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Collisions of excitations in a Bloch wall in stationary motion are studied by numerical means. It
is found that these excitations may be either topological (Bloch lines) or nontopological. The excita-
tions have the properties of solitary waves: Even though the Bloch wall is a damped driven system,
upon collision the excitations pass through each other, conserving their identity. The interaction of
the solitary-wave-like excitations with a nonmagnetic surface of the material is discussed.

I. INTRODUCTION

In magnetic domain-wall dynamics the motion of the
Bloch wall is certainly considered a well-understood
phenomenon. In most of the cases studied, the Bloch
wall is made to move under the influence of a static drive
field which is applied parallel to the direction of the mag-
netization in one of the domains adjacent to the wall. It
is well known!? that a characteristic critical value of the
drive exists (the Walker critical field) such that, when
fields smaller than the critical are applied to the wall, sta-
tionary motion ensues. The Bloch wall then moves with
a frozen structure and with a constant velocity. In phase
space, stationary motion is described by a fixed point at-
tractor.® If the drive field exceeds the critical value, a
running oscillatory motion of the wall is obtained!™*
even though the field is only a constant.

In the basic theory of the dynamics of the Bloch wall}
it is assumed that, since the Bloch wall is, by definition,
infinite along its surface, all points on the surface of the
Bloch wall are equivalent. Thus, it is assumed to be
enough to write the equations of motion describing only
the dynamic behavior of the distribution of magnetiza-
tion in the direction perpendicular to the wall. In the
past, some indications were published stating that such
an image of the wall in motion may not be complete. By
perturbation theory, Slonczewski showed? that wall cor-
rugation may occur at drive fields just above the Walker
field. In materials with low uniaxial anisotropy, Ma-
gyari® discussed the stability of the Bloch wall against
bending for a narrow range of drive fields just below the
critical value. For Bloch walls residing in materials with
a large uniaxial anisotropy, it was recently shown that
both the distribution along the wall of the magnetization
direction and the shape of the wall surface itself may be-
come very complicated when drive fields larger than the
Walker field are applied; a strange attractor is obtained.>

The purpose of this paper is to study the behavior of
excitations which occur in a Bloch wall moving in a static
drive field which is smaller than the Walker critical field,
i.e., the excitations of a Bloch wall in stationary motion.
Attention is restricted to the case of materials with a
large uniaxial anisotropy so that the rather complicated
problem of the motion of a three-dimensional distribution
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of the magnetization in a real Bloch wall may be reduced
to the dynamics of a Bloch surface*: the wall is then
treated as a thin membrane of magnetic moments. It
shown that the excitations of the Bloch wall structure
have certain properties of solitons, i.e., when they collide
they pass through each other conserving their identity.
The solitonlike structures may be either topological
(Bloch lines) or nontopological. The latter excitations
have a relatively short lifetime due to the damping acting
in the system.

II. EQUATIONS OF MOTION

The Bloch wall in a bulk uniaxial magnetic material is
described by the Lagrangian density:

L=—M06gsinf/y —K sin’@
— A[(V0)*+sin0(Vg)?]
—27M *sin’psin®0+ MH,cosO+Ep, ,

where 47M is the saturation magnetization, K the uniaxi-
al anisotropy energy, A is the exchange constant, H, is
the uniform external magnetic field (the drive field) ap-
plied along the anisotropy axis, and E, is the local mag-
netostatic energy density due to the tilting of the wall
with respect to the orientation of the magnetization in
the domains; this term is discussed below. The polar an-
gle coordinate 6(z,t) describes the direction of the mag-
netization with respect to the anisotropy axis while the
azimuthal angle ¢(z,#)—the direction of the magnetiza-
tion with respect to the surface of the Bloch wall. The z
axis is parallel to the applied field direction.

