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The infinite-range magnetization equation is solved for a three-component spin system involving

cubic anisotropy of fourth, sixth, eighth, and tenth degree. Six possible types of ordered phases are
found. Two of them, (X) and (X = Y =Z) are well known and are characterized by ordering along
an axis and along a body diagonal, respectively. In one of the four new phases, (X = Yj, the resul-

tant magnetization is directed along a face diagonal, say, in the XY plane, while in the remaining
three "generic" phases, (XY), (X = Y,Z), and (XYZ), the magnetization vector rotates continuously
in a plane and in space, respectively, upon varying the temperature. It is shown that the longest
possible nonreentrant sequences of second-order transitions for appropriate choices of parameters
are I~{X)~{XY)—+(X = Y)~(X= Y,Z)~(X = Y=Z) and I—+(X)—+(XY)—+(XYZ)~(X = Y
=Z), for the eighth- and tenth-order Hamiltonians, respectively. The feasibility of reentrant se-

quences, in which each one of the above-mentioned phases appears twice, at two different tempera-
ture (and total magnetization) ranges, as well as of first-order transitions from the isotropic phase
into each one of the six ordered phases, were demonstrated.

I. INTRODUCTION

Spin Hamiltonians of increasing complexity keep ap-
pearing in a large variety of contexts. ' An impressive
number of approaches to the treatment of systems includ-
ing higher than bilinear terms in the spin Hamiltonian as
well as of certain classes of anisotropic spin Hamiltonians
have been developed. While the Landau theory and
microscopic mean-field theory ' have been primarily
used to determine the global structure of the phase dia-
gram, the renormalization group (RG) technique has
been exploited for a detailed description of the critical
point and calculation of the critical exponents. ' In
most of these works only the low-order anisotropic terms
(quadratic and quartic) have been taken into account.
The basis for neglecting the terms of higher order lies in
the concept of universality and irrelevant variables,
which is central to the RG theory: it is well known that
including these terms in the Landau-Ginsburg-Wilson
Hamiltonian does not usually affect the critical proper-
ties. ' ' ' ' One of the most intensively studied sys-
tems, in this context, is the n-component quartic-spin
model with cubic anisotropy. Applying the Landau
theory it is found that only one ordered phase is possible
for a system with a given set of coefficients in the Landau
expansion. The type of ordering depends on the sign of
the anisotropic term. When this sign is positive the or-
dering is along an axis, while for a negative sign the resul-
tant spin is directed along the main diagonal. In both
cases Landau theory predicts the transition from the
disordered phase to be of second order. RG theory
confirms the structure of the phase diagram but predicts
the transition to occur via a tetracritical and a bicritical
point for these two types of ordering, respectively. "' '

For a long time these results were considered as com-
plete and reliable and the n-component quartic model

served as a classical testing ground for modern methods
in the theory of phase transitions and critical phenomena.
However, very recently, the completeness of the picture
presented above has been seriously challenged. Studying
the two-component vector model with cubic symmetry in
the framework of the "old fashioned" Landau theory,
Galam and Birman have shown that including sixth- and
eighth-degree terms in the free-energy expansion can
have drastic effects on the phase diagram. These
terms generate an additional symmetry breaking, giving
rise to a new low-symmetry phase, with an order parame-
ter continuously rotating in the XY plane as a function of
the temperature. This phase was called by Galam and
Birman "generic. " By analyzing the free-energy expres-
sion they concluded that for some ranges of parameters
of the Landau expansion the "generic" phase is the most
stable ordered phase. The transition from the isotropic
to the generic phase is always of first order. Applying
group theoretical considerations, ' Galam and Birman
argued that terms of order higher than eighth do not
create new symmetry breakings and therefore do not
change the general structure of the phase diagram. It
was found that experimental data ' on the first-order
ferroelectric transition in tetragonal rare-earth molybdate
Tb2(Mo04)3 fit the proposed theory. This was taken by
Galam and Birman as an argument that disagreement be-
tween predictions of RG and Landau theory in this case
should be resolved in favor of the latter.

