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Defect formation and transport in a hydrogen-bonded system is studied via a two-sublattice

soliton-bearing one-dimensional model. Ionic and orientational defects are associated with distinct

nonlinear topological excitations in this model. The dynamics of these excitations are studied both

analytically and with the use of numerical simulations. It is shown that the two types of defects are

soliton solutions of a double-sine-Gordon equation which describes the motion of the protons in the

long-wavelength limit. %ith each defect there is an associated deformation in the ionic lattice that,
for small speeds, follows the defect dynamically albeit resisting its motion. Free propagation as well

as collision properties of the proton solitons are presented.

I. INTRDDUCTIDN

Electrical conductivity in hydrogen-bonded crystals is
an old problem that recently has been revived with the in-
troduction of new techniques and ideas from nonlinear
physics. As with several other problems in biology„such
as (for instance) the dynamics of biopolymers, it provides
a new and exciting arena where nonlinear, soliton-type
modes might be responsible for energy and charge
transfer. ' Hydrogen bonding is not only ubiquitous in
living matter but it also provides the dominant mecha-
nisrn for crystallization in a variety of chemical sub-
stances, such as hydrogen halides. An understanding of
the electrical properties of systems with hydrogen bonds
will provide information for a wealth of physical and bio-
logical systems and processes ranging from "simple" sys-
tems such as ice to the more complicated processes of
proton transport across ceHular membranes, the proton
pump, or the dynamics of protons in the vision-related
molecule rhodopsin.

A great deal of activity has been devoted to the under-
standing of the physical and electrochemical processes
that are responsible for the anomalously high proton mo-
bility in the most common hydrogen-bonded crystal, ice.
Onsager associated the conductivity in ice, which is not
electronic but protonic in nature, to a hopping mecha-
nism that allows the protons of the hydrogen bonds to
move along hydrogen-bonded atomic channels. Experi-
mental evidence strongly indicates that charge transport
proceeds via the motion of two types of defects that can
be present in the network, viz. , the ionic defects and the
orientational (or Bjerrum) defects. " The former in-
volve an intrabond motion of the (unique) binding pro-
ton, whereas the latter result from interbond or intera-
tomic motion of the protons due to rotations of the water

molecules. %'einer and Askar' introduced the idea of a
collective transition of the interacting proton system that
could explain qualitatively the ionic-defect creation and
motion and suggested that an analogy holds with the
creation and movement of dislocations in crystals.

More recently, Antonchenko, Davydov, and Zolo-
tariuk (ADZ) (Ref. 13) focused their attention on explain-
ing quantitatively the creation and transfer of ionic de-
fects in hydrogen-bonded systems. They introduced a
two-sublattice model (ADZ model) in which proton
transport in an infinite one-dimensional chain (realized
physically in ice through a Bernal-Fowler filament' ) can
proceed collectively via the propagation of two-
component P solitons at a given characteristic velocity
vo. Lyapunov stability' and stability of solitons during
collisions' have been studied, and a variety of interesting
dynamical properties have been detected' for the ADZ
model. Some extensions to other hydrogen-bonded
configurations were introduced, ' ' including a thermal
activation mechanism for the ionic defects. Finally, the
interesting case of a quadratic phonon coupling was
shown to lead to exact soliton solutions with rich dynam-
ical properties. '

With regard to the orientational defects, there have
been recent attempts aiming at the understanding of their
formation and dynamics. The original Bjerrum picture
has been replaced by a collective-mechanism representa-
tion either by a direct incorporation of the dipole-dipole
interaction in the Hamiltonian, ' or via other effective
approaches.

Although the aforementioned models provide quantita-
tive information regarding the collective proton dynam-
ics that stems from the nonlinear structure of the hydro-
gen bond, they all suffer from the same defect, viz. , they
take into account only one or the other of the possible
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II. DESCRIPTION OF THE MODEL
AND ANALYTICAL RESULTS

A typical one-dimensional hydrogen-bonded network
consists of two coupled sublattices: One is that of the
negative ions (or a group of atoms), and the other is that
of protons. In a one-dimensional geometry, this
configuration would be represented by

X—H. X—H . . X—H. X—H (2.1)

where X denotes an ion (usually 0, F, or N) or an aggre-
gate, and H is a hydrogen that is bonded covalently with
an adjacent ion (full link) and forms a hydrogen bond
with another ion (dotted link). The covalent and hydro-
gen bonds in a X—H . X configuration are interchang-
able, viz. , the proton in the bond that links the two X ions

two types of defects in the hydrogen-bonded networks.
This is very restrictive, especially since there exists an
abundance of experimental evidence " that clearly sug-
gest that both types of defects participate in the transfer
of charge across the hydrogen-bonded network.

