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Solitons in one-dimensional antiferromagnetic chains
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We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferro-
magnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the
temperature dependences of the soliton energy and the soliton density. We have found that the
leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soli-
ton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also
show that when an external magnetic field is applied, the chain supports a new type of kink, where
the sublattices rotate in opposite directions.

I. INTRODUCTION

The thermodynamical properties of the one-
dimensional classical antiferromagnet described by the
Hamiltonian

~=2J g [S„S„+,—5S„'S„'+,+b (S„) ] gps H g S—„"

have been studied in Ref. 1 using the transfer matrix
method. Results have been obtained for the static corre-
lation functions, correlation length, neutron-scattering
intensity integrated over energy, etc. , and an excellent
agreement with experimental data has been found for
tetr amethyl ammonium manganese trichloride for
(TMMC). To interpret physically the experimental re-
sults at low temperatures a soliton model has been pro-
posed and this model has been largely studied in the
literature. " Recently Gaulin, ' using a Monte Carlo
calculation, has found evidence for soliton excitations in

Hamiltonian (1.1). To accept the soliton model, however,
we should be able to show that a phenomenological
theory based in this classical model would agree with the
transfer matrix result. We should also be able to calcu-
late the quantum corrections to the model.

A phenomeonological treatment for Hamiltonian (1.1)
is very difficult, so we will consider the case H =0. How-
ever, in Sec. II we will present the equations of motion
for the full Hamiltonian in order to show the origin of the
difficulties involved. We will also discuss a new type of
soliton predicted by Gerling et al. ' using a Monte Carlo
calculation. In Sec. III we will consider the quantum
corrections to the classical model and calculate phenome-
nologically the soliton density using a quantum approach.

II. EQUATIONS OF MOTION

For a small magnetic field we expect that two neigh-
boring spins are almost antiparallel to each other at low
temperature. Making use of the angle variable intro-
duced by Mikeska

S; =( —1)'SIsin[8;+( —1)'v;]cos[p;+( —1)'a;],sin[8;+( —1)'v;]sin[/;+( —1)'a;],cos[e;+( —1)'U;]I, (2.1)

a
2JS at

sin ecosoc +sine cose (2.2)

where 8 and p are the angles giving the sublattice magnetization, and U and a describe the deviations from perfect an-
tialignment and can be assumed to be small at low temperatures. In the continuum limit the equations of motion are

2a'e i a'L9+ ay 1 ay +sinecose[(h +2b)cos P —25],2 2

z2 c2 cjt2 Bz c2 Bt
I

a'y 1 a'y ay ae 1 ay ae h ae= —2 cotO + cosP —(h +2b)singcosg,z2 c2 gt2 az az ,~ at at 2JS at
(2.3)

where c=4JS, h =gp~H/4JS and we have chosen the z
direction along the chain. The static limit of (2.2) and
(2.3) agrees with the corresponding limit for the equa-
tions of motion for a ferromagnet with two anisotropies.
The dynamics, however, is different for the two models.
At low temperatures, however, where only low-velocity

solitons are excited we should expect that the thermo-
dynamics of the two models are nearly equivalent. This
equivalence has been discussed in details by Gouvea and
Pires. "

Two static solutions to (2.2) and (2.3) can be given im-
mediately:
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xy soli ton

8=n /2, sing = tanhhz,

with energy

E „=4JSh,
where h 2=h 2+2

yz soli ton

(2.4)

(2.&)

other mode co, (q), is the fluctuation out of the easy plane
(out-of-plane mode).

