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The role of topological point defects (hedgehogs) in the phase transition of the classical Heisen-
berg model in three dimensions is investigated by using Monte Carlo simulations. Simulations of
the behavior of the defects near the phase transition show that the number density of defects in-
creases sharply and defect pairs with separations comparable to the sample size begin to appear as
the temperature is increased through the transition temperature. In simulations in a restricted en-
semble in which spin configurations containing defects are not allowed, the system appears to
remain ordered at all temperatures. Simulations in which the spin-spin interaction is set equal to
zero and the number density of defects is controlled by varying a “‘chemical potential” term indicate
that the system is ordered if the number density of defect pairs is sufficiently small. These results
show that topological defects play a crucial role in the three-dimensional Heisenberg transition in
the sense that configurations containing defect pairs are necessary for the transition from the fer-

romagnetic to the paramagnetic phase to occur.

I. INTRODUCTION

During recent years, many interesting results have
been obtained from applications of algebraic topology, or
more specifically, homotopy theory in the study of de-
fects in ordered systems.! By using homotopy theory, it
has been possible to systematically classify! different
kinds of topologically stable defects. These are what we
call ropological defects. Common examples of topological
defects are vortices in superfluids and superconductors
and dislocations and disclinations in crystals and liquid
crystals. The role of topological defects in phase transi-
tions from ordered to disordered states has been a subject
of much recent interest.> Theories® based on the statisti-
cal mechanics of topological defects have been successful-
ly developed for a large class of two-dimensional phase
transitions, including the superfluid transition in thin
“He films, the superconducting transition in thin metallic
films, and the melting transition in two dimensions. Ac-
cording to these theories, the phase transitions from the
ordered to the disordered phase in these systems corre-
spond to an unbinding of pairs of point defects
carrying topological charges of opposite sign. Recently,
it has been shown that the superfluid® and supercon-
ducting® transitions in three dimensions and the
nematic—to—smectic- A transition’ in liquid crystals can
be understood in terms of the statistical mechanics of in-
teracting defect lines and loops. Also, there have been
many attempts® to describe the melting of a crystal in
terms of the behavior of dislocation loops. Topologically
stable defects are known to exist in many more physical
systems beyond those we have listed above. Therefore, it
is interesting to inquire about the role of topological de-
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fects in phase transitions of other systems. In this paper,
we are specifically interested in this aspect of the magnet-
ic phase transition in the ferromagnetic classical Heisen-
berg model in three dimensions. The importance of a
study of this model is attributed to the fact that this mod-
el is perhaps the most widely used one in describing the
behavior of magnetic systems. The topological defects in
the three-dimensional (3D) Heisenberg model are point
singularities (the so-called “hedgehogs”). Their existence
is a consequence of the nontrivialness of the second
homotopy group m,(S,).! These point defects carry
integer-valued topological charges of both positive and
negative sign. For example, a singularity of charge +1
occurs at a point if all the spins around it are directed ra-
dially outward from it. The energies associated with a
single defect and with a pair of defects with equal but op-
posite charge have been calculated.”!® It is known'® that
the energy of a pair of oppositely charged defects in-
creases linearly with the distance of separation.

In order to understand the role of topological defects
in a phase transition, the following questions® should be
addressed. (i) Are topological defects necessary for the
phase transition? In other words, if we have a system in
which topological defects are not allowed to occur, would
the system still exhibit the same phase transition as the
one found in the system with topological defects? If it is
found that the elimination of the defects changes the na-
ture of the transition or eliminates it altogether, then the
conclusion would be that the defects are necessary for a
correct description of the phase transition. (ii) Are topo-
logical defects sufficient to describe the transition? That
is to say, is it possible to formulate a correct and com-
plete description of the phase transition entirely in terms
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of the statistical mechanics of a system of defects?
Answers to these questions are known for several sys-
tems. For example, the Kosterlitz-Thouless theory® of
the phase transition in the two-dimensional XY model
shows that topological defects (vortices) are both neces-
sary and sufficient for a complete description of this tran-
sition. However, no clear answers to these questions are
available at present for the 3D Heisenberg model. This
model has been studied extensively by using series expan-
sion,!! numerical simulations!?> and renormalization-
group (RG) methods,!® but no information is available at
present about the behavior of the defects near the phase
transition. In particular, it is not known whether the de-
fect pairs unbind at the transition. The statistical
mechanics of a system of point defects occurring in this
model has not been worked out. A theoretical analysis of
the role of defects in this system is made complicated by
several factors. Since the nonsingular, spin-wave-type ex-
citations in this model are nonlinear, it is not clear
whether these excitations alone are sufficient to destroy
long-range order in this model at a finite tempera-
ture. [In contrast, it is known that spin waves alone
cannot destroy the (quasi-long-range) long-range order
in the (two-) three-dimensional XY model.] In fact,
renormalization-group calculations'* near two dimen-
sions on the O(n) nonlinear o model, which presumably
includes only long-wavelength spin-wave-like excitations,
suggest that there is a finite-temperature phase transition
at n =d =3 (d is the dimension of space). This result im-
plies that spin waves in the 3D Heisenberg model may be
sufficient to cause a transition to the disordered phase.
Due to nonlinearities arising from the three-dimensional
nature of the Heisenberg spins, the energy of an ensemble
of point defects in the 3D Heisenberg model cannot be
decomposed into a sum of pairwise terms. This further
complicates any analysis of the statistical mechanics of
the defect system. Furthermore, the decoupling between
spin-wave and topological excitations found in XY-like
models does not occur in the Heisenberg model. For
these reasons, topological defects in the 3D Heisenberg

model have not received a great deal of theoretical atten- -

tion. We note that questions about the role of the defects
in the phase transition of the continuum version of this
model are closely related to the importance of allowing
fluctuations in the magnitude of the ordering field'® be-
cause such fluctuations are essential for the occurrence of
singular defects. (The magnitude of the ordering field
vanishes at the center of a defect).