The incorporation of both ionic and Bjerrum defects
into a single classical model has been introduced recent-
ly. In this model the essential physical requirements of
the hydrogen-bonded networks were introduced and the
resulting solvable collective dynamics was shown to lead
to defect creation and propagation in the form of two-
component solitons. In the present paper we extend the
model introduced in Ref. 25 and begin a thorough analyt-
ical as well as numerical study of its static and dynamical
properties. We emphasize that our present study ad-
dresses for the first time quantitatively, both analytically
and by the use of numerical experiments, the simultane-
ous collective dynamics of both types of defects present in
ice and other hydrogen-bonded materials.

In the present paper we will restrict ourselves to the
exposition and analytical study of the two-defect model
and emphasize its physical consequences. We will
present numerical simulations for the model that support
and extend the analytically derived results. In particular,
we will present numerical experiments that determine the
free propagation and collision properties of the defects.
Some aspects of defect dynamics in the presence of an
externally applied electric field have been presented else-
where. "

The structure of' the present paper is as fo11ows: In
Sec. II we describe the two-defect model in detail. We
give the classical Hamiltonian for the system (Sec. II A)
and discuss the physics of the assumed substrate potential
as well as the interaction potential. In Sec. II 8 we dis-
cuss the degeneracy of the ground states, in Sec. II C we
derive the dispersion relations in the harmonic approxi-
mation, and in Sec. II D we write the equations of motion
in the continuum limit and give their solutions. In Sec.
III we describe the numerical simulations performed and
analyze the free propagation of the solitons and in partic-
ular study their collision properties. Finally, in Sec. IV
we conclude by discussing the physics of the co11isions as
well as other properties of the discrete system.

together can tunnel between two equilibrium positions
that are energetically equivalent. Thus, the nature of the
eft'ective potential for the proton is that with two stable
equilibrium positions separated by an unstable one. A
typical example of such a potential for the proton in the
hydrogen bond is the well-known double-well potential,
Viz. ~

V(x)= —
—,'ax + ,'bx—

where a, b depend on the specific system under study.
Because of the double-well structure of the interion

bond, there are two equilibrium configurations for the ex-
tended system; one with all the protons in one minimum
(say left) and the other when all protons are in the other
minimum (say right). Excitations from either of these
equilibrium configurations, i.e., spatially localized transi-
tions from one ground-state configuration to the other re-
sult to (domain-wall-type) defects in the lattice. These
defects carry effective charge (positive or negative) and
are called ionic defects. In the case of ice, i.e., when the X
ions are oxygens, there are two types of ionic defects,
viz. , hydroxyl ion (OH ) with negative effective charge
and hydronium ion (H30 ) with positive effective charge.
The spontaneous creation and propagation of these de-
fects has been studied extensively and their dynamics
have been used to explain some of the electrical proper-
ties of the ice crystals.

In the past, models with double-well potentials for the
interion linkage have been studied systematically in the
context of the dynamics of protons in hydrogen-bonded
systems. Such models have been shown to lead to kink
solitons that represent the ionic defects in the crys-
tal. ' ' ' ' 7 The main disadvantage of such poten-
tials, however, is that they cannot take into account the
orientational defects that are known to be present in a
hydrogen-bonded system. The latter defects are due to
rotations of entire water molecules (in ice) with a net re-
sult being the appearance of a second proton in a given
hydrogen bond (D-Bjerrum defect) or the disappearance
of a proton from a bond resulting in an empty bond (L
Bjerrum defect). Since macroscopic charge transfer in
hydrogen-bonded systems involves both kinds of defects,
all models that are based on such a type of potential can
provide only partial information on the dynamics of pro-
tons. In particular, conduction properties of the protons
cannot be addressed with such potentials.

