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By expanding the order parameter for an array of Josephson-coupled grains in powers of 1/z,

where z is the number of nearest neighbors, I systematically incorporate the eff'ect of phase fluc-

tuations. The correction of order 1/z vanishes when the mean-field solution is known to be exact,

for a=zJ/U=~ and T*=T/zJ=O. For larger T* and smaller t, the first-order correction in-

creases until it diverges at the mean-field transition temperature.

Granular superconductors are commonly modeled as
arrays of Josephson-coupled, superconducting grains with
order parameters 6; =

~
d )e' '. Below the bulk supercon-

ducting temperature, ( 5 ~

~ 0 but phase fluctuations may
keep the conductivity of the array finite. At the lower
temperature T„ the tunneling of Cooper pairs between
neighboring grains becomes strong enough to support
phase coherence across the whole array. For T & T„ the
expectation value (e' ') is nonzero and the resistivity of the
array vanishes.

Far below the bulk transition temperature, fluctuations
of the magnitude ) 4 ( can be neglected and the phases p;
become the only dynamical variables. The Hamiltonian
for an array of N Josephson-coupled grains with z nearest
neighbors can then be written

energy excitations of the array by a system of phase pho-

nons, violates ' the periodicity of the Hamiltonian,
H(p;+ 2tt) =H(i'; ). MF theory, on the other hand,
neglects the coupling of phase fluctuations on neighboring
grains, which suppress the order parameter. Thus, both
the SCH and MF methods become unreliable when phase
fluctuations are large, such as near e, and near T, .

In this paper, I systematically include the effects of
phase fluctuations by expanding the order parameter in

powers of 1/z. To zeroth order, (e' ') is given by its MF
value. Each higher-order correction involves a sum over

an infinite number of diagrams which couple the phase
fluctuations on neighboring grains. I explicitly calculate
the 1/z correction to the order parameter. As expected,
the coupling of phase fluctuations acts to decrease the or-

der parameter. At a =~ and T* = T/z J=0, where the

MF solution
~
(e ')

~

=1 is exact, the 1/z correction van-

ishes. For lower u and higher T*, this correction in-

creases unti1 it diverges at T,*, signaling the breakdown of
MF theory for any finite z. To order 1/z, the order pa-
rameter is a single-valued function of a and T*. There-
fore, a first-order phase transition between two solutions,

as suggested by Monte Carlo simulations, it not possible
to this order.

An expansion in powers of 1/z is generated by separat-

ing the Hamiltonian into three parts:

0=H,g+Hi+Xap,

where

Heir ZHMF ~

HMF =2Un; —zJ(costi)MFcositi;,

H2= —Jg R;J,
(i,j )

R;, = (cosp; —(costi i)MF)

x (costi, —

(costi�)

MF) +sing; sinai/,

H =2U+n; +Jg [1 —cos(y; —
y )], (1)

i (ij&

where J is proportional to the probability of Cooper-pair
tunneling between neighboring grains, U is inversely pro-
portional to the capacitance' of a grain, and n; = id/da;—
is the operator for the number of excess Cooper pairs on
the ith grain. Since n; and p; are conjugate variables, the
charging energy 2UQ;n; disrupts the phase coherence
across the array. When U/ J exceeds a critical value, glo-
bal phase coherence is impossible and T, =0.

The Hamiltonian of Eq. (1) has been studied by a
variety of methods. " Mean-field (MF) and self-
consistent harmonic (SCH) methods agree that the order
parameter

~

(e' ')
) is a monotonically decreasing function

of temperature for a=zJ/U above the critical value a, .
Monte Carlo simulations, " ho~ever, indicate that for
large but finite a the array undergoes a first-order phase
transition at the temperature T,q 0 03T&, when the hel-
icity modulus jumps about 2% from its zero-temperature
value.

Both ana1ytic techniques have shortcomings that may

explain their disagreement with the Monte Carlo simula-

tions. The SCH approximation, which replaces the low-
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and Hi is a c number. The coefficient A. , which equals I, is
used to keep count of powers in Hq, which couples the
phase Auctuations on neighboring grains.

