well
below the critical temperature T, . On the other hand, the
parametrization which was used in Ref. 7 to also study the
Langevin model is related to ours in the following way:

8 =a/K' and K =K' (1+8)/u. Dynamical properties
such as the growth law of both the conserved and noncon-
served Langevin models were studied for different pairs of
values of EC and 6; the results obtained there suggested
that the domain growth law is independent of K and 6
(except for the special case 8~ 0 when the double-well

,.potential disappears). If the noise term in Eq. (2) is ir-
relevant to the universal growth law (and possibly to the
scaling function) for this model (and correspoiidingly for
the nonconserved model), then our parametrization would
appear to be the natural one to use in order to determine
these properties, at least at low temperatures. The univer-
sal features of the domain growth law, correlation func-
tion, and structure factor would then be obtained for
diff'erent values of EC and 6 by the simple rescaling intro-
duced above. When the noise term is important, such as
in the early time behavior, one might expect nonuniversal
behavior for different K since e=(8+1)/K8. This pic-
ture is qualitatively supported by the work described in
Ref. 12. In fact, larger values of e result in a more ex-
tended initial transient regime and require longer simula-
tion times in order to reach the scaling regime. One
should also point out that the largest deviation between
the scaling functions of the Langevin model and the SEKI
model appear at short distances. This is due to the fact
that the average value of the local order parameter
(y (z)) is identically equal to one in the case of the SEKI
model but is a function of time in our present case. Its
value approaches a constant when the scaling regime is
reached but the time required to reach saturation depends
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on e (see Fig. 1 inset for comparison). The same transient
behavior has also been discussed in Ref. 7.

In our numerical solution we have discretized Eq. (2).
For the bulk of our work we have examined a square lat-
tice of 256x256 points at |..=0.0, with the order parame-
ter y(r;) given at each of the lattice points. We have also
examined a 128&128 system at t. =0.1 and out to a max-
imum time of z=1000. We have since established that
z =1000 is not a sufficiently long time to be convincingly
into the scaling regime. Therefore, for the case of t..=0.1,
we will present an expanded result of a much longer simu-
lation in a later paper.

We have replaced the Laplacian in Eq. (2) by its dis-
cretized form V, y(r, z) =gm [y(r;+ m) —y(r; ) ]/(Ar )
where I is the nearest-neighbor lattice vector. We then
numerically integrate Eq. (2) using Euler's method, with
dimensionless mesh size h, r =1.0 and a discrete dimen-
sionless time step h, z=0.02 for t. =0.0. Our initial distri-
bution for y(r;, z =0) was specified by a random, uniform
distribution in the range [ —I/M3, +1/J3]. To average
the noise' and the initial distribution of y(r;), we solved
Eq. (2) a large number of times (runs), namely for
t..=0.0, 20 runs.

We have paid particular attention (for reasons that will
become clearer below) to an accurate determination of
the (nonequilibrium) pair correlation function g(r, z)
=(6'y(r, z)8y(0, z)). We have performed a circular aver-
age on g(r, z) to calculate g (r, z) and the resulting quanti-
ty has been averaged over the 20 independent runs at
@=0.0. [We have found this number of runs sufficient for
an accurate determination of g(r, z). ' ]

Our first length Rs(z) is defined as the smallest value
of r for which g(r, z) =0.0 at time z. We have also used
the conventional procedure of defining lengths from mo-
ments of the structure factor. The behavior of the
different lengths is quite similar, although we have found
that the lengths defined from moments of the structure
factor are sensitive to the upper cutoff in k space.

First we address the validity and extent of the dynami-
cal scaling ansatz, which states that the pair-correlation
function satisfies a scaling relation g(r, z) =F[r/R(z) l for
z + zo (zQ is some initial transient time). In Fig. 1 we
show the results obtained from plotting our data for
g(r, z) vs r/Rs(z) for z ranging from 3000 to 20000. It
seems quite clear that for z & 3000 we are fairly well into
the scaling regime. We also show in Fig. 1 the results for
z=50 (dashed line); this gives an idea of the maximum
departure from scaling observed at very early times. For
z~ 1000 the departure from scaling increased continu-
ously with decreasing z up to the degree seen for z=50.
In the inset in Fig. (1) we show our results for the scaling
function for @=0.0 plotted with those of the SEKI (Ref.
10) and the cell-dynamics' models. One can see that
over the range of lengths studied the agreement is very
good.