To circumvent these difficulties, it is necessary to adopt
model substrate potentials for the protons that, on one
had, retain the topology of the double-well potential
which is essential for the proper description of the hydro-
gen bond, and, on the other hand, allow for an e6'ective
charge transfer between adjacent hydrogen bonds that
comes as a result of the Bjerrum rotations. This can be
accomplished with the introduction of a doubly periodic
substrate that can accommodate both types of defect for-
mation that are known experimentally to play important
roles in the electrical properties. We proceed by describ-
ing the double-defect model.
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A. The Hamiltonian

H=H +H, +H, , (2.2)

where H is the Hamiltonian for the proton sublattice,
H, for the ion sublattice, and H; is the interaction term
between the two. We have

dy„
H =g 1/2m

dt
+ I /2E i (y„+,—3 „)

4m.+S V( y„
0

dr. '.
H, =g 1/2M +1/2E2( Y„+,—Y„)

dt

(2.2a)

F„
+So V2 (2.2b)

H; =gg ( Y„—Y„&)4 y„
n 0

(2.2c)

In Eqs. (2.2), m, M denote the mass of the protons and
ions, respectively, K&, K2 the corresponding spring con-
stants, and y is the coupling parameter between the two
interacting sublattices. The displacement y„of the nth
proton is measured from the central unstable equilibrium
position in the hydrogen bond, i.e., from the middle of
the bond that links the ions, whereas F„, the displace-
ment of the nth ion, is measured from its equilibrium po-
sition. The equilibrium distance between two heavy ions
is taken to be lo. We assume that in both chains, only the
nearest neighbors interact among themselves. The com-
bined efFects of Coulomb repulsion and screening are in-
cluded in the on-site potentials, for both sublattices. It
is appropriate to introduce the following dimensionless
quantities:

4~
~n ( &n~ ~n=

(0 0
(2.3)

With these de6nitions, the substrate potentials in Eqs.
(2.2) are written

2

The total Hamiltonian H of a quasi-one-dimensional
system, described through the present model, consists of
three parts, i.e.,

ton sublattice (Fig. 1) and it is chosen to satisfy the physi-
cal requirements posed by a hydrogen-bonded network.
If we assume that the rest ion position is where the larger
maximum occurs, then the two local minima separated
by the smaller maximum represent the two-proton equi-
hbrium positions within the hydrogen bond, and the
larger barrier represents the energy necessary for a Bjer-
rum rotation to take place. If a proton has enough ener-

gy, such rotation is possible, and the proton can move to
the other side of the large barrier. The activation energy
for such a rotation in ice is larger than the one for the
creation of an ionic defect. This is so because the former
results only after two bonds are broken. In systems
where this might not be true, a difFerent value in the pa-
rameter a is necessary.

One disadvantage of the potential of Eq. (2.4c) is that it
depends only on one parameter, viz. , a. Consequently,
one cannot assign independent values to the relative max-
ima of the potential. With the proper choice of the pa-
rameter a, however, we can simulate the respective values
of the hydrogen-bond barrier and the Bjerrum rotation
energy to reasonable accuracy for several hydrogen-
bonded systems.

V2(w„) is an on-site harmonic potential that acts on
the heavy ions. This potential is created from the in-
teraction of the quasi-one-dimensional chain under study
with the rest of the crystal and guarantees the rigidity of
the lattice. The parameter So in Eq. (2.2b) measures the
strength of this eFective interchain interaction. Finally,
the potential function @(u„) determines the interaction
between the two sublattices. The functional form of this
term is restricted by the requirement that when either
sublattice is at an equilibrium position, the interaction
term of the Hamiltonian in Eq. (2.2c) must be zero. The
particular form chosen in Eq.(2.4c) clearly has these
properties, and its choice has been dictated by the specific
form of the substrate potential V, (u„). As we will shown
shortly, for this coupling, analytical solutions to the
equations of motion can be found.

In Fig. 2(a), we compare the potential @(u) with the

I

I

I

I

I

2 Q~
V, (u„)= cos

1 —a 2
—a, 0&a &1, (2.4a)

V2( w„)=—,
' w„ (2.4b)

while for the interaction term of Eq. (2.2c), the function
4(u„) is defined

~n
N(u„) =cos Qo—cos, u0=2arccos(a) .