There exists some speculation on the role of defects in
the 3D Heisenberg phase transition. Several years ago,
Cardy and Hamber!® discussed the critical behavior of
the O(n) model in d spatial dimensions in the neighbor-
hood of n =d =2, assuming analyticity of the RG equa-
tions in n and 4. Their analysis suggests that there exists
a line d =d_ (n) in the n-d plane which passes through
the point (n,d)=(2,2), and has the following property:
for n >2, d > 2, topological defects play a crucial role in
determining the nature of the phase transition if
d=d (n), and are unimportant if d <d.(n). Their
analysis predicts the slope of the line d=d,.(n) near
(n,d)=(2,2) to be 4/7*. This prediction implies that the
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point representing the 3D Heisenberg model in the n-d
plane (n =d =3) lies in the region where topological de-
fects are important, and suggests that the defects must be
explicitly taken into account for a correct description of
the critical behavior of the 3D Heisenberg model. We
have recently performed a real-space renormalization
group calculation'” on the O(n) model for 1 <n <2 and
1<d <2. Our calculated result on the slope (~0.2) of
the line d =d (n) near n =2 appears to be smaller than
4 /1%, but nevertheless supports the conclusion reached
by Cardy and Hamber on the importance of defects in the
n=d =3 case. Qualitative arguments presented by
Halperin? also suggest that defects are essential for the
ferromagnetic to paramagnetic transition to occur in the
continuum version of the 3D Heisenberg model. He
pointed out the possibility that spin waves are probably
not sufficient to destroy the long-range order in this mod-
el. These arguments, if correct, would have important
implications on the present theoretical understanding of
the 3D Heisenberg phase transition. In particular, both
Cardy and Hamber'® and Halperin? argue that singular
defects are not properly taken into account in the RG
calculations on the O(3) nonlinear o model,'* and there-
fore, these calculations do not describe the 3D Heisen-
berg transition correctly. It is interesting to note in this
context that the values of the critical exponents for the
n =d =3 transition obtained from an extrapolation of the
e-expansion (e=d —2) results'* for the O(3) nonlinear o
model do not agree well with the currently accepted
values obtained from series expansion'! and RG (e ex-
pansion where €=4—d) methods.!3

Recently, the O(3) model and the associated topologi-
cal excitations have received some attention in theoretical
studies of high-temperature superconductivity. The O(3)
nonlinear o model has been used in a calculation'® of the
magnetic properties of high-T, superconductors. Mecha-
nisms involving topological defects have been pro-
posed'®?° as explanations of high-T, superconductivity.
We also note that an understanding of the behavior of de-
fects in the 3D Heisenberg model would be relevant to a
class of gauge field theories in which point singularities of
a similar nature (e.g., monopoles) are known to occur.?!

In this paper we present the results of a numerical in-
vestigation, using Monte Carlo (MC) simulations, of some
of the questions mentioned above. A summary of the
main results of this study was published earlier? in a
letter. We first carried out a detailed MC simulation of
the 3D Heisenberg model on a simple cubic lattice with
special attention to the behavior of the defects. Using a
definition of the topological charge appropriate for a lat-
tice model, we calculated the temperature dependence of
the number density ({n )) of defects in the vicinity of the
transition. We also calculated the usual thermodynamic
quantities (energy, specific heat, magnetization, etc.) and
used finite-size scaling to analyze the data. The values of
the transition temperature and the critical exponents ob-
tained from our calculations are in good agreement with
the currently accepted results. Concerning the behavior
of the topological defects, we found that {(n ) increases
sharply as the temperature is increased through the tran-
sition temperature 7,. The temperature derivative
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d{n ) /dT exhibits a sharp peak at T,. The temperature
and sample-size dependence of d{n ) /dT near T=T, is
consistent with a divergence of this quantity with an ex-
ponent ~0.65 at T=T,. Defects with opposite charges
are closely bound in pairs at low temperatures. As T ap-
proaches 7T, from below, defects pairs with separations
comparable to the lattice size begin to appear, suggesting
an unbinding of defect pairs at 7. The observed prolifer-
ation and unbinding of defect pairs at the transition are
very similar to the behavior found in numerical simula-
tions of 2D (Ref. 23) and 3D (Ref. 5) XY transitions
which are known to be mediated by topological defects.
Our results, therefore, suggest that the defects probably
play an important role in the 3D Heisenberg transition
also.