An analysis of the types of phases arising in the three-
component system of cubic symmetry with terms up to
eighth order, was carried out within the framework of
Landau theory, by Gufan and Sakhnenko. They
pointed out the existence of five phases which we denote
by symbols, listing the nonvanishing magnetization com-
ponents and specifying equalities among them, when they
exist. These five phases are as follows:
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(X), in which the magnetization is directed along one of
the three Cartesian axes.

(X = Y), in which the magnetization is directed along
one of the face diagonals.

(XY), in which the magnetization points in an arbitrary
direction within a face.

(X= Y=Z ), in which the magnetization is directed
along a body diagonal.

(X = Y,Z), in which the magnetization points in an ar-
bitrary direction within one of the diagonal planes.

Note that the cubic symmetry is not totally broken in
any of the above five phases. One can show that the sixth
possible phase (XYZ), in which the cubic symmetry is
completely broken, cannot be obtained as the stable
phase of the eighth-order Landau model, for any set of
Hamiltonian parameters.

In the present paper we examine the three-component
spin system with cubic anisotropy containing terms up to
tenth order. Our primary aims are to obtain the (XYZ)
phase and to investigate some characteristic sequences of
phases arising upon variation of the temperature. This
cannot be done in a fully consistent way within the Lan-
dau theory because this theory involves a truncation of
the entropy' and a postulation of the temperature depen-
dence of the expansion coefficients which is only valid in
the vicinity of the highest second-order transition tern-
perature. Our analysis is therefore carried out using the
microscopic mean-field theory (MMFT) which is free of
these drawbacks and enables the description of ordered
phases in the whole range of change of the order parame-
ter.

The extension of standard MMFT to study spin Hamil-
tonians more complex than the isotropic Heisenberg
Hamiltonian is based on the equivalence between MMFT
and the exact treatment of the appropriate infinite-range
spin Hamiltonian. The general isotropic spin Hamiltoni-
an was considered in Ref. 7. The general anisotropic
Heisenberg Hamiltonian was investigated by Gilmore.
Lee and co-workers " studied the static and dynamic
properties of the infinite-range anisotropic Heiseriberg
Hamiltonian with uniaxial symmetry. These studies were
extended in Refs. 12 and 13 to the general uniaxial
infinite-range Hamiltonian.

A generalization of the magnetization equation to an
arbitrary anisotropic spin Hamiltonian was derived in
Ref. 14. The general infinite-range Hamiltonian is writ-
ten in the form

o. is the elementary spin, B is Brillouin s function, and
/3= I /kT. An equivalent form of Eq. (2) is

Ba 1 aa & aa
S BS S BS

'

S, BS,

S=oB (Po i V,H i ),

(3a)

(3b)

whei. e S
The solution of the magnetization equation (3) in its

general form was discussed in Ref. 16 and the procedure
was applied to a class of anisotropic spin Hamiltonians of
monoclinic symmetry, containing both quadratic and
quartic terms. The types of phases and the location and
nature of the phase transitions were determined and the
corresponding phase diagrams were constructed. This
work was extended in Ref. 17 to study long sequences of
order-order transitions for the same class of Hamiltoni-
ans. It was found that sequences containing as many as
six different phases can exist for a certain range of Hamil-
tonian parameters.

In the present paper we apply the technique developed
in Refs. 16 and 17 to study ordered phases and phase se-
quences in spin systems with high-order cubic anisotropy.
In the next section the magnetization equation associated
with the system studied is formulated and solved and the
possible ordered phases are established. Using this for-
malism we show that for the spin Hamiltonian with cubic
symmetry it is necessary to include terms of tenth order
in the spin operators in order to obtain the phase (XYZ)
in which the symmetry is completely broken. The
(X= Y, Z) phase is introduced by the sixth-order anisot-
ropy, while (XY) (the "generic" two-dimensional phase )

by eighth-order anisotropy. The choices of Hamiltonian
parameters giving rise to the various sequences of
second-order transitions are discussed in Sec. III. The
longest nonreentrant sequences involving second-order
transitions are I~ (X)~ (XY)~(XYZ)~(X = Y =Z)
and I~(X) +(XY)~(X=—Y)~(X= Y,Z)~(X = Y
=Z). The feasibility of reentrant sequences as well as of
sequences involving first-order transitions from the iso-
tropic phase into each one of the ordered phases, is
demonstrated. The analysis is illustrated by means of an
appropriate set of numerical results.