(2.4c)

The potential V, (u„) is the on-site potential for the pro-

I

4m

&0
2/0

12m 16m
I

20n

U

FIG. 1. The substrate potential V& {u) is plotted as a function
of the distance along a hydrogen-bonded network. The heavy
ions {large solid circles) and the protons {small solid circles) are
shown in the zig-zag geometry of a hydrogen-bonded network.
The periodicity of the on-site potential V&(u) is 4m and a is
equal to 0.6486.
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2

=~1 "n+1 ndr'

I I II I I

l Wn

dr' 2Wn +Wn~2 Wn+1 n
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=1Q2=-
lp

1/2
0

M tp

With these definitions, all coefficients are dimensionless.
For the specific case of the ice crystal that we are con-

sidering in the simulations (in Sec. III), we have chosen
values for the parameters that are consistent with the re-
cent literature on the subject. We take tp=2. 0X10
lp=2. 7X10 ', m =1.67X10, and M=2. 84X10
The actual value for the coupling coefficient y is not
known with accuracy since there are several uncertainties
regarding even the exact form of the interaction term.
For a coupling coefficient g= 1.0X 10 ', g, and g2 be-
come 1.4X 10 and 0.52, respectively. In the simulations
we are reporting in the present paper, we chose a sub-
stantially smaller value for g; larger values in the cou-
pling enhance the stability of the nontopological excita-
tion in the ionic sublattice.

( 1 2)1/2 ~ ( 1 a 2)1/2) g1 , X2

3' =3'e i CO7eikn
n (2.7)

Upon substitution of Eqs. (2.7) in Eqs. (2.6), we obtain

and the upper (lower) sign refers to equilibrium position
+up ( up)~ wltll un +up+yn ~

The equations of motion (2.6) represent two coupled
linear chains of vibrating masses. Each mass in either
chain vibrates around an equilibrium position under the
infIuence of a harmonic potential and is coupled to the
nearest-neighboring masses with linear springs. The two
chains couple through the last terms (on the right-hand
side) in Eqs. (2.6a) and the interaction energy between the
two is bilinear in the displacements.

In order to calculate the low-amplitude vibration
dispersion relations, we assume solutions of the form

B. Ground states
( —pi +p, )y+y', (I —e'")w =0,
+yz(1 —e '")y+( —pi +p2)w =0,

(2.8a)

(2.8b)

In its ground state, the system can be found in two en-
ergetically equivalent, but topologically distinct,
configurations. Both of these states occur when the
heavy ions are in equilibrium, i.e., when ur„=0 and all
protons occupy equivalent minima of the periodic sub-
strate potential, i.e., h„=4mn+u p.

The period of the on-site potential for the protons is
4'. Within one period, the potential Vi(u) has a local
maximum for u =0, and a global maximum at u =2m.
The corresponding heights of the barriers are

V(0) =2 and V(2m. ) =2
1 —a 1+a
1+a 1 a

times the coefficient S . We note, that once a is chosen,
the relative strengths of the potential barriers are fixed.
The parameter a determines the relative distance between
the maxima and minima in the potential as well, since the
first minimum occurs at the value u;„=up=2arccos(a).

C. Harmonic limit

When the amplitude of the motion of the particles in
the system is small, we can approximate Eqs. (2.5) with a
new set of coupled equations. For this linearization pro-
cedure to take place, we assume that the displacement y„
of the nth proton from its equilibrium position +up is
small, and the corresponding small displacement of the
nth ion is m„. We now have the following equations of
motion:

d'
~

d
=~i(y +i 23' +3' —i) IIiy +Xi(w

P21
—021+4~21sin2 — P2= n22+4&2sin2 (2.8c)

When the coupling between the two chains is zero, the
dispersion relation consists of two branches given by p,
and p2. This is depicted in Fig. 3(a), where the upper
branch is the proton dispersion curve and the lower one
is the ion dispersion curve. These dispersion curves are
modified when we turn the coupling on. The new disper-
sion relation can be easily evaluated from the diagonali-
zation of the coefficient matrix in Eqs. (2.8) leading to

2+ 2 2 2 1/2
Pi+P'2 P 1 P2, , 2 k

pi k — +
2 2 ' ' 2

+g g sin (2.9)

As y increases, the lower branch becomes Hatter at
k=0, whereas the upper branch becomes steeper in the
same point. This has the effect of increasing the sound
velocity in the proton sublattice and decreasing the sound
velocity in the ionic sublattice. Therefore, as y increases,
large-wavelength waves move relatively slower in the ion
lattice but relatively faster in the proton lattice. This sit-
uation is depicted in Figs. 3(b) and 3(c) for some larger y
values.