In order to determine whether the defects are indeed
necessary for this transition, we next carried out a MC
simulation in which spin configurations containing de-
fects are not allowed to occur. This was done by starting
with a spin configuration that contains no defect, and
then using a MC updating procedure that rejects any
“move” that would create a defect pair. We did not find
any evidence for a phase transition in these simulations.
All thermodynamic functions were found to vary
smoothly with temperature at all temperatures up to
T — o, and the magnetization appeared to remain finite
in the T-—o0 limit. These results indicate that
configurations containing topological defects are neces-
sary for the transition to the disordered phase to occur.
We also carried out a simulation in which the strength of
the nearest-neighbor spin-spin interaction was set equal
to zero, and a ‘“‘chemical potential” term determining the
number density of defects was varied. We found strong
evidence indicating that the system remains ordered at all
temperatures if the number density of defects is
sufficiently small, in agreement with the previous con-
clusion that the defects are necessary for the 3D Heisen-
berg transition. This is the main result of our calculation.
All the results described above are qualitatively very
similar to those found in a recent MC study’ of the role
of vortex loops in the 3D XY transition.

We organize the rest of the paper as follows: Section II
contains a description of the models studied in this work
and the procedures used in the numerical simulations.
The results obtained from the simulations are described
in detail in Sec. III. Section IV contains a discussion of
some of the questions raised by our calculations.

II. THE MODELS AND SIMULATION PROCEDURES

The classical Heisenberg model considered in this pa-
per is defined on a 3D simple cubic lattice by the reduced
Hamiltonian

H=—-K ¥ 8;§;,

(ij)
where S;’s are three-dimensional vectors of unit length lo-
cated at the lattice sites, {ij ) represents distinct nearest-
neighbor pairs of lattice sites, and K =J /kzT, J >0. We
set J=kg=1, so that K=1/T in our notation. This
model shows a second-order phase transition from the or-

(2.1)
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dered ferromagnetic phase to the disordered paramagnet-
ic phase at T ~1.45.!1!2 The topological charge Q of a
point defect in this model represents the number of times
and the sense in which spins on a closed surface sur-
rounding the defect cover the surface of a unit sphere in
spin space. In the continuum limit, the topological
charge Q enclosed by a closed surface 2 in real space is
defined! through an integration of the Jacobian of the
spin-space variables ©,® (these are the angles specifying
the orientation of the spin field S) over the surface Q:

= o= [ I(O0x,),®(x,9))d0x,y) 2.2)
where x,y are generalized coordinates on the surface ().
For the lattice model (2.1), we need a different definition
of Q. In this work, we have defined Q by using a
prescription similar to one used by Berg and Liischer?* to
classify instanton configurations in the 2D Heisenberg
model on a lattice. This is done in the following way:
For each unit cube of the lattice, we divide the six faces
into 12 triangles, two for each face. Let S,(i), S,(i), and
S;(i) be the three spins at the corners of the triangle i
where the sequence 1,2,3 is chosen such that the circuit
1—2—3—1 corresponds to a counterclockwise rotation
along the outward normal to the surface of the triangle.
We then calculate the area, A(i), of the spherical triangle
formed by the three spins on the surface of a unit sphere.
This area A(i) is also given a sign which is
sgn{S,(i)-[S,(i)XS5(i)]}. The topological charge Q en-
closed by the unit cube is then given by

12
0=3 AG) .

i=1

(2.3)

This procedure corresponds to an interpolation of the
spin field along geodesic lines on a unit sphere in spin
space. Apart from a set of “exceptional”’ configurations®*
of measure zero, this prescription yields well-defined in-
tegral values for Q. Moreover, this definition of Q en-
sures that the net topological charge is always equal to
zero in a system with periodic boundary conditions.

The standard Metropolis algorithm?® was used in the
MC simulations. In this algorithm, a MC update of a
spin consists of the following steps: First, the angle asso-
ciated with an attempted change of a spin is chosen at
random from within a specified range. Then the energy
change, AE, associated with the attempted update is cal-
culated. If AE <0, the change is accepted. If AE >0, the
change is accepted with a probability exp(—AE /T).
These simulations were performed on the CRAY 2 Com-
puter at the Minnesota Supercomputer Institute. To take
advantage of the vectorizing capability of the CRAY, we
divided our 3D lattice into four sublattices in such a way
that the calculation of AE for the updating of a spin on a
particular sublattice does not involve any other spin be-
longing to the same sublattice. All spins belonging to one
of the four sublattices could then be updated simultane-
ously in a single vectorized step. In our study of the equi-
librium behavior of the defects near the phase transition,
we carried out simulations for samples with linear dimen-
sion L =8, 12, and 16 using periodic boundary condi-
tions. Standard methods were used in the calculations of
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equilibrium averages. Typically, 1000-2000 MC steps
per spin were used for equilibration and 4000-8000 steps
per spin were used for calculating averages.

We also carried out MC simulations with a modified
reduced Hamiltonian

H'=-K 35;8,+1 3 |0,

(ij) cubes

(2.4)

where the new terms acts as a “chemical potential” for
the defects. For A >0, this term has the effect of
suppressing configurations containing defects. In simula-
tions with this reduced Hamiltonian, a calculation of AE,
the energy change associated with an attempted update
of a spin, involves calculations of the changes in the topo-
logical charges associated with the eight unit cubes which
share the spin under consideration. These calculations
require a large amount of computation. Because of this
reason, and the fact that the vectorization procedure de-
scribed earlier does not work for the reduced Hamiltoni-
an (2.4), our simulations with this reduced Hamiltonian
were restricted to relatively small samples (L < 10).

