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TABLE I. Cross-relaxation processes expected in the ground state of Tm +:SrF2. Three-spin pro-
cesses are expected at h;, and two- and three-spin processes at H;.

h2

h3

H2

h6

Magnetic field H
Unit of I A/gps I

5/12

I/2

I/iX

(9 —Ji7)/8
3/4

4/3

(9+417)/8

(Oe)

95.3

114.3

132.0

139.4

171.5

228.7

304.9

375.1

Process

2E13 E34

E]3+E23 =E34

E]2+E]3 E34s 2E]3 E24

2E23 =E34

E]3=E34,
E]2+E23 =E34, E]3+E23 E24,
2E]2 =E23, 2E]3 =E]4, 2E34 E]4

E23 =E34,
E]2+E3'4 =E]3,E]3+E23 E]4,
2E23 =E24, 2E34 E24

E]2+E]3 E24, E]2+E34=E23,
2E ]2 =E34 2E23 =E]4, 2E34 =E]3

2E34 =E23

with effective electron spin S= —,
' and Tm nuclear spin

The energy eigenvalues (E;, i =1,2, 3,4) are ob
tained from Hamiltonian (1), and the energy-level dia-
gram in low magnetic fields is shown in Fig. 1. Table I
shows all possible two- (E;~ =El,I) and three- (E;J+EkI
=E „) spin processes and the cross-relaxation fields
expected in the ground state, where E;J=E~ —E;. The
spin processes expected below 300 Oe are schematically
shown in Fig. l. (Three-spin processes at Ht and H2 are
not shown. ) We observed cross relaxation shown by solid
lines in Fig. 1 and analyzed these processes using rate
equations.

(-229 Oe) where one of the two-spin processes occurs.
The pump pulse excites the sample at t =0, and the repeti-
tion rate is 4 Hz. The fast decay of the magnetization
around 229 Oe is due to the cross relaxation, and the
cross-relaxation time at the center of the crossing field is
36 @sec under the approximation of the exponential de-
cay. A slight inclination of the background comes from
the ac coupling of the amplifier. The decay due to the
spin-lattice relaxation is much slower.

Similar curves were observed around Hi, h4, and h2
( (200 Oe), and the cross-relaxation rates (the inverse of
the observed decay times) obtained from the Faraday ro-

II. EXPERIMENT AND RESULTS

The experimental setup is schematically shown in Fig.
2(a). The pump and probe lights are provided by a
nitrogen-laser-pumped dye laser (5800 A., 3 nsec, 10 kW)
and a He-Ne laser (6328 A, 1 mW), respectively. The
pump (circularly polarized) and probe (linearly polar-
ized) beains are nearly collinear (parallel to the [111]
axis) and focused on the sample (0.02 at. % Tm +, 2 mm
in thickness), which is in contact with a copper block at
liquid-helium temperature. The waist sizes of the beams
at the focus are about 100 pm. A static magnetic field up
to 400 Oe is applied along the [111]axis. The magnetiza-
tion parallel to the magnetic field is induced in the ground
state by the pump pulse, and the decay of the induced .
magnetization is monitored as the change of the Faraday
rotation of the probe light. The Faraday rotation is
detected by a polarimeter. A Gian prism and two photo-
diodes are used in the polarimeter as shown in Fig. 2(b).
The Faraday rotation angle is proportional to the magne-
tization, and the polarimeter output linearly responds to
the Faraday rotation angle when it is small. '

Figure 3 shows the Faraday rotation signals around H2
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FIG. 2. (a) Experimental setup for the measurement of the
cross-relaxation time and (b) construction of the polarimeter.
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111. ANALYSIS BY RATE QK UATIONS
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(3)
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TABLE II. The observed cross-relaxation times t& and the cross-relaxation rates F determined by
using rate equations.

h2

h4
Hi
H2

H (Oe)

114
139
172
229

Process

E13+E23 E34
2E23 E34
E i3 =E34
E23 E34

z& (msec)

15
11
2.3
0.036

1/z~ (sec ')

6.7 x 10'
9.1 x 10
4.3 x 10
2.8 x 10

W (sec ')

7.6x 10'
9.2x 10'
2.8 x 10'
1.9x 10

as

n;(t) A;+8; exp( —t/z)+C; exp( —t/z~)

+D; exp( —t/z2),

1
8 8'+4r, 1 4r.

T2
(10)

1 3 1
2 S'+4r, 4r,

&l S2
(6)

where A;, 8;, C;, and D; are constants, and z~ represents
the observed cross-relaxation time and z2 the spin-lattice
relaxation time. For the discussion of the two-spin process
at H2 the same rate equations (3) and (4) where sub-
scripts 1 and 2 are interchanged can be used. The relaxa-
tion rates are given by the same expression as Eqs. (6).

Next we consider the three-spin processes. The cross-
relaxation terms at h2 are written as

Fl F2 F4 ~(n ln2n4 n3 )

F3 3W(n2n4 n3 ), F4——W(n2n4 n3 ), —

F3 3W(n~n2n4 ns )—.
The rate equations are linearized in a similar way as in the
two-spin process, and n;(t) can be written in the same
form as in Eq. (5). But the expressions of relaxation rates
are

1 3'=
4 8'+4r, =4r,1 ($)

ZI 'r2

which are diferent from Eq. (6). For the three-spin pro-
cess at h4 we obtain

F ) 0, F2 = —2W(n2n4 n3 ),

The results are summarized in Table II. The cross-
relaxation rate W is obtained from the observed decay
time z& by using Eqs. (6), (8), and (10), and 4r =10
sec '. The cross-relaxation rates for the two-spin pro-
cesses are larger than those for the three-spin processes.
As for the two-spin processes, the cross-relaxation rate at
H~ is much smaller than that at 02. This is because tran-
sition 1-3 involved in the former is forbidden, whereas
two transitions involved in the latter are allowed.

IV. SUMMARY

We observed the cross relaxation in the ground state of
Tm +:SrF2 (0.02 at. % Tm +) by optical means in low
magnetic fields. The circular dichroism and the Faraday
rotation of the optical transition are responsible for the
creation and detection of the magnetization. The cross-
relaxation times were measured both for two- and three-
spin processes. Since the time resolution is determined by
the pulse width of the pumping light, it is expected that
this method enables us to observe very fast relaxations. "

The analysis of the cross relaxation was made by using
rate equations. The nonlinear rate equations were linear-
ized under some assumptions, and the cross-relaxation
rates were determined from the experimental results.
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