We have been unable to solve Eqs. (2.11) and (2.12) for
h&0. For this reason we will consider just the case of
two anisotropies, i.e., we put li =0 in (2.11) and (2.12).
Now Eq. (2.11) possesses a bound-state solution with
co2 ——0 as in the SG problem. ' Equation (2.12) has the
same form only now Q=O gives a bound state with fre-
quency

P =vr/2, sin8= tanhi/25z, (2.6) cob ——2(5—b )c (2.14)

with energy

E,=4JS i/25 . (2.7)

Dynamic solutions have been studied in details in Refs. 1,
6, 8, and 9. As shown by Wysin et al. when b =0 the xy
solitons are stable above and below the critical field
h, =i/25. Even for h & h, they show no tendency to de-
cay to lower-energy yz solitons. At the critical field there
is a continuum of xy solitons all with the same energy
and velocity. For small velocities U «c, the sine-Gordon
theory adequately describes the yz branch. The static yz
solitons are stable only if h & h„and the dynamic yz soli-
tons require a minimum applied field to be stable, this
minimum field decreasing with the increase of velocity.
For h & h, the static yz soliton decays toward a
configuration involving a lower energy xy soliton.

For h & v'25 the xy soliton is the lowest energy soliton
and is stable. We will be concerned with this case. The
behavior of small oscillations in the presence of a single
static soliton $0(z) is determined by solutions to (2.2) and
(2.3) of the form

8(z, t ) =~/2+8, (u)+8(z, t ),
(2.8)

P(z, t ) =P,(z)+ g(z, t ),
where 8,(u) the out-of-plane deviation is given by

8,(u)=uh (4JS5) 'sech[h(z —ut)], (2.9)

and u is the soliton velocity. Substitution of (2.8) in (2.2)
and (2.3), linearization in 8 and g, and writing 8 and g as

8(z, t)=s(z)e' ', g(z, t)=r(z)e' ' (2.10)

leads to the following eigenvalue equations:

d r co
2 2 . 2hr =h (1—2 sech hz)r+i sos sechhz,

dz2 c2 c
(2.1 1)

d s co . 2h d'or+ s=h (1—2sech hz)s —i sechhz,z2 c2 c
(2.12)

where co =co —(25—h )c .
The dispersion relation is determined by the behavior

far from the so1iton center. We find

coi(q)=(25+q )c, co&(q)'=(h +q )c (2.13)

in agreement with Endoh et al. ' for the frequencies of
spin waves excitations in an anisotropic antiferromagnet
in an external field (in the limit of small q). Physically,
one of the two modes, co2(q), represents the spin Iluctua-
tions against the external field (in-plane mode), while the

As we see cub has to be positive for the out-of-plane
motion, this means b &6. Out-of-plane here means Auc-
tuations in the z direction. The bound state becomes soft
at the crossover anisotropy b =5, i.e., the plane becomes
unstable. Similarly to the P -kink model, the localized
mode cob should give rise to absorption at ~=co&, the
density of states for this magnon mode being proportion-
al to the soliton density. Both (2.11) and (2.12) for h =0
have the same phase shift b, (q) for the continuum states.
We have'

b (q) =2 tan '(V2b /q ) . (2.15)

We leave the phenomenological calculation of the soli-
ton density, in the line of Currie et al. ' to Sec. III where
we will treat the problem from the quantum mechanical
point of view.

Now we will study analytically the existence of a new
type of kink which, although its existence was demon-
strated by Gerling et al. ' for the classical XI model
through a Monte Carlo calculation, was not predicted by
early theories.

In the ground state for h&0, b =0, h &25, the spins
arrange in a spin-Qop phase, where all spins from one
sublattice align at an angle + a to the x axis aIid the
spins from the other sublattice at an angle —a to the x
axis. The angle a is given by'

a=cos '(h/2) if li &2, a=0 if h &2 . (2.16)

At nonzero temperatures the spins fluctuate around this
ground state. Obviously the parametrization (2.1) is not
suitable when the applied magnetic field is very large, be-
cause the spin-Bop angle will be large and the antialign-
ment destroyed, thus a two sublattice approach is more
indicated. Of course both parametrizations are
equivalent to one another. We will then write the Hamil-
tonian (1.1) as

where the superscripts A and B denote the two sublat-
tices and D =2J5. If D is large the motion of the spins
are largely confined to the xy plane.