&=AH(S„,S,S, ),
where X is the number of particles and

N

S, = g S,, /X, i =x,y, z .
j=1

The magnetization equation for the Hamiltonian in Eq.
(I) was shown to be

VsHS=— oB (Po iVsHi) .
5

Here S; = (S, ) is the thermal average of S;,

' II. THE MAGNETIZATION EQUATION
FOR THE VARIOUS PHASES

There are five groups Oz, Tz, 0, Td, and T allowed by
the Lifshitz condition corresponding to all the crystallo-
graphically possible transitions with a three-component
order parameter. From these only the group 0& allows
for six-ordered phases: (X), (X = Y'), (XY), (X = Y=Z),
(X = Y,Z), and (XYZ) The entir. e rational basis of in-
variants constructed from the components of the order
parameter which in our case is the magnetization vector,
consists of three functions
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I =-S +S +S =S
1 x y z

I =S2
y y Z Z X& 3 X

Writing the Hamiltonian under consideration in terms of
these invariants we obtain

H =as'+b$4+cs'+dS'+fS "+e($)I,
+g (S)I3+h ($)I~+ nI ~I3, (4)

where e(S), g(S), and h(S) are polynomials in S of the
appropriate order. Using the formalism discussed in Ref.
16 we derive

1 BH =2a+4bS +6cS" +8 dS +10fS +e'(S)/SI2+2e(S)(S»+S, )

+g'(S)/SI3+2g(S)S S, +h'(S)/SIz+4h(S)I2($»+S, )+2nS S, (2S $ +2S„S,+S»S, ),
with equivalent expressions in the y and z directions. Corresponding to Eq. (3a) we get the following two equations:

(S —S„)[2e(S)+2g(S)S,+4h(S)(S S +S„S,+S S, )+2nS, (2S S +S $, +S S, )]=0,
(S, —S„)[2e(S)+2g(S)S +4h(S)(S S +S„S,+S S, )+2nS (2S S, +S,S +S S, )]=0 .

(6a)

(6b)

The solutions for phases with three nonzero components
are obtained using Eqs. (6a), (6b), and 3(b). The (XY)
phases are determined from (6a), (3b), and S, =0. The (X)
phase is obtained by solving Eq. (3b) with S =S, =0.
Depending on the degree of the Hamiltonian one gets
different phase diagrams.

(A) Sixth-degree anisotropy. Here

eo+e, S, g=go&0, d=f =h=n=O.

Out of the six possible phases, the following four are ob-
tained:

(X=Y=Z): S„=S»=S,=S /3, -

(X= Y,Z): S„=S»= —e(S)/g, S, =S —2s

(X=Y): S =S =S /2, S, =O,

(X) S =S S =S =0

(B) Eighth-degree anisotropy. In this case

e($)=eo+e, S +e~S, g(s)=go+g, S~,

h =ho~0, f=n =0 .

Comparing to case (A) one new phase, (X, Y) is intro-
duced. In this phase

S =S /2(1++1+2e(S)/hS, S» =S —S, S, =0 .

S; +S; (
—$ )+S;P(S)+5($)=0, (10)

which is a cubic equation in S;. The coefficient of S;
guarantees that S„+S„+S,=S . The other two
coefficients are given by

/3(S) = g(S) /n, —

5(S)= [e(S)+2h ($)P(S)] /n .