D. Continuum limit

Although the physical hydrogen-bonded network is a
system with discrete symmetry, analyti'cal results can
only be obtained in the continuum limit, where the exci-
tations are assumed to extend over large distances com-
pared to the lattice spacing. In this limit, Eqs. (2.6) be-
come

(2.6a)
2d w„

d
2( Wn +1 2Wn +Wn —1) Q2Wn iY2(yn + 1 yn )

, dV,
0 ~~ C pQ~~ +01 ++1M~ =0

dQ. dQ

2dV2 d
UOu xx+ QZ g2 =0,

dM dx

(2.10a)

(2.10b)

where

(2.6b)
where x, ~ are the dimensionless space and time variables,
c, =~1, U, = 1 represent the speed of sound in the proton-
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ic and ionic sublattice, respectively, y„y2 are propor-
tional to g, and Q&, 02 are proportional to S', So, re-
spectively.

In the special case when Q2=0, Eqs. (2.10) lead to a
double-sine-Gordon equation for the protonic sublattice

(u —co)u++E —sinu+2a sin =0, (2.1 la)

10— while for the heavy sublattice we have

X2
2

U Uo

Dcos a
2

(2.11b)

I

0

with

XJX2

1 —a 4(uo —u )
(2.11c)

10—

0 I I

0
k

2.5 I i I I I I I
i

i I I I I I I I

2.0—

1.5—

|.0—

0.5—

0.0
0
k

30 r t»
[

& s i &

(
r & t &

(

r & r where g=-x —ur and u is the travelling wave velocity.
The parameter e defines a new efFective barrier height for
the double-sine-Gordon equation; when y=O the known
results are recovered. For g„g2~y&0 this coeff-
icien contains the inhuence of the heavy sublattice on the
ionic one. %'e observe that for travelling velocities small-
er than v„ the effective barrier decreases, whereas the op-
posite effect occurs for v & v„' this holds independently of
the sign of the coupling coe%cient g. On the other hand,
the sign of w&( =w ) in Eq. (2.11b) depends on the veloci-
ty v. When the travelling velocity v is equal to the value
of the sound waves in the ionic sublattice, viz. v„Eqs.
(2.11) seem to have a singularity, and for larger velocity
values m& changes sign. In this latter case an initially
rarefacting tendency in the ionic lattice becomes
compressive and vice versa. The apparent singularity,
the physics of which is discussed herein, disappears when
Q2&0.

As is well known, the double-sine-Gordon Eq. (2.11a)
results in two types of kink solutions that in the present
model represent ionic and Bjerrum defects, respectively.
Equation (2.11b), on the other hand, defines an excitation
in the heavy-ion sublattice that is formed because of the
topological excitations of Eq. (2.11a). The non-traveling-
wave solutions of Eqs. (2.11) can be obtained easily
they are given by

uz(x, r)=4mn+4arctanIR tanh[K, (x —xo) —Q, r][,
(2.12a)

u zz(x, r) = (2n + 1 }(2m.)

+4 arctan I R 'tanh[K, (x —xo ) —Q,rj,
(2.12b)

FICr. 3. In (a) the dispersion curve co(k) vs k is plotted for
both sublattices and for the value of the nonlinearity parameter
that has been used in the simulations. In (b) ~&(k), the disper-
sion curve for the harmonic proton motion is presented (curve
A) and compared with the one obtained for larger g (curve B;
the value of the nonlinearity parameter is 100 times larger than
the one used in the simulations). In (c) co&(k), the dispersion
curve for ions is shown (curve A) and compared with tone for
which y is ten times larger (curve B).

where

R =[(1—a }/(1+a)]', K, =yA/21, Q, =K,u,
y=[l —(u/co)] ', d =co/Qz, a=cos(uzz/2),

1/2
+1+2 1 cx

40I v —vo
J

(2.12c)
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+2 . u

2Q'
u S1Il (2.13)

ble kink solutions for the two sublattices.
When Q2&0, the shape of the deformation in the ionic

lattice changes and analytical solutions of the form given
by Eqs. (2.12) are no longer available. It is, however, pos-
sible to obtain an approximate solution for the composite
nonlinear excitations for one particular value of the ve-
locity of the moving excitation, i.e., when the latter
moves with velocity U =Uo, which is the velocity of sound
in the ionic lattice. For this velocity, Eq. (2.10b) becomes
inertialess and we obtain