After obtaining the equation of motion by using

iS=[S,&], (2.18)

&=QI2J[S (1}S (1)+S"(1).S (1+1)]
1

+D[S, (1) +S, (1) ] gp, ~H[$ "(1}+S„(l—)]I,
(2.17)
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we treat the spin components as classical vectors with
spherical components

S"(I)=S(sinaI cos(t slnaI slug(, cosaI ),
S (I)=S(sinPIcos@I sinPt '"@I,cosP

(2.19) sin('P;+, +'0; )+sin(4;+ 4; t ) —2h sin%; =0 .

Taking the continuum limit we obtain

4"cos2%+2 sin2% —2h sin% =0,
where 4 is confined to the interval

(2.25)

Obtaining
(2.26)

2JS[sinpts'n(@I —4 )+»npI+ t»n(@I+ &
4)—

+2h sing&],

2—JS[cota, sinp, cos(gI —4, )

(2.20)

(2.27)
/'PI=0, h&2.

+cotah sinpI + tcos(gI —41 + t )

—25 cosa I +2h cotaI sing& ], The kink solution to Eq. (2.26) can be written as
(2.21)

produced by allowing the sublattices to rotate in opposite
direction in the xy plane, until the sublattices are inter-
changed. In this case Eqs. (2.22) and (2.23) reduce to

with corresponding forms for p& and @I on the other sub-
lattice.

Since it is very dificult to obtain a time-dependent
solution for the above equations, we will consider only
the static limit, i.e., a&

——$1 ——0. We then get
where

I LP

Q V(a) —V(%, )
(2.28)

sin(4I+ t
—4 )+s'n(@t 0t )+—2h sin

si (@I k —t)+sin(@1—4)—2h sin@) ——0,
and aI ——PI ——m/2 .

(2.22)

(2.23)

Those equations represent a static kink in the XY
plane. If we impose the condition that D is very large we
reach the XY limit. In this limit there is no dynamical
solution and Eqs. (2.22) and (2.23) represent exact equa-
tions for the model.

As pointed out by Gerling et al. ' there are two topo-
logically distinct ~ solitons in the XY limit. In the first
type one sublattice experiences a phase jurnp of 2a and
the other 2m —2a. This type of soliton, for small magnet-
ic field, corresponds to the sine-Gordon solition already
studied in details in the literature. For large fields this
soliton has a more complicated structure, quite difFerent
from the sine-Gordon solution. In the second type the
two sublattices interchange direction by rotating through
angles +2a, respectively. We will study this type below.
In principle, we can construct yet another "m-like" soli-
ton in which the sublattices rotate through angles
+(2n —2a), but these have such high energy that they
have never been observed in the Monte Carlo calculation.
Since the spins remain more or less antiparallel in the
first type of soliton, we expect that this type should be
favored for low magnetic fields in which case the antifer-
romagnetic spin-spin is dominant. As the field is in-
creased, the second type of soliton should become more
common since both spins maintain components in the
same direction as the applied field. A 2m. soliton where
the spins in one sublattice rotate through 2~ and the
phase of the other sublattice is unchanged is also possible.

Following the work of Gerling et al. ' we look for
solutions of the type

V(%, )= —21ncos2%& —h ln
1+&2 cos%,

1 —v 2cos%',
(2.29)

40

20-

-20-

-40'
0

and the center of the kink was chosen at the origin z =0.
We have calculated the integral in (2.28) numerically and
in Fig. 1 we show %(z) for a=20', 30', and 40 . We also
show, for comparison, the results obtained directly from
Eq. (2.25). This figure is similar to Fig. 5A of Ref. 13.

As pointed out by Gerling et al. ' this kink solution is
quite difFerent from the sine-Gordon soliton obtained
when we allow the sublattices to rotate in the same direc-
tion. Of course the continuum approximation (2.26) has
limitations. For example, it clearly breaks down for fields

(2.24)
4 = —'p2. +i

this is, the spins are in a spin-flop state and the kink is

FIG. l. P(zl calculated in the continuum approximation
I,'solid line) and using the discrete model (circles). Here z is mea-
sured in units of the lattice parameter.



7152 A. S. T. PIRES, S. L. TALIM, AND B. V. COSTA 39

such that a & m. /4. However, the discrete equation (2.25)
always holds.