We note here that in this paper only the local magne-
tostatic term is retained. In conventional domain-wall
dynamics formulated for garnetlike materials such an ap-
proximation was fully accepted as leading to reasonable
results.®” This may seem to be, at a first glance, a rather
controversial point in a study of solitary-wave-like behav-
ior as the excitations of the Bloch wall generated in this
study contain magnetostatic charges and so interact with
each other. The magnetostatic charges within the wall
are of several different origins. In vertical Bloch line dy-
namics it has been known for some time that the magne-
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tostatic charges are due to a magnetostatic dipole layer
created by the magnetic moments rotating out of the
plane of the wall and also to a divergence created by the
rotation of the magnetic moments along the length of the
vertical Bloch line.? It can be shown® that the latter type
of magnetic charges play a dominant role. Many of the
long-range magnetostatic interactions cancel out and the
ones that do not are attractive. Incorporation of the
long-range magnetostatic interactions of this type with
the material parameters used here into the vertical Bloch
line model does not induce any qualitatively new behav-
ior but mainly introduces a small phase shift so that all
events seem to happen slightly faster before a collision
and slightly slower after it.° Since the numerical pro-
cedure is then considerably slowed down by the need to
integrate over all other points in the wall in order to take
into account, at a given grid point, the long-range magne-
tostatic interactions described in Ref. 8, these interac-
tions are neglected here completely.

If horizontal Bloch lines are generated in the wall an
additional magnetostatic term appears which need not be
discussed in the theory of vertical Bloch lines. This term
is due to the fact that, as the wall surface buckles along
the length of the Bloch line, magnetostatic charges are
created at the boundary between the two domains. In the
Appendix a reasonable approximation is made to include
the local magnetostatic energy term due to wall buckling.
The local-energy term is the largest of all the magnetos-
tatic energy terms. Since tests show that the effect of this
term is negligible and since it is the largest of the magne-
tostatic energy terms, in the calculations presented below
the magnetostatic terms due to wall buckling along the
easy axis of the magnetization were not included.

In the limit of large uniaxial anisotropy it is usually as-
sumed! ~* that the azimuthal angle @ is treated as a con-
stant across the wall. Then, if y is the variable perpendic-
ular to the wall, the magnetization distribution in that
direction is fully described by the single polar angle 8:

Yy —4q
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where g =g (z,t) is the position of the center of the wall
and A is the Bloch wall width parameter (in this approxi-
mation, a constant equal to V' 4 /K ). In the next step,
the Lagrangian density of the system is integrated in the
direction perpendicular to the surface of the wall and the
following equations of motion may be found:

. . 24 d* ,
g=yA 277'Msm(2<p)—————a-£ +alp ,
. 2A4 9°q dE)p

=y |H,+2524 44
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where a is the phenomenological Gilbert damping con-
stant which comes into the Euler equations through the
Rayleigh dissipation function!®
F=—A—A—l(é2+sin29¢2) .
2y
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Ej is the demagnetizing energy density per unit area of
the wall due to the buckling of the wall along the easy
axis direction (see the Appendix for details). The magne-
tostatic terms due to the buckling of the wall and the
long-range magnetostatic terms due to the distribution of
the magnetization along the wall for the material parame-
ters used here have a negligibly weak effect on the phe-
nomena studied here and after a certain number of trials
have been neglected in the work presented below.

The equations of motion (3) were solved numerically
using a modified vector version of the DuFort-Frankel
explicite finite difference scheme.>!""!? In numerical cal-
culations a Bloch wall of only a finite size along the easy-
axis direction may be considered. The size of the wall
was 20 pum in the calculations presented here but
periodic-boundary conditions were applied to simulate
the bulk material case. Two hundred grid points were
used for the calculations in which the period of the
boundary conditions was 20 um and 100 grid points—
when that period was 12 um. The time step was 0.05 ns
in all cases. The numerical approach used here allowed
us to obtain a long-term behavior of the system (over 3
us) without any signs of a numerical instability.

For initial conditions we assumed that the Bloch wall
is initially flat, i.e., g (z,0)=0. For the initial distribution
along the wall surface of the azimuthal angle ¢(z,0) it
was either assumed to be constant and zero everywhere
or that a narrow pulse (0.4-0.6 um wide) was superim-
posed on the otherwise flat distribution. The height of
that pulse was 7 /2 rad.

The following material parameters were used in the
calculations: 4=0.81X10"7 erg/cm, 47M =140 G,
y=1.73X10" 1/s0e, A=0.029%X10"* cm, and
a=0.156. The Walker critical field for these material pa-
rameters H,=a27M =10.9205+£0.0005 Oe and the
external drive field H, was varied from zero to the Walk-
er critical field.