From the known properties of the solution of the cubic
equation it follows that

P(S)=S S +S S +S S

6(S)=—S S S
(12)

The components of the (X = Y, Z) phase satisfy $„=$»
and

e($)=eo+e, S +e2$ +e3S

g(S)=go+g, S +gzS",
h(S)=ho+h, S

n =no&0 .

Tenth-degree anisotropic terms introduce a sixth,
lowest-symmetry phase, (X, Y, Z). The three components
are the three solutions of

(g) S, +S [3/(5n)](2h —nS )

g(S)+4hS

S, =S —2S

24he(S)
[g(S)+4hS ]

1/2 ",

while the (X = Y), (X = Y =Z), and (X) phases are
defined as above.

(C) Tenth-degree anisotropy. In this case

Furthermore, the expressions for the components in the
(X = Y, Z) phase are modified into

—S,(g+4hs )/(5n ) —e/(5n ) =0 . (13)

The (XY), (X = Y), (X = Y =Z), and (X) phases are
defined as above.

III. PHASE SEQUENCES FOR DIFFERENT CHOICES
OF THE HAMILTONIAN PARAMETERS

We take advantage of the fact that S increases mono-
tonically upon lowering the temperature, to carry out the
analysis of the phase sequences generated by different
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choices of the Hamiltonian parameters as follows.
Choosing S we determine the orientation of the magneti-
zation using the appropriate equations of the previous
section, discarding the nonphysical solutions with S; &0;
this enables the evaluation of

~

V'sH
~

from which the tem-
perature is obtained by inverting Eq. (3b). When more
than one type of solution is obtained for a given tempera-
ture the equilibrium state is determined by means of the
free energy. Before embarking on a detailed numerical
computation we present a qualitative discussion to
motivate the choices of the Hamiltonian parameters.

(X= Y)
(x)

A. Nonreentrant second-order phase sequences

In the present section we concentrate on generating
nonreentrant sequences involving second-order transi-
tions among all the phases which can arise as a conse-
quence of the competition between the different aniso-
tropic terms in the Hamiltonian.

We shall assume that a &0. b is assumed to be posi-
tive. It could also be taken to be negative provided that
it is large enough to guarantee that the transition from
the isotropic state, at kT, = ~a ~ /2, is of second order.

Retaining only the lowest- (fourth-) order anisotropic
term in the Hamiltonian it has been found that for
e=eo) 0 the only possible ordered phase is (X), for
which the anisotropy energy is zero, whereas for eo &0
the lowest possible anisotropy energy is obtained for the
(X = Y=Z) phase.

Since the lowest-order anisotropic term is dominant at
high temperatures (for which all the magnetization com-
ponents are small), a continuous transition from the iso-
tropic phase will always be into either the (X) or the
(X = Y =Z) phase, depending on the sign of eo.

The sixth-order Hamiltonian contains two types of an-
isotropic terms, one of which has an S-dependent
coefficient. Thus, one might expect the opportunity for
competition, giving rise to different phases at difFerent
temperatures. In order to specify the possible sequences
of continuous transitions it is useful to consider the T~O
limit, in which the stable phase is determined by the
Hamiltonian itself. At this limit the magnetization is sa-
turated, S=

—,'. The energies of the various phases are

E(g) =0

E(g —y)
=e /64

+(~=rz) = (e/g) (e+g/4) i

E~~ r z~ =(e+g/36)/48,

where e =e(S=1/2). The requirement that S,i~0 intro-
duces the restriction 0 ~ —e /g —,

' at the (X = Y, Z)
phase. No similar restrictions apply to the other three
phases. Comparing the energies of the phases and taking
into account the restriction concerning the (X = Y,Z)
phase we find that the (g, e) plane is divided into three
sectors, as presented in Fig. 1. One important conclusion
is that the lowest-temperature phase cannot be
(X = Y, Z).