In Fig. 2 we show the kink energy Ej„calculated nu-
merically, using the discrete Eq. (2.25), as a function of
the magnetic field. As we can see the energy decreases as
the field increases and is zero for h )2.

Now let us discuss the energetics and stability of the
model. As we have seen before, for small magnetic fields
and any value of the anisotropy the xy soliton has the
lowest energy given by E~ =4JS h, and is stable. Now if
D/J is small, as it usually is, for h & &25 the xy soliton
becomes unstable and the yz soliton is the lowest energy
soliton and is stable. For small values of h we have
E,=4JS &25. If we suppose that only the spin com-
ponent in the yz plane is effective in the calculation of E,
we can write

E,=4JS &25sin a=4JS &25(1—h /4) .

fact, if in Eq. (2.22) we consider the angle between adja-
cent spins to be small, i.e., P&-P&+, -g& ——(t) we can ex-
pand P& and $1+, in series around gl to obtain in the con-
tinuum limit

a2
+h sing=0,

Bz
(2.30)

the static sine-Gordon equation. For the soliton energy
we have

E=4JS'&h . (2.31)

III. QUANTUM CORRECTIONS

However, for TMMC h =2 corresponds to H = 10 kOe,
a value much higher than the fields available in labora-
tories today.

2.0
N

U)

. CU

LU

I.O

o.
%.o I.O 2.0

FIG. 2. Soliton energy as a function of the applied magnetic
field.

At least the two limits h —+0 and h =2 are correct since
for h =2 we have complete alignment of the spins with
the field and E,=O. Also our estimate for E, is in
agreement with Ref. 9 where this expression for E, was
obtained by using a two-parameter variational ansatz for
the YZ soliton. Therefore, for small values of D/J, as is
the case for TMMC, the +2+ kink has energy larger than
the yz soliton and a numerical analysis shows that it is
unstable to the yz soliton. We can therefore neglect this
type of kink in the calculations done in this paper.

Increasing the value of D/J we will reach a point
where EI, will be smaller than E,. This will happen for
very large values of 5, (5 & 1.12). Now if we use for the
energy of the xy sohton the expression given in Ref. 9,
E» =4JS h(1 —h /6) we see, from Fig. 2, that for
h )0.77 we have E& (E ~. For very large values of 6
and h a numerical analysis shows that the +2m kink is
stable.

We have not discussed the +(2~—2a) kink since as
pointed out in Ref. 13 these have a higher energy than
the +2+ soliton. However, when the spins are approxi-
mately aligned to the field we should have a 2~ soliton
similar to the soliton for the ferromagnetic model. In

The aim of the present section is to present a
quantum-statistical mechanics of soliton excitations in
the antiferromagnetic linear chain described by Hamil-
tonian (1.1) when H=0. We will rely on the earlier
works of Maki and Takayama' where they treated the
pure SG model.

Before treating the quantization of the soliton we will

brieAy discuss the quantization of the magnon modes. In
order to do that we shall transform the Hamiltonian into
the Villain representation'

S„+=e "[S(S+1)—S„'(S„'+1)]'",

S„=[S(S+1)—S„'(S„'+1)]' e
(3.1)

we shall rotate the P„separately for each sublattice such
that the azimuthal angle is measured with respect to the
position of the spi6s in the ground state. Thus we let

P„=(—I )"~/2+% „. (3.2)

&=Eo+&0+JV ) +&p+ ' (3.3)

where Eo = —2JXS is the energy of the classical ground
state and &o is the harmonic Hamiltonian. The remain-

ing terms represent interactions between spin waves, and
also provides quantum renorrnalizations of the spin-wave
dispersion relations. At very low temperatures, where
the number of excited spin waves is extremely small, only
the quantum renormalizations are important. Since these
are of order 1/S, they vanish in the classical limit. The
harmonic Hamiltonian &0 can be diagonalized by
Fourier transforming and using the canonical transfor-
mation

%=a(at —a ),
S'=iP~(at a~ ), — (3.4)