III. RESULTS AND DISCUSSION

- When the flat initial conditions were used our calcula-
tions for all drive fields smaller than the Walker field al-
ways reproduced the results of the Walker model® for the
case of a large anisotropy. The solutions always con-
verged onto a fixed-point attractor (cf. Ref. 3).

For drive fields exceeding the Walker critical limit the
perturbation test of Ref. 3 always caused a transition to
chaos. Here the perturbation tests were applied to the
wall at drive fields lower than the Walker field. These
tests® simulated the effect of a point fluctuation in the ma-
terial parameters colliding with the wall for an extremely
short time (0.1 ns). Although the magnitude of the am-
plitude of the fluctuation was varied in a wide range, it
was only obtained that the wall state always converged to
the fixed-point attractor of Ref. 3.

A different approach was then used. It was decided to
perturb the domain wall in stationary motion by using an
(unphysical) initial condition in the form of a narrow
pulse in the azimuthal angle ¢(z,0). Depending on the
height of this pulse as well as on its width different
solitary-wave-like structures were excited within the
structure of the domain wall. Note that the domain wall
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was moving under the influence of the static drive field at
the time these structures were generated.

It was found that if the drive field applied to the wall
was significantly smaller than the Walker critical field,
the nontopological solitary waves then generated in the
initial stage of the motion of the wall decay rather quick-
ly. Because of this effect a decision was made to use
H,=10.92 as the largest drive (H,—0.0005 Oe) for
which the domain wall still does not exhibit a large sensi-
tivity to initial conditions® i.e., it remains in the station-
ary motion state.

The height of the initial condition pulse was varied up
to m/2 rad. For all magnitudes of the pulse amplitude
used, the behavior of the system was essentially as de-
scribed below. Only the boundaries of the specific types
of behavior shifted in parameter space as the height of
the initial pulse was changed. Below, only the results of
calculations performed for the m/2 initial pulse are
presented.

If the width of the pulse in the initial condition ¢(z,0)
exceeded 0.5 um, only topological solitary waves (a pair
of opposite winding Bloch lines) in the wall structure
were generated. This can be seen in Fig. 1(a) for a 0.6-
pm-wide initial pulse in a Bloch wall moving in a static
drive of 10.92 Oe. The solitary wave generated is topo-
logically stable because, in the Bloch wall, p=n= with
n=0,%t1,+2,%3,. .. are minimum energy orientations of
the magnetic moment. A small “forerunner” pulse pre-
cedes each of the kinks in Fig. 1(a). Note that the drive
field rotates the magnetic moments outside the solitary
wave by some moderate angle away from the exact static
minimum of energy position.

The part of the wall where the topological solitary
waves are created lags behind the rest of the wall so that
a “well” in the shape of the wall surface [Fig. 1(b)] forms
simultaneously with the pair of kinks in the wall struc-
ture in Fig. 1(a). In Fig. 1(b) the average of the position
of the wall g is subtracted at each point of the wall so
that the motion of the wall as a while is not visible.

As the motion of the wall continues the kinks in the
wall structure (and the respective kinks in the wall shape)
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move in opposite directions. Because of the periodic-
boundary conditions used in the calculations, the left
kink of the pair wraps around and reappears on the right
of Fig. 1. This is as if, in an infinitely long wall, there
were several points at which pairs of Bloch lines were
generated so that, after a certain time of motion of the
wall, the kinks belonging to adjacent Bloch line pairs ap-
proached each other. The forerunner pulses preceding
the kinks in the wall structure are the first to collide and
some 40/ns later the kinks themselves collide. During
the collision at r=100-120 ns the kinks pass through
each other. Because of the peculiar angular set of coordi-
nates used, in Fig. 1(a) the kinks look as if a rotation of
the magnetic moment to the opposite chirality has oc-
curred at the point of collision. This, however, is not the
case: the magnetic moments at the point of collision ro-
tate by 27. To see that the collision of the solitary waves
results in their passing through each other rather than
reflecting off each other, note that in Fig. 1(b) the curva-
ture of the wall shape changes sign during the collision
process.