In view of these remarks, the longest continuous se-

FIG. 1. Phase diagram for the sixth-order Hamiltonian, at
T =0.

quences that one might anticipate are

or

(X=Y=Z)~(X= Y, Z)
(Z)

~ (X=Y=Z)
(Z)~(X = Y, Z)

(X= Y)

This sequence describes the appearance of a magnetiza-
tion directed along the x axis at the highest critical tem-
perature. This magnetization grows to a value S, , at
which a y component appears and starts growing; the
magnetization vector rotates in the xy plane. At a lower
temperature T2 the magnetization vector points along a
face diagonal (in the xy plane). The value of the resultant
magnetization at this point is S2. The magnetization
keeps growing in magnitude, without change of direction,

An extensive numerical search has provided no set of
Hamiltonian parameters which gives rise to either one of
these sequences as the equilibrium solution.

For the eighth-order Hamiltonian the longest nonreen-
trant sequence involves the phases (X), (XY), (X=Y),
(X= Y, Z), and (X=Y=Z). Inspection of Eq. (6) for
n =0 indicates that assuming the existence of a solution
with complete breaking of symmetry we immediately ob-
tain the contradictory result S =S, . This does not hap-
pen when n&0, showing that the tenth-order term is re-
quired to generate the (XYZ) phase.

Assuming that the highest-temperature ordered phase
is (X) (eo )0) the longest possible sequence of continuous
phase transitions will be of the form

1 2 3 4
(X)~(XY)~(X=Y)~(X=YZ)~(X= Y=Z) .

(14)
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until it reaches the value S~ (at T~). Upon further reduc-
tion of the temperature the magnetization rotates within
a diagonal plane, reaching the direction of the body diag-
onal at T4, with a resultant magnetization S~. Below this
temperature the magnetization keeps growing without
change of direction.

An attempt will now be made to provide a simple
choice of Hamiltonian parameters giving rise to this se-
quence.

The fourth- and eighth-order anisotropic terms both
distinguish between the (X), (XY), and (XYZ) phases.
The S dependence of e, the coefficient of the fourth-order
term, enables it to change sign upon variation of the tem-
perature. This by itself would only give rise to a transi-
tion between the (X) and (X = Y =Z) phases, but the in-
terference of the eighth-order term can result in stabiliza-
tion of the intermediate phases (XY), (X = Y), and
(X= Y, Z).

The sixth-order anisotropic term does not distinguish
among the phases (X), (XY), and (X = Y). This suggests
that the complete sequence can be generated by means of
the interplay of the fourth- and eighth-order terms only.
Consequently, we set g(S) =0.

The following conditions are obtained for the various
phase transitions.

(i) At the (X)~(XY) transition S =0 and S„=S . In-
spection of Eq. (8) indicates that this condition is satisfied
when e(S, )=0. At this point we note that if h &0, the
equilibrium phase for e(S) &0 will be (X = Y=Z), at
which the sequence terminates. A richer variety of
phases is obtained for h )0, which is the choice we make
from now on.

(ii) The (X = Y) phase is obtained when S =S =Sz,
i.e., e(Sz) = —hSz/2 [Eq. (8)].

(iii) (X= Y,Z) phase appears when e(S~)= —hS~/2
[Eq. (9)]. Comparing with the condition for the appear-
ance of the (X = Y) phase we find that Sz =S&, i.e., the Z
component starts to grow as soon as the Y component
equals X. For a different choice of g (S) one could obtain
a range of temperatures for which the stable phase is
(X = Y). We have not explored this possibility.

(iv) The (X = Y =Z) phase is obtained when
e(S4) = —2hS~/3.

To generate the sequence (14) e(S) has to start with a
positive value at S=O, vanish at S„and obtain the
values —

AS' /2 and —2hS~/3 at S2 and S4, respectively,
where S, &S2 &S4. The simplest choice which satisfies
these requirements is

e(S)=eo+e, S

where

eo =hSzzS4[(2S4/3) —(Szz /2)]/(S4z —Szz),

phase at the highest-transition temperature and develop-
ing in the opposite direction to sequence (14) can be ob-
tained by making the following choice of Hamiltonian
parameters: To start with the (X = Y =Z) phase we re-
quire eo &0. In order to obtain the (X) phase, e(S&)
should vanish, i.e., e, )0. Since in this case S, &S2 & S4
it follows from Eq. (15) that the inequalities eo &0 and

e& &0 require that Sz & S4 & &3Sz/2.
We shall now introduce the tenth-order terms in the

spin Hamiltonian and obtain a sequence incorporating
the (XYX) phase, in which a complete breaking of the cu-
bic symmetry is achieved. One such sequence is of the
form