The A— oo limit of (2.4) corresponds to an ensemble in
which configurations containing topological defects are
not allowed. Simulations in that restricted ensemble were
performed by using the following MC updating pro-
cedure. We started with a configuration (e.g., the fully
aligned ferromagnetic ground state) in which there are no
defects. Each update attempt was then checked to deter-
mine whether it would create a defect pair. If it did, then
the attempted change was rejected; otherwise, it was ac-
cepted or rejected according to the usual Metropolis al-
gorithm described earlier in this section. Simulations in
the ensemble without defects were performed for samples
with L =6, 8, and 12.

III. RESULTS

In this section, we describe in detail the results ob-
tained from our MC simulations.

A. Thermodynamic properties

In our simulations of the model defined by the reduced
Hamiltonian (2.3), we calculated the usual thermodynam-
ic functions as a test of the simulation procedure. The re-
sults for the internal energy per spin ((E ), where { -+ - )
denotes a MC average) and the specific heat (C) are
shown in Figs. 1 and 2, respectively. The specific-heat
data shown in Fig. 2 were obtained from a numerical
differentiation of the internal energy {( E ) with respect to
the temperature T. The specific heat peaks at approxi-
mately the same temperature for three different values of
L. The specific-heat peak becomes sharper as L is in-
creased, as expected for a continuous phase transition.
We also calculated the average of M, the magnitude of
the magnetization,
1 s
N <

M= , (3.1

where N =L3 is the total number of spins. Since the MC
updating procedure generates uniform rotations of the
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FIG. 1. The internal energy per spin {E) vs temperature T
for L =16. E,=—3 is the ground-state energy per spin. The
solid line is a guide to the eye.

spin system, a calculation of the MC average of M is not
meaningful. The results for the temperature dependence
of (M) are shown in Fig. 3. As expected, we find a
sharp change in (M) at a temperature close to that of
the specific-heat peak (T'=~1.45). We used standard
finite-size scaling analysis®® to extract the values of the
transition temperature and the critical exponents from
the MC data. A finite-size scaling plot for (M ) is shown
in Fig. 4. Near T=T,, the temperature and sample-size
dependence of { M) is expected to be of the form

(M(L,T))=L #"g,tL'") , (3.2)
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FIG. 2. Temperature dependence of the specific heat C for
three different samples sizes.
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FIG. 3. Temperature dependence of { M ), the magnetization
per spin, for three different sample sizes. The solid curves are
lines drawn through the data points.

where t =(T—T,)/T, and B3, v are the critical exponents
for the magnetization and the correlation length, respec-
tively. As shown, in Fig. 4, plots of (M )L?’" versus
tL' for different L fall on the same scaling curve for a
proper choice of the values of T, 3, and v. Similar scal-
ing fits were also obtained for the specific-heat data. The
results obtained from the finite-size scaling analysis are

T,=1.45+0.02,
B=0.36+0.04, a=—0.11%0.06 .

v=0.705%0.005 ,

These values are in good agreement with the currently
accepted results!! 713 for the 3D Heisenberg transition.
In the simulations, we also calculated the averages of

3.0 T T | T T T T T T T T T T ]
E\S\ .
25 — —
20 —
ﬁ - ]
vV 15 [— -
2 C J
a. — -
— L ]
1.0 — —]
F O :8x8x8 ]
C X :12x12x12 7
05 — O :16x16x16 -]
0.0 : 1 1 i 1 1 1 1 l
-10 0 10
tLlIv
FIG. 4. Finite-size scaling plot (7,=1.45, v=0.705,

B=0.36) for (M) [see Eq. (3.2)]. The solid line is a guide to the
eye.
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M? and M*  The ratios, (M?)/{(M)*> and
(M*)/{M?)? are expected to have particularly simple
finite-size scaling forms, and these ratios of moments of
the order parameter distribution function have proven to
be very useful?’ in the analysis of numerical data on sys-
tems exhibiting continuous phase transitions. From stan-
dard finite-size scaling arguments, we have, near T=T,,

<M2(L,T)>:L VZﬁ/ng(tL 1/V) ,

(3.3)
(MYL,T))=L */vg,(tL'") .
Combining these with (3.2), we have
R(L,T)=(MXL,T))/{M(L,T))*=G,tL'"),
(3.4)

R,(L,T)={M%L,T))/{MXL,T))*=G,(tL'") .

These equations tell us that plots of R, or R, versus T'
for different sample sizes should intersect one another at
T=T,. Such a crossing of the R (or R,) versus T curves
for different L has been used in several recent studies®”?®
as a criterion to determine whether a phase transition
takes place or not. Our results for R, and R, are some-
what noisy. Nevertheless, the data unambiguously exhib-
it a crossing of the R |,R, versus T curves in the neigh-
borhood of T=T,, with R|,R, increasing with L at tem-
peratures higher than T, and decreasing with L at tem-
peratures lower than T,. Another interesting feature we
find is that even for temperatures slightly below T, both
R, and R, are very close to unity (R;<1.03 and
R,<1.1 for T=1.4) and their L dependence is very
weak. This feature may be a reflection of the fact that
both transverse and longitudinal correlation lengths are
infinite at all temperatures below 7, in the isotropic
Heisenberg model. These features in the observed L
dependence of R and R, will be useful later when we ad-
dress the question of whether a phase transition takes
place when topological defects are suppressed.