With periodic-boundary conditions in effect the wrap-
around—collision—wrap-around sequence of events will
continue indefinitely, always with only the single pair of
kinks taking part. This is in marked contrast to what
occurs at drive fields larger than the Walker field: as dis-
cussed in detail in Ref. 3 a slight fluctuation of the drive
field at a single point in the wall for an extremely short
time causes a state of deterministic chaos with many
Bloch lines generated and propagating along the wall
structure. The wall shape then is also very complicated
and dynamically changing. Note that in Fig. 1 the Bloch
wall far away from the topological solitary wave is still in
the stationary motion state: both the wall shape and its
structure seem relatively unaffected by the passing of the
excitation.

A lower bound of the drive field magnitude exists
below which, when the topological solitary-wave-like ex-
citations of the wall collide, they do not pass through
each other but instead annihilate leaving the wall in a
purely stationary motion state with ¢(z,¢)=const. The
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FIG. 1. Collisions of topological solitary waves created by means of a 0.6-um-wide initial condition pulse in a Bloch wall
(periodic-boundary conditions). (a) depicts the wall structure and (b) depicts the shape of the wall surface.
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existence of such a lower bound may be easily understood
if it is remembered that the system is dissipative. In a
nondissipative system the energy in each of the colliding
kinks must be conserved so that upon collision they pass
through each other regardless of the fact that the system
is nonlinear. However, in a dissipative system such as the
domain wall, this may not necessarily be true as the ener-
gy in the kink-antikink pair may be dissipated during col-
lision. It is only when the power input into the system
through the externally applied field exceeds the power
dissipated during the collision process that the kinks pass
through each other just as solitons do in nondissipative
systems. For the material parameters used here the lower
bound of the drive field above which the Bloch lines
behave as solitary waves was slightly larger than 5 Oe.
As noted above all numerical experiments described here
were conducted with H, =10.92 Oe.

If the wall would not reside in an infinite material but
in a thick slab of, say 20 um with force-free boundary
conditions assumed at the surfaces of the slab, then the
kinks would reflect at these surfaces. This may be seen in
Fig. 2 for which the same initial conditions and drive
field in Fig. 1 were used; the abrupt rotation of the mag-
netic moment by 27 at the surface of the slab is accom-
panied by a change of curvature of the wall shape at that
point (not shown). As the right-hand Bloch line of the
pair generated from the initial condition pulse moves
away to the right, after about 130 ns a secondary pair of
topological solitary waves is created behind it. This effect
is due to the fact that with force-free boundary condi-
tions the wall shape at the surfaces of the slab, and also
inside it, is different than for the periodic-boundary con-
ditions [note here that the cosine magnetostatic potential

¢ (rad)

z (um) 20

FIG. 2. Collisions of topological solitary waves created by
means of a 0.6-um-wide initial condition pulse in a Bloch wall
moving in a slab of a finite thickines—the same as the period in
Fig. 1. Unmarked arrows depict direction of motion of the
waves.
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acts only on the wall structure ¢(z,¢) and not on the wall
shape so that, with force-free boundary conditions, the
difference in position of the wall at the opposite surfaces
of the slab may be very large]. With the drive field mag-
nitude so close to the Walker critical field the large am-
plitude oscillations of the force-free boundary conditions
are able to create an additional pair of solitary-wave-like
excitations. Aside from this, the basic behavior of the
solitary waves in the thick slab of Fig. 2 is the same as in
the case of an infinite wall—they collide and pass
through each other while the part of the Bloch far from
the excitations remains in stationary motion.

When the width of the initial condition pulse was 0.5
pm or somewhat less, the structure of the wall evolved in
a different way than described above. The initial pulse in
the wall structure decayed into two nontopological soli-
tary waves in the wall structure moving in opposite direc-
tions and preceded by one forerunner pulse each. These
pulse solitary waves were each accompanied by a small
kink in the shape of the wall. Figure 3 depicts the evolu-
tion of the nontopological solitary waves in a domain
wall with periodic-boundary conditions during its motion
at the Walker critical field. Initially a transient phase
occurs during which the solitary waves lose in height and
gain in width. However, after about 40 ns of the motion
of the wall both these solitary waves transformed into
two pairs of topological solitary waves. From then on the
behavior of the system was as described before with the
solitary waves colliding and passing through each other.
No new solitary waves were created after the transition
to the topological state.