The substitution of Eq. (2.13) into Eq. (2.10a) results in an
equation which is more complicated than Eq. (2.1 la), in
that it contains a term proportional to u& as well as u-
dependent coe%cients. These additional terms, however,
are proportional to yz which is in the present case much
less than 1 and therefore can be neglected to the lowest
order. Consequently, Eqs. (2.12) are good approximate
solutions for the present case of Qz&0 and U =Uo for the
protonic sublattice (this is readily justified in the numeri-
cal simulations as well). Combining Eqs. (2.12) with
(2.13), and after some straightforward algebra, we obtain
the following forms for the nonlinear excitations in the
ionic sublattices:

2y2 RK, sech [K,(x —xo) —Q, r] u, (x, r)
Qz 1+R tanh [K,(x —xo) Q,—]r

F2 R 'K, sech [K,(x —xo) —Q, r] u«(x, '7)
lDtt(x, 1 )— sin

02~ 1+R tanh [K,(x —xo) —Q, r]

(2.14a)

(2.14b)

where u, (x, r) and u„(x,r) are given in Eqs. (2.12). In
Fig. 6 we present the approximate solutions for the ionic
sublattice with 0=0.1. The proton soliton solutions cor-
respond to those plotted in Figs. 4(a) and 5(a). It is evi-
dent that the shape of the ionic deformation caused by
the protonic kink has changed dramatically from a kink-
type to a gradient or shocklike wave. It is worth pointing
out that the ionic deformation is asymmetric in terms of
compression and rarefaction and it is quite different for
the small and large kinks, respectively [this asymmetry
was present in the ionic kinks as well as can be verified
from Figs. 4(c) and 5(c)]. This is due to the difFerent to-
pological properties of the proton kinks and the choice of
the interaction term (2.2c). It has been observed in the
computer simulations of the system under study, that the
ionic deformation depicted in Fig. 6 for the specific veloc-
ity Uo survives approximately in almost aH velocity re-
gimes, although it does not retain the preceding given ex-
act symmetric shape.
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III. SIMULATIONS

In this section we present the results of the actual nu-
merical experiments performed on the system. We have
chosen a one-dimensional crystal with 400 ions and equal
number of protons placed periodically with a lattice spac-
.ing lo. The equations of motion for the discrete system
were those given in Eq. (2.5). They were integranted nu-

merically, using a fourth-order Runge-Kutta scheme with
double precision arithmetics. The integration time step
was kept the same for all simulations and equal to
b,t=0.01. With a typical time (in natural units) of
t =100, this amounts to ht Xt =10000 iterations, for
a typical run. We choose fixed boundaries for the proton-
ic chain and semifree for the ionic chain, viz. , the first ion
was kept fixed and the last ion was free to move. The ini-
tial conditions for the proton lattice were chosen accord-
ing to the solutions of the double-sine-Gordon equation.

—3
—60

I I & & i I & i t & I

—40 -20 0
X

20 40 60

FIG. 6. In (a} we plot the ionic deformation induced by a
small protonic kink on the ionic sublattiee at the lower critical
velocity Uo. We note the drastic change in the shape of the de-
formation as compared with that depicted in Fig. 4(c). In (b) we
show the corresponding ionic deformation of a large kink.
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The ionic lattice was taken to be initially at rest. As not-
ed before, these are true solutions of the continuum equa-
tions of motion only when Qz=0. In the simulations, we
imposed a weak substrate potential (Qz=0. 1) and thus
these are no longer exact solutions of the system. Since
the actual value of the substrate is very small, this
discrepancy does not afFect appreciably the evolution of
the proton solitons.