Following Riseborough and Reiter' we take the classical
easy plane antiferromagnetic state as the zeroth approxi-
mation, and expand in powers of the amplitude of
the out-of-plane fluctuations ( (S„') ) /S where S
=S(S+I), and in-plane fluctuation ((4„) ). On ex-

panding in powers of S„'/S and %„we obtain
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where a»p» =—,'. We thus obtain

(aa+aa },ACOq

0 q q q q
(3.5)

where

fico» =4JS [[(1+5)+cos q][(1 +b) —cosq ]]'i

and
I /2

(3.6)

1 1+5+cosq
1+b —cosq

1 /2 (3.7)

(q'„& =—y ~', (2n, +1),

((S ) )= QP»(2n»+1)
q

where

(3.8)

(3.9)

2 S 1+b —cosq
p, =

2 1+5+cosq

The fluctuations ((S„') ) and ((%'„) ) can be calculated
directly from (3.4), we obtain

E],———,'(0 —m]c)+ —,'(co], —m~c),

where

(3.13)

alone is 5=0.019. The renormalized value, ' at q =0,
is 5I ——0.0086 in agreement with experimental data from
low-temperature EPR measurement. For b the experi-
mental renormalized value is b =2.6 & 10 which
would correspond to the bare value b = 1.0&(10

Now to study the quantum-mechanical corrections to
the soliton sector we must be very careful to appropriate-
ly count the modes and subtract the vacuum energy for
each mode. We compute the difference between the
quantum corrections to the ground-state energy of the or-
dering vacuum and the ground-state energy of the soli-
ton. In the absence of the soliton, the energy of the vacu-
um comes only from continuum states (magnons modes).
When the soliton is introduced, the first two continuum
states disappear to become states with co=0 and co=~b,
as we have seen in Sec. II. This is, the first state (q =0)
of co, (q ) becomes the bound state co=0 (translation
mode) and the first state (q =0) of co@(q) becomes the
bound state ~=co&. The contribution of these two states
to the energy of the soliton will then be

n =(e ' —1)
co /T

q
(3.10) I, =2b, m2=25 . (3.14)

4J&2b
(3.11)

The classical limit is obtained by setting n —&T/co,
n»+ —,'«T/co», (where we have taken k~ =1). Equations
(3.8) and (3.9) yields the classical result E„„,= —,

' g [co](q„)—co](k„)]
n=1

+ g [co2(q„)—co2(k„)] (3.15}

The contribution from the other states, which remain in
the continuum in the presence of the kink, will be

S T (3.12)

valid to leading order in T. In the classical case ((S„') )
vanishes for T~O and increases linearly with T, whereas
in the quantum case at T'=0 the out-of-plane Auctuations
are very large: ((S„') ) =0.3 for TMMC, to be compared
with the value 0.5 for the isotropic Heisenberg model.
The thermal increment is extremely slow for ternpera-
tures up to 10 K. The large discrepancy at T=0 occurs
due to fact that we have neglected the zero-point energy
in Eqs. (3.8) and (3.9) to get the classical limit. In the
quantum approach that we will use in this section to treat
the soliton sector we will include the zero-point energy of
both in-plane and out-of-plane fluctuations. Note that in
the pure quantum sine-Gordon model the out-of-plane
fluctuations are ignored, thus showing the inadequacy of
a mapping of Hamiltonian (1.1) to this model.

Expressed in terms of creation and annihilation opera-
tors the interaction terms in the Hamiltonian &] in Eq.
(3.3) are not normally ordered. On forcing the interac-
tions into a normal ordered form, the commutators pro-
duce lower-order interactions and quadratic terms. The
application of this procedure, as in the case of the fer-
romagnet, will generate renormalized values for J, 5,
and b (renormalized magnon mass). For instance the 5
value calculated for TMMC on the basis of a full Ewald
sum for the classical magnetic dipole-dipole coupling

qL„+&( q) =2n ir= k„L, (3.16)

where b, (q) was given in Eq. (2.15). From Eq. (3.16) we
obtain

co(q) =co(k)—a(k) a~
I. (3.17)