B. Behavior of topological defects near T,

At regular intervals along the MC evolution of the sys-
tem at a fixed temperature near T, we examined the spin
configurations and used the prescription outlined in Sec.
II to determine the topological charge Q associated with
each unit cube of the sample. We found that the magni-
tude of the nonzero charges is almost always equal to uni-
ty. Only a few defects with Q==2, and none with
|Q|>2 were found. The temperature dependence of the
average defect pair density {7 ) (n= number of defect
pairs divided by N) is shown in Fig. 5. The density of de-
fects is found to increase sharply as T increases through
T.. The rapid increase of {n ) near T, can be seen more
clearly in the inset of Fig. 5 where we show the tempera-
ture dependence of the numerically calculated derivative
d{n)/dT for two different sample sizes. The tempera-
ture at which d{n)/dT peaks is identical within error
bars to the 7, determined from thermodynamic data.
The peak of d{n ) /dT becomes sharper and increases in
height as L increases, suggesting that d (n ) /dT diverges
at T=T, in the thermodynamic limit. Assuming that
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FIG. 5. Temperature dependence of {n ), the average num-
ber density of defect pairs. The solid curve is a guide to the eye.
The inset shows plots of d{n ) /dT vs T for two different sample
sizes (squares, L = 16; solid circles, L =8).

d{n)/dT diverges at T, with an exponent ¥, we have
the following finite-size scaling form for d{n ) /dT near
T=T,:

d{n(L,T))
dT

As shown in Fig. 6, the data for d {n ) /dT are consistent
with this scaling form with ¥~0.65 and the previously
determined values for T, and v. It is interesting to note
that = 1— within error bars. This result suggests that
the defect pair density (n) perhaps plays the role of a
“disorder variable” whose critical behavior is described
by the same exponent () as that for the order parameter

=LYVfL'") . (3.5)
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FIG. 6. Finite-size scaling plot for d{n ) /dT, assuming the
scaling form given in Eq. (3.5). The values of the parameters are
T.=1.45, v=0.705, and ¥=0.65. Solid lines are guides to the
eye.
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(M ). We, however, do not have other evidence support-
ing this interpretation and the apparent equality of ¥ and
(1—/3) may be just a coincidence.

At low temperatures, the defect pair density is expect-
ed to be proportional to exp(—E,/T) where E, is the
minimum energy required to create a pair of oppositely
charged defects. As shown in Fig. 7 where we have plot-
ted In{n ) versus 1/T, our results for (n ) at tempera-
tures below T, are well described by the expected activat-
ed form. Deviations from this form are observed as T ap-
proaches T, from below. The value of E obtained from
a straight line fit to the In{n ) versus 1/T plot for T < T,
is E,=12.71+0.7. This value is close to 4, the value ex-
pected!” for the energy of a defect pair separated by unit
distance in the continuum limit.

An important question is whether the observed prolif-
eration of defects as T increases through T, is accom-
panied by an unbinding of defect pairs. We investigated
this aspect of the phase transition by carefully examining
the defect configurations generated in the MC simula-
tions at different temperatures close to 7,. At low tem-
peratures, we find that defects with opposite charges are
closely bound together, the separation being just one lat-
tice spacing for most pairs. As T approaches 7, from
below, the number of defects increases sharply and it be-
comes difficult to pair up defects with opposite charges in
an unambiguous way. A reasonable choice for the pair-
ing up of defects with opposite charges would be to take
the pairing that minimizes the total “string length,” i.e.,
the sum of the pair separations. However, a determina-
tion of the pairing that globally minimizes the total string
length for a system with a large number of defects is a
difficult optimization problem (the so-called ‘“matching
problem”? in the literature on combinatorial optimiza-
tion). We developed a heuristic algorithm for finding the
optimal pairing and tested it on small samples for which

—2 " T TTT I TTTT i TT TT‘ TTTT 1 TTTT | T L
L ' Ogg E‘lag ]
-3 — —
r ]
r -
4 — ]
A I ]
= - ‘
\ L B
£ S ]
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r H :12x12x12 o 4
- O :16x16x16 E
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FIG. 7. Plot of the natural logarithm of the defect-pair densi-
ty vs the inverse temperature. The solid line is a linear fit to the
data for T < T,.
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the optimal pairing could be determined by inspection.
The algorithm was found to select the correct pairing in
all the test cases. However, we are not sure about wheth-
er this algorithm always finds the globally optimal pair-
ing in large samples, although we are confident that it
selects a near optimal pairing in all cases. We used the
pairings selected by this algorithm to compute the distri-
bution of pair separations. We found that pairs with sep-
arations comparable to L /2 appear at temperatures close
to or above T,.. (Note that the largest separation possible
in a L XL XL sample with periodic boundary condition
is V3L /2.) In Fig. 8, we have shown the distribution of
pair separations for the L =16 sample at two tempera-
tures, 7=1.3 and T=1.6. At T =1.3, which corre-
sponds to being in the ordered phase, all defect pairs have
separations less than 2.5 units. In contrast, at 7 =1.6,
which is somewhat higher than T,, the distribution of
pair separations extends up to nine units. It is difficult to
draw any quantitative conclusion about the unbinding of
the defect pairs from the data on the distribution of pair
separation. In particular, it is not possible to pinpoint a
temperature at which the defect pairs unbind. Neverthe-
less, the observed behavior is certainly consistent with an
unbinding of defect pairs at the transition temperature.