Finally, we consider the issue of the domain growth law
for this system. As noted earlier, it has been argued, that
the growth law for the kinetic Ising model satisfies
R(z) =a+ bz''~, where the constant a arises from the sur-
face diffusion. ' The same argument would appear to
hold for the Langevin model as well. On the other hand, it

10z

+ R, = 1"intercept of g(r, x)

Power law trend —s'~

~
W'

10o
10' 102 10' 104 10'

FIG. 2. The first. intercept of the pair-correlation function,
Rg is shown on a log-log axis plotted vs the dimensionless time

The dashed line is a power law with exponent identically
equal to 3 . Note the very slow asymptotic approach to this line
demonstrated by the raw data.

has been also argued that the asymptotic behavior in the
Langevin model is given by a different power law, i.e.,
x =

4 . It is of course difficult to distinguish between two
small exponents, such as —,

' and —,
' . Nevertheless, we be-

lieve our results strongly suggest that x =
3 . For exam-

ple, we have analyzed our data in terms of a nonlinear fit
to R(z) =a+bz . We have found that the best fit corre-
sponds to x =0.38+ 0.04 for a=0.0, so that our data are
in reasonable agreement with the prediction of Ref. 3. It
should be mentioned that these nonlinear fits are over the
entire data range beginning at the earliest times and hence
our value of x obtained in this way is probably affected by
regions of the data that are not characterized by a pure
power law. If we restrict the fitting procedure to z & 4000
we obtain a value of x =0.36 ~0.03 in better agreement
with the predicted value of x =

3 . The error bars are a
crude estimate based upon the curvature of g (a, b, x)
near its minimum.

As a second illustration, we show in Fig. 2 the results of
logarithmically plotting our data for e =0.0. The dashed
line has a slope of 3 . One can see that the data is in

agreement with an asymptotic approach of x
Finally, in Fig. 3 we show the effective exponent %,&

=dlog~o[R~(z)l/dlog~o(z) plotted as a function of 1/Rg
for the t. =0.0 data. Assuming the Huse prediction, this
effective exponent should approach —,

' for R~ ~. Our
results clearly support Huse's prediction. The large fIuc-
tuations for large Rg are due to the numerical differencing
done when computing the logarithmic derivative. (See
Fig. 1 caption. )

These results are to be contrasted with those of Ref. 7,
which also involves a numerical simulation of this model
but where a growth exponent of x =

4 is obtained. We
find that the relationship between our time scale z and the
time scale in that reference zMv, is z=28 zMv.

' The
renormalization-group analysis presented therein (see Fig.
2 in Ref. 7 and also Fig. 6 in Ref. 6) is based on times
z~ 300 for t..=0.5 and z~ 500 for a=0.7. The longest
simulation time, however, appears to be z = 800 with
a=0.17 (Fig. 3, Ref. 7). We conclude that most of the
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data presented in Refs. 6 and 7, and especially the data
used to determine the exponent x, are probably effected
by transient behavior prior to the asymptotic scaling re-
gime.

In conclusion, our results for the domain growth are
consistent with a modified Lifshitz-Slyozov law and the
scaling function which we have presented appears to coin-
cide with the recently obtained scaling function for both
the cell dynamics (at T=O.O) and SEKI (at T=0.6T, )
models, both for quenches at a critical value of the order
parameter. As a consequence, and within the precision of
our study, all three models appear to belong to the same
dynamical universality class.

g

FIG. 3. The effective exponent, N, tt d Iog&0[Rs(r) l/
d log~a(r), is plotted vs I/Rs. The extrapolated value of N, tt as
I/Rs 0 should give the asymptotic late time e ffe tcive power
law behavior. For I/Rs~ 0.08 the data is smooth and continu-
ously approaches —,

' from below. For smaller values of I/Rs the
data become rather noisy due to the numerical round-oA error
incurred while taking the logarithmic derivative (which is pro-
portional to the ratio of small diAerences between large, nearly
equal, numbers).
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