1 2 3

(X)~ (XY)~(XYZ)~(X= Y =Z) . (17)

Inspection of Eqs. (11) and (12) indicates that we have to
choose g(S)&0 in order to obtain the (XYZ) phase. It
can be shown that the choice

g(S) = —2h(S)S (18)

suffices to allow the various phases in the sequence (17).
To start with the (X) phase we set eo &0. The condition
for the transition into the (XY) phase at T& is the same as
before, i.e., e(S& ) =0. In order to present a set of Hamil-
tonian parameters for which the transition into the
(XYZ) phase takes place we point out that the magneti-
zation components for this phase are the three solutions
of the cubic equation (10). We choose the three com-
ponents to be of the form

S„=S /3+q(S),
S =S/3
S, =S /3 —q(S),

(19)

such that q (Sz ) =Sz /3. At the transition into the body
diagonal phase (X = Y=Z) we should have q(S~)=0.
Substituting the expressions in Eq. (19) into Eq. (12) we
obtain

P(S)=S /3 —
q (S) .

It follows from the above that

(20)

/3( Sz ) =2$ z /9,
and

P(Sz ) =2Sz /9,
Using Eqs. (11) and (18) we obtain h (Sz ) =nS z /9 and
h (Sz ) =nS~ /6. From Eq. (12) 5(Sz ) =0 and
5(S~ ) = —S~/27. Using Eq. (11) we obtain e(Sz )

= —
—,', nSz and e(S~)= ——z7nS&. We can write e(S) and

h (S) in the form

e, =h [(—2S~/3)+(Sz /2)]/(S4 —Sz ) . (16)

e(S)=eo+e, S

h(s)=ho+h, S

Note that the inequality S2 &S4 suffices to make eo & 0
and e, & 0. With this choice of parameters S4 = —eo/e, .

A sequence of phases starting with the (X = Y'=Z)

with the constants eo, e „ho, and h, chosen so as to satis-

fy the above relations. One can check that the sign of
h(S) remains unchanged over all the order-order phase
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transitions. Since the signs of h and n are the same a
competition among the various anisotropic terms re-
quires that n & 0.

The reversed sequence, starting with the (X = Y =Z)
phase as the highest temperature ordered phase, is ob-
tained by choosing S,)S2 )S3 )Sz/3'~, the last in-
equality resulting from the requirements ep & 0 and
e))0.

B. Reentrant sequences

In the previous section we considered nonreentrant se-
quences involving second order phase transitions. The
S-dependent Hamiltonian coefficients e(S), g(S), and
Ii(S) were taken to vary monotonically in the whole
range O~S~ —,'. In the present section we consider the
possibility that nonmonotonic variation of these
coeScients can give rise to reentrant behavior.

As a starting point we consider the longest sequences
obtained in the previous section. For the eighth-order
Hamiltonian the sequence presented by Eq. (14) involves
a monotonic decrease of e(S) with increasing S, i.e., de-
creasing temperature. If, after the low-temperature
phase (X= Y=Z). is reached, e(S) starts increasing upon
further increase of S, the sequence of phases can be re-
versed, eventually reaching one of the three equivalent
axial phases (X), ( Y), or (Z). The complete sequence ob-
tains the form

1 2 3 4
(X)~(XY)~(X=Y)~(X= Y,Z)~(X= Y=Z)