All the features described above in the behavior of the
defects near the phase transition are qualitatively very
similar to those found in simulations of 2D (Ref. 23) and
3D (Ref. 5) XY transition which are known to be mediat-
ed by defects. These results, therefore, suggest that topo-
logical defects play an important role in the 3D Heisen-
berg transition also.

C. Simulations in a restricted ensemble with no defects

In order to determine whether topological defects are
indeed necessary for the 3D Heisenberg transition, we
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FIG. 8. The distribution of the separation r between two op-
positely charged defects belonging to a pair at two temperatures
(solid line, T=1.6; dashed line, T=1.3) for L =16. Here,

p(r)Ar with Ar=0.5 is the probability of having a defect pair

with separation between r — Ar and r.
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carried out a set of MC simulations with the reduced
Hamiltonian (2.4) which contains a new term that acts as
a chemical potential for the defects. We first considered
the limit A— o0 which corresponds to restricting the en-
semble to configurations containing no defects. The MC
procedure used in the calculation of averages in this re-
stricted ensemble is described in Sec. II. In these simula-
tions, we did not find any evidence for a phase transition
from the ordered to the disordered phase at any tempera-
ture. The thermodynamic quantities (E ), C, and (M)
were found to change smoothly with temperature at all
temperatures up to 7— o (K =0). The specific-heat data
for L =12 are shown in Fig. 9 where we have also shown
the results for the original model (2.1) for comparison.
For temperatures T < 1.0, the specific heat data obtained
from simulations without defects are essentially identical
to those obtained from the unrestricted simulations. This
is not surprising because, as can be seen in Fig. 5, the de-
fect pair density calculated in the unrestricted ensemble
is vanishingly small at temperatures lower than 7=1.0.
At higher temperatures, however, we find a big
difference. In particular, the specific-heat peak that sig-
nals the phase transition in the original model disappears
completely when defects are not allowed. The results for
(M ) obtained from the restricted simulations are shown
in Fig. 10. We find that the magnetization remains
nonzero at all temperatures. The average value of M
defined in (3.1) is, of course, always nonzero for a finite-
size system. However, (M) is expected to be propor-
tional to 1/V'N if the system does not have long-range
order. In the inset of Fig. 10, we have plotted values of
(M) at K=0 (T — «) versus 1/V'N. Clearly, there is
no indication of (M ) extrapolating to zero in the N — oo
limit. The sample-size dependence of (M) is, in fact,
well described by the form (M)=M,+a/V'N with
M;~0.18 and a~1.2. This observation indicates that
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FIG. 9. Temperature dependence of the specific heat for
L =12 (solid line) when defects are not allowed. The results for
L =12 obtained from the unrestricted simulation are also
shown (squares) for comparison.
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FIG. 10. Temperature dependence of the magnetization
(M) obtained from simulations in which defects are not al-
lowed. Solid curves are guides to the eye. The inset shows a
plot of (M) at T— 0 vs 1/V'N, N being the number of spins.
The straight line is the best linear fit to the data.

the nonvanishing of { M ) found in the restricted simula-
tion is not a trivial finite-size effect. In the spin-wave ap-
proximation, the two-point correlation function in the or-
dered phase is expected to have the form

(S(0)-S(r)) ~M3+b/r (3.6)

at long distances, where M, is the spontaneous magneti-
zation. This translates into the following dependence of
{M ) on the sample size N:

(3.7

Our data for (M ) at K =0 are consistent with this form
with M(=~0.15 and A4 ~0.65, indicating a state with
long-range order at all temperatures.’® We also studied
the temperature and sample-size dependence of the ratios
of moments, R, and R,, defined in (3.4). We found that
both R; and R, remain close to unity (R; <1.02,R,
< 1.08) at all temperatures up to T— . Also, values of
R, and R, decrease with increasing L at all tempera-
tures, and there is no sign of any crossing of the R|,R,
versus T curves for different L. As discussed in Sec.
III B, the ratios R, and R, were found to exhibit very
similar behavior in the ordered phase of the original mod-
el. All these results consistently indicate that the system
remains ordered at all temperatures if configurations con-
taining defects are not allowed.

There is one question that needs to be resolved before
we can consider the results described above as conclusive
evidence indicating that the defects are necessary for the
phase transition. Since most of the data in the A—
limit were obtained from simulations in which the system
was warmed up from the ground state, we have to consid-
er the possibility that the observed behavior is caused by
a trapping of the system in a small region of phase space
with nonzero M and is, therefore, an artifact of the MC

(M)=My+ A/N'3 .
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procedure used by us. The standard MC method is
guaranteed to generate the appropriate ensemble aver-
ages if any two points in the allowed phase space are con-
nected by a path with a nonzero transition probability.
Since a class of configurations (those with topological de-
fects) are assigned zero probability in the A— oo limit, it
is not clear a priori whether this connectedness criterion
is satisfied or not. To investigate this question, we repeat-
ed the simulations at K =0 with two other starting
configurations with no defects, one with M =0 and the
other with M =0.5. As shown in Fig. 11, all these runs
converge to the same value, (M ) ~0.23 within ~ 1000
MC steps/spin, thus indicating that the parts of phase
space with M =0 are indeed connected to those with
nonzero valnes of M. This observation confirms that the
observed nonvanishing of {M ) is not caused by a trap-
ping of the system in phase space.