When the nontopological solitary waves obtained from
a 0.4-um-wide initial condition pulse collide, they pass
through each other and the curvature of the wall changes
sign, i.e., the solitary waves conserve their identity [Fig.
4(a)—wall structure up to the moment of collision; Fig.
4(b)—after the collision]. However, due to dissipation,
the solitary waves which emerge from the collision are
very small [note the scale that is two times larger in Fig.
4(b)]. All the same, they decay very slowly so that they
may be seen to traverse a certain distance (about 10 pum)
within the time limit of the calculation (260 ns) and, in
the periodic world of this study, another collision is im-
minent in Fig. 4.

The role of the forerunner pulses seems significant.
When the period of the boundary conditions was de-
creased to 12 um so that the collision of the solitary
waves could occur earlier, and the rest of the conditions
were the same as in Fig. 4, a transition to topological soli-
tary waves was obtained (Fig. 5). The forerunner pulses
in this case were still large at the time of collision and
close to the solitary waves themselves.

When the nontopological solitary wave obtained from
a 0.4-um-long 7 /2 high initial condition pulse in the wall
was reflected from the surface of a slab of a 20-um thick-
ness (force-free boundary conditions), a transition to a to-
pological state of the reflected solitary wave occurred
(Fig. 6). During this transition at the surface the other
nontopological solitary wave travels to the right without
hindrance. However, the reflected topological solitary
wave also moves to the right and drives in front of it a
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series of small forerunner oscillations which, when they
collide with the nontopological solitary wave, destabilize
it causing a transition to a pair of topological solitary
waves moving in opposite directions. We note here that,
when a smaller drive or a smaller initial pulse are used,
the nontopological solitary waves may also be simply
reflected with a small decrease in size but no transition to
topological solitary waves.

In general, the collision time of the nontopological
solitary-wave-like excitations is much longer than in the
topological case: for the former case it exceeds 60 ns
while for the latter it does not exceed 20 ns and was usu-
ally in the range of 1-3 ns.

As mentioned above, at drive fields exceeding the
Walker field H,, the Bloch wall exhibits a large sensitivity
to initial conditions.>!* An attempt was made to study
the properties of the nontopological solitary-wave-like ex-
citation at the 12 Oe drive field, i.e., H,+1 Oe. For the
first 2 ns the wall structure evolved from the initial condi-
tion rectangular pulse as in the other cases described
above. At that moment a rapid transition to two pairs of
topological solitary waves occurred. The forerunner
pulses underwent a similar transition to a pair of topolog-
ical solitary waves each. As a final state of the wall the
strange attractor of Ref. 13 was obtained with a varying
number of several topological excitations present in the
wall at a given time.
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FIG. 3. Spontaneous transition of the nontopological solitary
waves created by means of a 0.5-um-wide initial pulse to pairs of
topological waves.
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IV. SUMMARY AND CONCLUSIONS

A numerical study of the excitations which may occur
during the stationary motion of a Bloch wall in uniaxial
ferromagnetic material has been performed. It was
confirmed that, for drive fields not exceeding the Walker
critical field, the Bloch wall does not have a large sensi-
tivity to initial conditions (cf. Ref. 3). However, the
choice of an appropriate form of the initial condition led
to the generation of topological or nontopological
solitary-wave-like excitations of the Bloch wall moving in
a drive field lower than the Walker critical drive. These
excitations seem to be well localized in the sense that, far
away from them, the wall is seen to be in a stationary
motion state which may be somewhat different from the
state of an unexcited wall is similar conditions.
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FIG. 4. Collision of nontopological solitary waves created by
means of 0.4-um pulse in a Bloch wall with a 20-um period. (a)
depicts the evolution of the system up to the moment of col-
lision and (b) depicts after the collision. Note the twice larger

scale in part b. Unmarked arrows depict direction of motion of
the waves.
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FIG. 5. Instability of the colliding nontopological solitary
waves due to a shorter period of the boundary conditions (12
pm). The rest of the conditions as in Fig. 4.