In the limit L ~ ao the discrete sum (3.15) becomes an in-
tegral

(3.18)

where A is the ultraviolet cutoff, given by the lattice spac-
ing. Integrating (3.18) by parts, adding Eq. (3.13) and do-
ing a few manipulations we find

where q„ is the wave number of the nth mode in the con-
tinuum in the presence of the kink, and k„ the wave num-
ber in the vacuum. Since we have used a periodix box of
length L, q„and k„are related by the periodic boundary
condition
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Eb +Econt = 2co, (0) m&c &~ dk dk (m2 —m i )dk

7T 'IO ( 2+k2)1/2 0 ( 2+k2)1/2 0 (k2+ 2)(k2+ 2)1/2+ + (3.19)

Although we have a discrete chain (finite A) it is well
known that one loop correction to the magnon mass is
equivalent to normal ordering of the Hamiltonian. This
contributes with terms

f dk(m +k ) j=1,2 .
0

For the SCx model the soliton energy is given by

mS

For 5 =b, Eq. (3.21) becomes

(3.22)

So the first two integrals on the right-hand side of Eq.
(3.19) are canceled by the ordinary mass renormalization
counterterms discussed early. Collecting all the finite
terms, we arrive finally to the static soliton energy, at
zero temperature,

0 0

mS
(3.23)

In this limit the Hamiltonian (1.1) is equivalent to the fol-
lowing Hamiltonian:

or
2m2

Es =Exy ~+ S+ 2S'7T m&

1/2

mic /, (m2 —m, )dk2 2

f0 (k2+ 2 )(k2+ 2 )1/2
(3.20)

&=2Jg [S„S„+i—5(S~)'], (3.24)

which at low temperatures has an Ising-like behavior.
The dift'erence from the correction to the SG model
comes from the extra degree of freedom represented by
the out-of-plane Auctuations. For TMMC we find

E, =0.88E (3.25)
(m', —mi) dk

TTS 10 (k2+. m )(k 2+ m 2 )1/2

(3.21)

Now, to study the quantum corrections to the soliton
sector, at finite temperatures, we start from the thermo-
dynamic potential of this sector given by

0, =E +p ' gin 2 sinh —c0,(q„) +g ln 2 sinh —c02(q„) —gin 2 sinh —co,(k„) —g ln 2 sinh —c02(k„)
n n n n

where we have subtracted the thermodynamic potential of the magnon sector and considered a static soliton.
Following steps similar to the ones used before we obtain

(3.26)

fl =E +p ' ln 2 sinh —co ——2pm c —f ln 2 sinh dk —f In 2 sinh —'pc02(k) dk . (3.27)0 i P I A . P~i dh A
' . , db,

s xy 0 2 dk 0 ' dk

From Eq. (2.15) we have where

2mic
dk c02i( k)

(3.28)

Substituting (3.28) into (3.26) we find after a straightfor-
ward calculation

m c f co, (k)ln(1 —e ' )dk,
7T 0

(3.30)

and E, is given by Eq. (3.21). At T=0, 0, is the soliton
energy E, . At finite temperatures, we can extract the sol-0

iton energy from 0, by

fl, =E, + Tin(1 —e )+2T(Fi+F2)
2m ic cosT f ~ In(1 —e ')dk

co, (k)c02(k)
(3.29)

dQ,
E, =Q, —T (3.31)

If we neglect the temperature dependence of m; coming
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from the "normal product" at finite temperatures we
have n, =

I pE, [K0(pE, )+Kl(pE, )]+Kl (pE, ) I e

where

COb

e b —I

—2m lc (F 1 +F2 }

2' (c cob
2 2

dk

co,(k)co2(k)(e ' —1) (EO)1/2 PE, —z—
1 s e

n, =
v'2~ ~ c

(3.41)

(3.40)

where K0 and K, are'modified Bessel functions. In the
nonrelativistic limit (pE, »1) Eq. (3.40) becomes

0 1 ~ dk 1

0 co;(k)
(3.32)