In the study of the dynamical properties of the non-
linear excitations of the system, two velocity values seem
to be of particular importance; these are the velocity of
sound in two sublattices, denoted with vo for the ionic
and co for the protonic one. For the present choice of pa-
rameter values and in dimensionless units these have the
value 1.0 and 11.0, respectively. While U (&Uo, i.e., for
small kink velocities, both small and large excitations
propagate freely carrying along the ionic lattice deforma-
tion. Upon increase of their velocity, however, and as it
approaches the lower critical velocity Uo, the effective
resistance that the ionic substrate exerts on them in-
creases substantially. This effect is accompanied by a
dramatic increase in the amplitude of the oscillations of
the heavy ions, consistent with Eqs. (2.14), where IC, —+ 00

when v ~vo. For initial kink velocities larger than vo the
effective mobility of the kinks is much smaller than that
for U & Uo. In fact, for relative small velocities compared
to co, viz. , U ~5, the propagation of the free solitons is
quickly inhibited by the interaction with the ions. The
sharp reduction of the mobility of the proton solitons at
velocities comparable to Uo is seen in the numerical simu-
lations where mobilities are determined.

Having discussed briefly the properties of the free
propagation of the proton kinks, we now come to their
collision properties. We note here that our experimental
conclusions regarding these properties seem to agree with
the results of Campbell, Peyrard, and Sodano, who per-
formed a thorough analysis of the properties of (one-
component) kinks in the double-sine-Gordon equation.
That is, the presence of the ionic substrate, although pro-
foundly altering the free kink dynamics, does not affect
substantially their basic collision properties.

There are various pairs of solitons that can undergo a
collision. Let us 5rst consider a small kink-antikink pair;
physically this corresponds to two different ionic defects
with equal and opposite charge. In the numerical experi-
ment, we place the kink-antikink pair in two distant posi-
tions in the one-dimensional system with several values of
initial (opposite) velocities. We typically observe two
effects in such a collision: (a) For relatively small initial
velocities the solitons penetrate each other, annihilate,
and in their place leave a spatially localized oscillation.
This behavior corresponds to the trapping of the small
kink-antikink double-sine-Gordon pair reported by
Campbell et a/. which is accompanied by a "decaying
breather" type of fInal state. This decay is caused here by
the coupling of the proton chain with the ionic one. The
ionic chain acts effectively as a dissipative reservoir for
the protons. (b) For larger velocities (typically for U & S.O

an inelastic collision occurs and the two kinks do not pass
through each other but reflect. This behavior persists till

the upper critical velocity co is reached. This property
consistent with the findings of Campbell et al. as well;
however, a conversion of two small kinks into two large
ones as reported in Ref. 31 for the double-sine-Gordon
equation, has not been observed in the system under
study. Representative plots for the evolution of small
kinks (ionic defects) are given in Figs. 7 and 8.

The evolution of the kink-antikink pair presented in

Fig. 8 should be contrasted with the one in Fig. 7. In Fig.
7 the solitons are moving slower, whereas in Fig. 8 they

FIG. 7. Collision of two small kinks with small initial veloci-
ties. Initially we create a small kink with velocity U =0.5 in po-
sition 150 and a small antikink with velocity U = —0.6 in posi-
tion 250. The two solitons move against each other, collide and
they virtually annihilate themselves leaving in place a decaying
breather (a). In {b) we show the dynamic evolution as seen in
the ionic sublattice. Since the ionic sublattice has not been ini-
tially excited, several oscillatory modes are observed in addition
to the traveling ionic deformation.
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When a pair of large kinks are counterpropagating in
the crystal, the collision properties observed are different.
Indeed, for all velocities tested, we observed a conversion
of the large pair into a pair of small kink-antikinks. This
is in agreement with Ref. 32 as well. The conversion of
the large pair into a small one occurs because it is ener-
getically more favorable for the protons to move across a
small barrier (the hydrogen bond), rather than across the
large barrier (Bjerrum rotations). This behavior is depict-
ed in Fig. 9. We note that the excess of the large kink po-
tential energy is distributed into (a) kinetic energy for the
resulting and faster moving small kinks and (b) potential
energy in the heavy-ion sublattice that causes large am-
plitude oscillations. As a result of the inability of heavy
ions to follow the speedy kinks, a local oscillatory mode
is created.

When a small kink moves against a large kink, we have
a collision situation similar to that of a small mass collid-
ing with a large mass. Here, the large kink passes its
momentum to the small one, which subsequently reverses
its direction of motion.