An exact expression ' for (costi) is given by

1.0

&costi) =—Tr e "T,exp —X„H2(r)dr 0.8—

x cosp;(0) (7)

Z=Tr e "T,exp —X H2(r)dr, (g)

where P=1/T, T, is the time-ordering operator, and
operators in the interaction representation are de6ned by

A(z) =e' '"Ae

Mo

0.6—

Both (costi) and the partition function Z can be formally
expanded in powers of the Auctuation energy XHq. The
lowest-order term in the expansion of (costi) can be writ-
ten as Zp(costi)MF/Z, where the MF expectation value is
de6ned by

Q4

0.2—

(A)MF = Tr(e "A ) (10)

and Zp is the lowest-order term in an expansion of Z:

Zii =Tr(e ").
0 0.2 0.3 Q.4

Il

0.5

(costi) = g M„(a, T*) .
1

n=p z
(12)

The lowest-order term in this expansion, which depends
on z only through a and T*, is the MF solution

I

With the choice of Eqs. (3)-(6), (sin&1) =(sin&1)MF =0.
The MF solutions are obtained by solving for the

eigenstates and eigenvalues of HMp. These solutions are
plotted in Fig. 1: The critical value of a is a, =2 and the
a=co transition occurs at T,*=0.5. It is important to
realize that, written as a function of a and T, (costi)MF
is independent of the number of nearest neighbors z.

In terms of these dimensionless variables, an expansion
of (costi) in powers of 1/z is given by

FIG. 1. The MF order parameter Mo=(cosgl)Mp vs T* for
various a.

Mp (cospi)MF. Each coefficient M„can itself be expand-
ed in powers of the Auctuation energy XH~..

M„(a,T*)= g ~ M„(a,T*).
m=p

From the definitions of H, g and Hq, it follows that
Mp )p=0.

To derive the first-order coefficient M1(a, T*), I con-
sider the first two terms in the expansion of (costi) in
powers of XHq.'

(costi) =Mp+ k zJ Tr e 'J dri dr2R12(ri)R12(r2) [costi(0) —Mp] + (14)
A

The factor of z arises from the z different orientations that can be assumed by the "loop" R 1J (ri)R 1j (z2) with one point
fixed at grain l. Expressed in terms of a and T*, the X correction to Mp is of order 1/z. With the definition

U;(r) =cosp;(r) —Mp, (15)

this lowest-order correction is

1 2 Pg t P
i 1 A A A

M12 (zJ) Tr e "J, «iJ, «2R12(~1)R12(~2)U1(0), (16)

which is a function only of a and T . It is straightforward to compute M & z in terms of the complex matrices

Gm~m, = (m 1 ( e '~
( m 2) =g (m 1 ~

n)(n + 1
~
m 2),

where
~
m) is the mth MF eigenfunction and n is the Cooper-pair number. These matrices are easily obtained from the

solutions of Mathieu's equation.
The higher-order terms M 1 ~ & 2 are identified graphically in the inset of Fig. 2. Each diagram begins at grain 1 and
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ends in a loop. Since each line or loop can be oriented in z directions, the graph of order m is proportional to
z 'J =(zJ) /z. I exclude diagrams with closed paths, which contribute to higher order in 1/z. The contribution of
the mth order diagram is

(zJ)-J, d. ,J, d., J, dz Tr[e ""J(R;„,(z, )R;„,(z2). . .R;, (z ))U, (0)], (Is)
Zp

where the indices ii,j i, i2,j2, . . .,i,j lie along the graph of order m with the origin at grain 1. The operator P sums all
distinct permutations of pairs of indices. For example, if m =3

+(Ri j~(zl )Rlzi2(z2)Ri3j3(z3) ) R 12(z1)R23(z2)R23(z3) +R23(zl )R12(z2)R23(z3) +R23(z1)R23(z2)R12(z3) (19)

Notice that P respects the time ordering of the operators.
I now show that the higher-order contributions M1 & 2 can be expressed in terms of M12. Using the cyclic property of

the trace, M ~, & 2 can be rewritten

1 r p r

(zJ) g dzi„dz2. . .
)dp «!p 4 dz Tr[e "I'(R; J (z„+1—z„+P). . .R;,J,(z —z„+P)