+r(X= Y—, Z)~r(X = Y) +r(XY) +r(X)—, (21)—

where r indicates a reentrant phase.
As before, each symbol represents any one of a set of

symmetry-equivalent phases. Moreover, the particular
phase which r(X = Y, Z) stands for need not be the same
as the one represented by (X = Y, Z). A similar remark
applies to the pair (XY) and r(XY) and the pair (X) and
r(X) At S„. S2, S3, and S~, e(S) should obtain the
values derived in connection with Eq. (14). At the reen-
trant transition points e (S) should obtain values given by
expressions of the same form, with S,. replaced by S . All
these conditions can be satisfied by

e(S)=eo+e, S +e2S

where

e, &2h,

e& = —2e2S2,

eo =S2(e2 —K ),
and E is in some neighborhood of h /2. Choosing
—,'Ii (e2 (2h we obtain a sequence in whose (X = Y, Z)
phase S, increases upon lowering the temperature up to
some value smaller than S /3, and starts decreasing back
to zero, at which point the r(X= Y ) phase is reached. By
choosing K sufficiently smaller than —,'Ii, the (X = Y, Z)
phase is not reached. The sequence reduces to
(X)~(XY)~r(X). For the tenth-order Hamiltonian the

An analysis along the lines presented above results in the
following expressions for the Hamiltonian parameters,

e, = —[S~+(S2 ) ](4h /9+e2),

eo = —(4hS2 /9+ e i S2 +e2S2 )

g2 & —2n/3,

gi =2g2S2

go = —Sz(2n /9+g2 ),
where

(S2) =S2 g2+ 9
2n

g2

C. First-order transitions

It was pointed out above that only the axial and body-
diagonal phases can be reached by a second-order transi-
tion from the isotropic phase. On the other hand, there
are no symmetry restrictions concerning first-order tran-
sitions from one phase to another. In particular, each
one of the six types of ordered phases can be reached via
a first-order transition from the isotropic phase. To
demonstrate the feasibility of such first-order transitions
we point out that the value of the ordered phase magneti-
zation at a first-order transition depends on the value of
b, the coefficient of the S term in the spin Hamiltonian.
By making appropriate choices of b we obtained each one
of the phases (XY), (X= Y,Z), and (XYZ), which are not
accessible via a second-order transition from the isotropic
phase.

IV. ILLUSTRATIVE RESULTS

The qualitative results presented in the previous sec-
tion will now be illustrated by means of appropriate nu-
merical computations for a system with an elementary
spin o-= —,'. The presentation follows the subdivision of
the previous section.

A. Nonreentrant sequences of second-order transitions

For the eighth order Hamiltonian we obtain the
(X)~(XY)~(X=Y)~(X=Y,Z)~(X= Y=Z) se-
quence presented in Fig. 2 for the choice of Hamiltonian
parameters

a= —15, b=l, c=O, d=O,
ep=. 2.37X10, e& = —0.255, h=l .

The phases shown are always those corresponding to the
lowest free energy at each temperature. The reversed se-

longest reentrant sequence containing the (XY'Z) phase,
that can be obtained when both e(S) and g(S) are quad-
ratic in S, is of the form

1 2 2' 1'

(X)~(XY)~(XYZ)~ r(XY)~r(X) .
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0.4- 04-
~SS

S
0.2- 0.2-

O. I—

5.0 6.0 7.0
I

5.0 5.5 6.0 7.0

FIG. 2. The sequence (X)—+(XY)—+(X = Y,Z) ~(X= Y
=Z) for the eighth-order Hamiltonian.

FIG. 5. The sequence (X = Y =Z)~(XYZ)~(XY)~(X) for
the tenth-order Hamiltonian.

S,S

S

03 xS

0.4-

0.2-

0.2-

O. I—
O. t-

30 6.0 7.0

FIG. 3. The sequence (X = Y =Z)~(X = Y,Z)~(XY)
~(X) for the eighth-order Hamiltonian.

I

6.2 6.7
T

7.2

FIG. 6. The sequence (X)~(XY)~(X= Y,Z)~(X = Y
=Z) —+ r (X = Y, Z)~r(XY)—+ r(X) for the eighth-order Hamil-
tonian.