The topological solitary-wave-like objects generated in
the wall in the course of this study have all the properties
of solitons, i.e., they do not disperse nor decay and upon
collision they pass through each other conserving their
identity. However, the soliton properties are obtained in
the dissipative system studied here only if care is taken to
provide a large enough power input onto the system so
that the energy of the kinks is not dissipated during col-
lision. This may be done by supplying a large enough
drive field. Note that in domain-wall dynamics (cf. Refs.
1-4) the possibility of the generation of solitary waves
(Bloch lines) below the Walker critical limit has not been
acknowledged until now.

The nontopological solitary-wave-like excitations, like-
wise, seem to have soliton properties. However, the
forerunner pulses which precede them do not. As a re-
sult, when the solitary-wave-like objects collide two
events occur: the height of the pulses decreases abruptly
during the collision of the forerunners (these do not reap-
pear after the collision) and, the pulses themselves emerge
from the collision considerably broader and much smaller
in height. They do conserve their identity during the col-
lision. The fact that the collision time of nontopological
solitary waves is so different from that of topological soli-
tary waves probably means that the coupling between the
nontopological excitation and the external field is less
than in the case of topological solitary-wave-like objects.
Note that the pulse solitary waves superimpose on each
other rather quickly while the rest of the collision time is

taken by the change of sign of the wall surface curvature.

The nontopological solitary wave, generated by means
of the rectangular initial pulse condition, at the beginning
goes through a transient phase during which it is unsta-
ble. This can be seen from the fact that transitions to to-
pological solitary wave excitations occur if the nontopo-
logical solitary wave is made to collide either with the
surface of the material or with its double. On the other
hand, once the wave has had enough time to evolve no
such transitions occur and solitonlike properties are ob-
served. However, a collision of the nontopological wave
with the topological one results in a transition of the
former to a pair of topological waves. The fact that, un-
der certain conditions, a nontopological wave may trans-
form into a pair of topological waves may be understood
as an indication that the nontopological wave is a bound
state of two kinks.

Finally, note that the phenomena discussed here are
different from the instability against bending of the wall
discussed in Ref. 5 and corrugated wall motion of Ref. 2,
as not only the anisotropy in our case is assumed to be
large (the opposite was true in Ref. 5) but also to obtain
our results one need not restrict the magnitude of the
drive to a value close to the Walker critical field—in the
course of this study various excitations were obtained for
fields as low as 2 Oe, i.e., about 20% of the Walker field.
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APPENDIX

To take into account the magnetostatic energy due to
buckling of the wall the following may be done. First,
note that the local magnetostatic term is always the dom-
inant term. To calculate that term it was assumed that
the distribution of magnetostatic charges may be approx-
imated by

0=9-M~=M*A sin®(ms /A) ,
ds
where M*=M cosn with 7 the angle between the wall
and the direction of motion, s is a local variable, the axis

of which is normal to the wall. o was normalized so that .

the total charge in the wall was 2M* which gave
A=4/A. The above choice of distribution of magneto-
static charge density was assumed to be convenient and
not too distant from the charge distribution obtained in
more elaborate models of the head-on domain wall (cf.
Ref. 14). Next, o was integrated over the width of the
wall to give

A

2

27s

M(s)=M*l A

s —sin
A

and the magnetostatic energy density per unit volume
was calculated as ep=—1Hp,M(s), where Hj is the
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demagnetizing field from an infinite planar slab of the
thickness A and with the magnetization distribution
M (s) inside it,

HD=7fosa(s’)ds’—%ffa(s’)ds'

2
=M*=
A

s —sin

where the minus sign in front of one integral is due to the
opposite directions of the magnetic field contributions
from the two parts the wall is divided into by point s.
The local magnetostatic energy density per unit area of
the wall due to the tilting of the wall was calculated as
2m*?
3

so that the term to be used in the equations of motion be-
comes

Ep=—14 [ HpM(s)ds = 25—

dE, oMm>
dq 3

The calculations presented in this paper were per-
formed with and without the local magnetostatic term in-
cluded. No difference in the behavior of the solitary
waves was observed whether or not the local magneto-
static energy was included in the calculations. Since the
local energy term is the dominant one no further attempt
was made to include in the equations of motion the other
magnetostatic energy contributions.
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