~R,„,(z, -z„).. .R, „„,(z„,-z„))U2(O)]

x Tr [e "Ui (z„)Ui (0)],
Zp

(2o)

where the indices ii,j&.,i2,j2, . . .,.i —i,j —
~ now lie along the graph of order m —1 with the origin at grain 2. New vari-

ables are used to rewrite the sum in Eq. (20) as

IP fP tx2 f xm —n

dx1 dx2 dx3. . .
f xl i Xm-a+2

d&m —n+ 1 dxm —n+2~0 ~p dxm —n+3 ~ op
Xm- I

dx a([x;})

Ip yp fx2 ~Xm —I

dx 1 dx2 dx3. . . dx~a({xi}), (21)
where

8([x;})=Tr[e '"P(R;,j, (x2)R;~,(x3). . .R;,j,(x ))U2(0)]Tr[e 'U1(p —x1)U1(0)]. (22)

It follows that, for m )2,

M, (a, T*)=M, , (a, T*)f(a,T*), (23)
3.0

f= zJ dx Tr[e "U1(x)U1(0)l .
Zp

Thus, the series for M ] can be summed:

(24)

0.8

M1=M12 g f"=M12
n-O

(25)

which is the central result of this work.
The functions f(a, T") and M1(a, T*) are plotted in

Figs. 2 and 3. The scaling function f(a, T*) vanishes at
a ~, T* =0, where the MF solution is exact. There-
fore, the dominant 1/z correction very close to this point is
given by M&2. The scaling function reaches the value 1 at
T,*, signaling the breakdown of the MF solution for any
finite z. For a (a, =2 and T* =0, f=a/2. As shbwn, f
remains finite for T* & T,*, although M]2 vanishes above
the MF transition temperature. Correspondingly, the 1/z
COrreCtiOn M1(a, T*) diVergeS tO —ee at T,* fOr any a
and at a, for T =0. As expected —M] is very small
near a =~, T* =0, and grows with decreasing e and in-
creasing T*.

It can be shown diagrammatically for n ~ 1 that
M„/+M1,~ 0 as a~ ee and T*~0. Nonetheless, the
sum of higher-order corrections p„-2M„/z" may be the
same order as the n = 1 correction M 1/z, even for low tem-
peratures and large a. Although no limits can be placed
on the sum of higher-order terms, it seems likely that the
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FIG. 2. The scaling function f vs T* for various a. Inset:
The graphs that contribute to the 1/z correction Mi.
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1/z correction is the dominant one at low T and large a.
The divergence of M t at T, indicates that higher-order

terms in the expansion of (cosset) in powers of 1/z must be
included in the critical region. Although these higher-
order terms also diverge at the MF transition tempera-
ture, the summation of these divergent terms is well
defined and shifts the transition temperature from its MF
value.

To order 1/z, the dimension of the array does not affect
the solution for the order parameter. However, the contri-
butions of diagrams with closed paths will involve the con-
nectivity of the system. Therefore, the higher-order
coefficients M„& ~ do depend on the dimension of the ar-
ray.

At least through order 1/z, the expansion of

(cosset)

has
only one solution as a function of a and T*. Hence, a
first-order phase transition is not possible to order 1/z but
may be possible at some higher order. Jacobs and co-
workers" have suggested that the first-order phase transi-
tion at T,q involves the nucleation of vortex pairs in two
dimensions. If so, then only higher-order corrections in
1/z, which depend on the dimension of the array, can ex-
plain such a transition. The small size of the jump in the
helicity modulus at T,q may be a consequence of the high
order in 1/z required to obtain this transition. Although a
first-order phase transition is still possible, this work has
shown that such a phase transition cannot be explained
from the lowest-order effect of phase Auctuations.

Note added in proof. By expanding' tt, in powers of
1/z, Ferrell and Mirhashem find that MolM~ = —0.4 at
a=2 and T*=O. This result agrees with my numerical
evaluation of Mo and M~.

I
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FIG. 3. The 1/z correction —M~ vs T for various a.
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