Finally, when all four kinds of kinks are present in the
system, the properties of the system can be understood
from the analysis of the individual "elementary" col-
lision. An example of a situation where all four types of
defects are present is depicted in Fig. 10.

orientational or Bjerrum defects have been associated
with the corresponding large kinks (type II). The follow-
ing association holds between solitons in the model and
defects in the hydrogen-bonded network:

IV. CONCLUSIONS

We have presented a study of a nonlinear model for the
motion of defects in quasi-one-dimensional hydrogen-
bonded materials. Although several models have ap-
peared recently addressing the collective dynamics of
protons in hydrogen-bonded systems, none of these mod-
els can accommodate fully all types of defects that are
known experimentally to play an important role in the
electrical properties of these systems. The present model
introduces in a natural way both types of defects associat-
ed with hydrogen-bonded systems. This is accomplished
through the introduction of a substrate potential which is
doubly periodic. A judicious choice of interaction be-
tween the two sublattices constituting the system, leads
to an exact solution of the model in the continuum limit,
i.e., in the limit when only long-wavelength excitations
are present. It was shown that in this limit, two kinds of
kink solitons emerge, as a result of the double-sine-
Gordon structure of the equation of motion for the pro-
tonic sublattice. The smaller kinks of the double-sine-
Gordon solution have been associated with a transition
(through the small barrier) from one ground state of the
system (at T=O) to the next one, and correspond to the
ionic defects that are present in the hydrogen-bonded ma-
terials. The other kind of kink, was shown to lead to ro-
tational or Bjerrum defects in the one-dimensional ma-
terial.

In the context of the present model, ionic defects of the
hydrogen-bonded systems have been associated naturally
with the small sine-Gordon-type kinks (type I), and the

FIG. 10. Representative behavior where all four types of de-
fects are present. For initial velocities we chose the values 0.1,
5.5, —5.5, and —0.1 for small and large kinks, large and small
antikinks, respectively. Since the larger pair was given a rela-
tively large initial velocity, its constituent parts collide fast with
each other, annihilate, and subsequently create a small soliton
pair that moves in the opposite direction. After a few time steps
elapse this small pair meets the initially created small pair of
solitons and they undergo a collision. In (b) we show the dy-
namics in the ionic lattice.
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kink I~I ionic defect, kink II~I. Bjerrum defect,

antikink I~I ionic defect, antikink II~a Bjerrum defect .

In the case of ice the ions I, I+, are OH and H30
respectively.

When an external electric field is applied in the system,
the various defects respond differently, according to their
respective charges and effective masses. In particular, the
mobilities of small and large solitons are quite different as
has been observed in mobility measurements derived
through numerical simulations. When an ensemble of
defects is present in the system, the individual mobilities
as well as the collision properties of the defects will deter-
rnine the macroscopic conduction properties of the sys-
tem.

In the present paper we have made a presentation of
some of the basic properties of a new physical model per-
taining to hydrogen-bonded networks. In particular, in
the context of the model we showed that collective dy-
namics of protons in such a system can be assessed both
qualitatively and quantitatively. The double-defect mod-
el can be solved analytically (in the continuum limit) in
two particular cases, viz. , for 02=0 and approximately
for Qz&0 provided that U =vo. Following these analyti-
cal results, we explored numerically the relevant dynam-
ics for meaningful parameter values. Free propagation as
well as collision properties of both types of defects have
been studied. Analysis of the response of the defects
when external electric field is applied in the system as
well as dynamics at finite temperatures will be published
elsewhere.

The parameter values used in the present paper were
chosen as to correspond to the hexagonal crystalline ice
form (ice Ih). The coupling constant y was taken to be
quite small in order to avoid dramatic effects in the pro-
ton dynamics. Although the exact value of g for ice is

not known with certainty, it is possible that one has to
consider substantially larger values, perhaps an order of
magnitude larger, than the one chosen for the present
study. In this case, an amplification of the role of the ion-
ic substrate is expected.

A serious shortcoming for the present one-dimensional
model is the true three-dimensional nature of real solids
such as crystalline ice Ih. Although Bernal-Fowler fila-
ments in ice provide quasi-one-dimensional chains, the
interaction among these chains must be taken into ac-
count in a complete physical model for this system. Nev-
ertheless, the zig-zag, quasi-one-dimensional structure
that is exemplified by such filaments in ice, can be found
in abundance in nature, especially in biological systems.
The electrical properties of such proton dominated net-
works are similar to those of ice. A particularly good
candidate for our model is provided by crystalline hydro-
gen Auoride. We will report on that system elsewhere.
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