D. Simulations with a chemical potential for defects

We have also simulated the behavior of the model
Hamiltonian (2.4) as a function of A with K =0. Ques-
tions about the phase space breaking up into disconnect-
ed regions do not arise in these simulations as long as the
value of A is not very large. The variation of (M ) with A
obtained from these simulations is shown in Fig. 12. We
find a rapid change of {M ) near A=A, ~2. As shown in
Fig. 13, the N dependence of (M) is well described by
the form (M) «<1/V'N, which is characteristic of the
disordered phase, if A is appreciably smaller than A,. For
values of A somewhat larger than A,, the variation of
(M) with N is similar to that shown in the inset of Fig.
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FIG. 11. Evclution of the magnetization M in MC simula-
tions (L =8, T— o) with no defects for three different starting
configurations: (a) M =0, (b) M =0.5, and (c) M =1.0.
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I ] IV. DISCUSSION
A o ] The main result of the numerical study reported in this
= 015 — paper is the demonstration that point defects (hedgehogs)
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FIG. 12. Dependence of the magnetization (M) on the pa-
rameter A [see Eq. (2.4)] at K=0. Solid lines are guides to the
eye.

10, suggesting a state with long-range ferromagnetic or-
der. For values of A close to A, the N dependence of
(M) does not fit the form (M )=M,+aN ~'/2. This
presumably indicates critical behavior. These observa-
tions suggest a transition from the disordered to the or-
dered phase as A is increased through A.. The behavior
of the ratios of moments, R and R,, is consistent with
this picture. These results, thus, indicate that the system
remains ordered at all temperatures if A is sufficiently
large, in agreement with the conclusion drawn in Sec.
ITI C from the simulations in the A— oo limit. Due to the
smallness of the sizes of the samples simulated with the
reduced Hamiltonian (2.4), we could not obtain accurate
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FIG. 13. Plots of the magnetization (M ) at K =0 vs 1/VN
for four different values of A. The error bars are smaller than
the sizes of the symbols except for A=2.1.

state is accompanied by an unbinding of defect pairs.
Simulations in which configurations containing defects
are sufficiently suppressed or eliminated completely do
not show any evidence for a transition to the paramag-
netic phase, thus indicating that the point defects are
indeed necessary for the phase transition. These results
raise several interesting questions relating to the nature
of the 3D Heisenberg transition. We conclude with a dis-
cussion on some of these questions.

As mentioned in the Introduction, questions about the
importance of defects in the 3D Heisenberg transition are
closely related to the validity of the O(n) nonlinear o
model in describing the phase transition in the n =d =3
model. In the nonlinear o model, the spin field is as-
sumed to have a fixed magnitude. If the model is defined
on a continuum, and if one demands that the spin field
varies smoothly and continuously (so that the derivatives
VMS are well defined and finite) at all points in space, then
it is not possible to have spin configurations containing
singular point defects in this model. (At the center of
such a point defect, the direction of the spin cannot be
defined. Therefore, the magnitude of the spin field must
vanish there.) One would then conclude that the O(3) o
model in three dimensions includes only nonsingular
spin-wave-like excitations, and therefore, according to
the results of our numerical calculations, this model does
not exhibit any transition to the disordered phase. This -
conclusion would contradict the results of RG calcula-
tions!* on the o model, which indicate a finite-
temperature phase transition in the n =d =3 model.
This contradiction, however, is not a very serious one be-
cause the RG calculations are carried out in (2+¢€) di-
mensions and an extrapolation of the results to three di-
mensions (e=1) is certainly open to questions. One may,
however, adopt a different point of view about the nature
of the nonlinear o0 model. One may argue that the model
in which the spin field is defined at every point in space
(i.e., in which fluctuations of all length scales are allowed)
is not well defined due to the presence of ultraviolet
divergences. To get a well-defined field theory, it is
necessary to adopt a regularization scheme. If the field
theory is regularized by putting the spins on a lattice
(which approximately corresponds to the usual introduc-
tion of an ultraviolet cutoff), then one ends up with a
model that is identical to the lattice model studied here,
which clearly includes both spin-wave and topological ex-
citations. It is not clear to us whether other regulariza-
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tion schemes lead to the same conclusion about the pres-
ence of defects in the 3D O(3) o model. Nevertheless, a
question that remains is whether the RG recursion rela-
tions obtained'* for the O(n) o model in 2+ € dimensions
properly take into account the topological excitations.

There are reasons to believe that they do not describe .

correctly the contribution of the topological defects.
This is clearly the situation for the XY model (n =2) at
d =2 2. The RG equations for the n =2 nonlinear o model
do not predict any transition to a disordered phase for
any dimension d =2, whereas we know that this model
exhibits defect-mediated transitions from the ordered to
the disordered phase in both two and three dimensions.
In the XY model, there is a clear separation between
spin-wave and topological excitations, and one can unam-
biguously associate the O(2) o model with the spin waves
which, being Gaussian, can not induce a transition to the
disordered phase. Because of the nonlinearities inherent
to the o0 model with n > 2, a similar interpretation of the
RG results for n =3 is much less certain. Our numerical
results indicate that if the RG equations for the ¢ model
do not include the effects of topological excitations, then
they are not appropriate for a correct description of the
n =d =3 transition.