0,3= S Sx
0.4—

S„

S„=Sy=Sz
S

O. I—

S 0.2—

O. I—

S
X

I

6.4 6.5
I

6,6 7.0

FIG. 4. The sequence (X)—+(XY)~(XYZ)~(X= Y =Z)
for the tenth-order Hamiltonian.

FIG. 7. The sequence (X)~(XY)~(X= Y,Z)~ r(XY)
~r(X) for the eighth-order Hamiltonian.
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quence, presented in Fig. 3, is obtained by choosing

ep = —2. 10X 10 and e )
=9.01 X 10

For the tenth-order Hamiltonian we obtain the sequence
(X)~(XY)~(XYZ)~(X= Y =Z) for

005-

ep=7. 28X10, ei = —9.29X10

Pp = 4.63 X 10 A ] =0.68 1

gp=0, g) =9.26X 10, g~ = —1.362,

Pl 1

and the reversed sequence for

ep= —7.52X10, e& =4.36X10

h p
= l. 51 X 10 A

&

= —5.65 X 10

004-

0.05-

0.02-

O.OI—

7.46 7.47

gp=0, g&
= —3.02X10 g2=0. 113 . FKx. 9. The sequence (X)~(XY)~(XYZ)~r(XY)~r(X)

for the tenth-order Hami1tonian.

These sequences are presented in Figs. 4 and 5, respec-
tively.

B. Reentrant sequences

The longest sequence obtained for the eighth-order
Hamiltonian

I~(X)~(XY)~(X= Y,Z)~(X = Y=Z)

~r(X = Y,Z)~r(XY)~r(X)
is presented in Fig. 6 for the choice of Hamiltonian pa-
rameters ep=3 ~ 91X10 e, = 0.1875 e2=1 ~ 5 h =1.
All other parameters retain the values presented in con-
nection with Fig. 2. For the choice of parameters
ep =0 012 96 e ]

= —0.378, and e2 =2.1 we obtain the se-
quence,

I~(X)~(XY)~(X= Y,Z) ~r(XY)~r(X)
which avoids the formation of the (X=Y=Z) phase.

This sequence is presented in Fig. 7. The shortest reen-
trant sequence I~(X)~(XY)~r(X) is presented in
Fig. 8. The parameters used are ep =6.075 X 10
e) = —0.18, and e2=1.

For the tenth-order Hamiltonian the longest reentrant
sequence containing the (XYZ) phase is

I~(X) +(XY)~—(XYZ)~r(XY)~r(X) .

This sequence is presented in Fig. 9 for the Hamiltonian
parameters

ep =0.447X 10, e& = —0.496X 10, e2 = 1,
gp=0. 361 X 10 g~ = 0 4X 10 g2=0. 8

h=0. 6, n=1.

C. First-order transitions

The sequences whose highest temperature transition is
a first-order transition from the isotropic phase into the

0.4-

s sx=sy=sz

O. I—

5.5 6.0 6.5
T

7.0
7.54 7.56 7.57

FIG. 8. The sequence (X)~(XY)~r(X) for the eighth-order
Hamiltonian. FICr. 10. The first-order transition into the (XY) phase.
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0.5—

04—
s„ S

S oz-

0.2—
0.2— Q=Sy =Sz

0 I-

5.45 5.50 "7.65 7.70 7.75
O. I—

FIG. 11. The first-order transition into the (X = Y, Z) phase.
7.55 7.56

]

7.57 7.58

(XY), (X = Y, Z), and (XYZ) phases are presented in
Figs. 10, 11, and 12, respectively. The sequences present-
ed in Figs. 10 and 12 were obtained with the tenth-order
Hamiltonian, with the parameter values equal to those in
Fig. 4, except that b = —13.5 in Fig. 10 and b = —13.7 in
Fig. 12. Figure 11 was obtained for the eighth-order
Hamiltonian, with the parameter values equal to those in
Fig. 3, except that b = —17.4.

FIG. 12. The first-order transition into the (XYZ) phase.
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