At the absolute zero of temperature, the energy of the
moving solition is readily obtained by the Lorentz trans-
formation

At high temperatures, T »m, c, (but T &m2c such that
the effect of the xz soliton can be neglected} we can take

—pro ~

1 —e ' =Pea, ,

in Eq. (3.35) to obtain

E (u)=E (1—u )' =E (1+u /2) . (3.33) X= —ln[2pml(m2+m, )c cob '] . (3.42)

PQ, (u) =PE, (v)+ X( T), (3.34)

However, at finite temperatures, this is not necessarily
true, as the thermal magnons establish a preferred frame
(i.e., u =0). Here we follow Mikeska and Frahm, writ-
ing for the thermodynamic potential for a moving soliton
with velocity v the following expression:

Inserting Eq. (3.42) into Eq. (3.41) we find

( I +v'b /5)
so

( 1 b /5 )
1/2 (3.43)

where ns~ is the soliton density for the pure SG model
(with the soliton) energy renormalized by quantum
effects} given by

where
(pE0)1/2e l s

2m.
(3.44)

X(T)=ln(1 —e ')+2(F1+F2)

2mic cub ~ ln(l —e ')dk2 2 —Pc02

co, (k)co2(k)
(3.35)

—PQ (u)
n, (u)=e (3.36)

in the dilute-soliton-gas limit. Then the total probability
of finding one soliton (i.e., the soliton density) is given by

n, = f dp n, (u) .1 (3.37)

Substituting Eqs. (3.34) and (3.36) into Eq. (3.37) we ob-
tain

n, =—f dp expI pE, [l+p c /(E,—) ]'/ X], —

Here we have used the phase-shifts and magnon frequen-
cies at zero soliton velocity, although they could be cal-
culated from I.orentz invariance also for finite velocities.
The difference, however, is of higher order in E,0/T.

The probability of finding one soliton with velocity U is
given by

—jEO
n = ( 32JS b /T )e (3.46)

Equation (3.43) agrees to order v'b /5 with exact transfer
integral result' for Hamiltonian (1.1). We see that for
small b/5 the leading correction to the SG result comes
from Auctuations out of the easy xy plane.

At lower temperature ( T « m 1 c ), taking ln(1
—e ') =0 such that X(T)=0, Eq. (3.41) reduces to

' 1/2

n, = e (3.45)
217

Equation (3.45), with E, the energy of a sine-Gordon soli-
ton, was first obtained by Trullinger.

The case b »5 is identical to the one studied above by
just interchanging b and 5. For 5=b, Eqs. (2.2) and (2.3)
present a rotational degeneracy, that is, we have a dy-
namic SG soliton in any plane passing through the x axis.
So solitons with all possible phase value ((10 may be excit-
ed. For low temperature most of the solitons are then at
rest and effects of the velocity can be neglected to lowest
order. Now co, (q)=co2(q) and col,

——0. For T»m, c we
obtain from Eq. (3.39)

which can be written
0

PE 0( i +~ 2 ) 1/2

n, =e-~ ' — e dx
C 7T 0

The integral can be performed exactly giving

(3.38)

(3.39)

where E, is now given by Eq. (3.23). Taking for E0 the
classical value, Eq. (3.46) agrees with exact transfer in-
tegral result for Hamiltonian (1.1) in the Ising limit. The
difference in the temperature dependence of (3.43) and
(3.46) is due to the fact that for 5=b the system has an
"Ising-like" behavior with the phase p0 delocalized. De-
creasing b, the system crosses over to the "planar-like"
model where 0=m/2.
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IV. CONCLUSION

From our results we conclude that quantum correc-
tions for Hamiltonian (1.1) with H =0 lead to a reduction
of the soliton energy. We have also shown that at tem-
peratures T & m

&
c, where m

&
c is the energy of the lowest

energy magnon at q=0, the calculated soliton density
agrees with the classical statistical-mechanics results, as
obtained from the transfer matrix approach, if the soliton

energy in the classical theory is replaced by the renormal-
ized one of the present theory.
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