Another interesting question concerns the nature of
the phase diagram of the generalized Heisenberg model
defined in (2.4). We have studied the behavior of this
model along the lines A=0 and K =0 in the (K-A) plane
and have found continuous phase transition at the points
(K.,0) and (0,A.). The transition at (K,,0) is the usual
3D Heisenberg transition, whereas the universality class
of the transition at (0;A.) is not known at the present
time. We believe that there is a continuous phase bound-
ary joining the points (K,,0) and (0,A.) in the (K-A)
plane which separates the paramagnetic phase from the
ferromagnetic one. We do not, however, have any infor-
mation at the present time on the nature of critical be-
havior at points other than (K,,0) on this phase bound-
ary. We wish to point out that our conclusion about the
defects being necessary for the phase transition does not
necessarily imply that the defect chemical potential A is
relevant (in the RG sense) at the critical point (K,,0).
The fact that the system is ordered for all values of K if
A> A, does not tell us anything about the nature of the
phase transition for 0 <A <A,. Thus, our claim that the
3D Heisenberg transition is “mediated” by defects should
not be interpreted as implying that A is a relevant vari-
able. In fact, there is some reason to believe that phase
transitions for small but nonzero values of A belong to the
same universality class as the one for A=0. If we assume
that the phase transition is described correctly by the sta-
tistical mechanics of the system of defects (the plausibili-
ty of such a description is discussed later in this section),
then we may argue that since the introduction of a small
A term changes only the short-distance part of the defect
Hamiltonian, it should not affect the nature of the transi-
tion. The phase transition at the point (0,A.) should, on
the other hand, be unstable with respect to introducing
the K term because this corresponds to turning on a
long-range interaction between defects. Thus, it is plausi-
ble to expect a phase diagram in which all points other
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than (0,A,) on the phase boundary belong to the 3D
Heisenberg universality class, and the transition at (0,A,)
is of a different nature. A similar phase diagram was pro-
posed and verified numerically® for a generalized version
of the 3D XY model. Whether the same picture is valid
for the 3D generalized Heisenberg model is unclear at
present. Numerical investigations of this question would
be very interesting.

Finally, we note that our conclusion that topological
defects play a crucial role in the 3D Heisenberg transition
introduces a completely new approach to a theoretical
understanding of this transition. In particular, it raises
the possibility of formulating a theory of the critical be-
havior at this transition in terms of the statistical
mechanics of the system of point defects. Because of
nonlinearities arising from the three-dimensional nature
of the Heisenberg spins, a description of this transition in
terms of defects would, however, be much more compli-
cated than Kosterlitz-Thouless-type theories®* of defect-
mediated transitions in XY-like systems. Some of the
difficulties encountered in such an approach were dis-
cussed in the Introduction. A necessary ingredient for a
calculation of the statistical mechanics of the defect sys-
tem is detailed information about how the energy of a de-
fect ensemble depends on the positions and the topologi-
cal charges of the defects. As discussed in the Introduc-
tion, the present knowledge on this question is incom-
plete. The energy associated with a single pair of oppo-
sitely charged defects has been calculated!® for the con-
tinuum version of the model. It is not known whether
this calculation is applicable without any modification to
defects on a lattice. We are not aware of any calculation
of the energy associated with more than one pair of de-
fects. We have carried out a few preliminary numerical
calculations bearing on these questions. In these calcula-
tions, we determined the energies associated with lowest-
energy spin configurations containing a specified arrange-
ment of point defects. The lowest-energy configurations
were obtained by using a ‘‘zero-temperature” MC algo-
rithm in which an attempted update of a spin is accepted
only if it decreases the energy and it does not alter the
specified arrangement of defects. We first considered the
case where there are only two defects with Q==1,
separated by a distance of d lattice spacings along one of
the cubic axes. We found that the dependence of the en-
ergy E on the separation d is well approximated by the
linear relation E = Ad with A ~4r, the value obtained!®
in the continuum limit. We also considered the situation
where there are two defect pairs placed head to tail along
a line parallel to one of the cubic axes. The two opposite-
ly charged defects in each pair were separated by unit lat-
tice spacing. We found that the total energy of this
configuration of defects is well approximated by the sum
of the two pair energies if the separation between the de-
fect pairs is larger than ~4 lattice spacings. At smaller
separations, we find a smaller value for the total energy
and a simple superposition of pair potentials does not
seem to work. This observation suggests that nonlineari-
ties arising from the three-dimensional nature of the
Heisenberg spins may be important in determining the
energy of a defect configuration if the density of defects is
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not very small. Even if we disregard this complication
and other possible ones arising from spin-wave interac-
tions and couplings between spin-wave and topological
excitations, we are left with a system that corresponds to
a grand canonical ensemble of positive and negative point
“charges” interacting via a linear potential. The statisti-
cal mechanics of this system is difficult to work out, and
no information is available at present on whether this sys-
tem exhibits any “unbinding” transition at a finite tem-
perature. An investigation (either analytic or numerical)
of this question would be of considerable interest.
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