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The problem of Anderson localization in a spatially correlated disordered potential is formulated
in the framework of the self-consistent theory of Vollhardt and WoNe in conjunction with the self-

consistent Born approximation for both tight-binding electrons and phonons. An approximation
which is exact in the weak scattering limit is introduced for the coherent backscattering contribu-
tion to the irreducible two-particle vertex. For the case of electrons in three dimensions, the phase
diagrams in the near-band-edge region are studied numerically for the binary alloys with short-
range correlations and the idea of quasiuniversality is examined. For the case of phonons in one
and two dimensions, the complete expressions for the localization length are obtained in the long-
wavelength limit for both short-range and long-range correlations. The universality holds when the
correlations are short range. In the presence of long-range correlations, different expressions for the
localization length are obtained depending on the definition of the mean free path used in the
theory. When the single-phonon mean free path is used, our results give the same asymptotic be-
haviors found previously by using the replica method. In one dimension, different asymptotic be-
havior appears when the transport mean free path is used. Discussions are given.

I. INTRODUCTION

In the past decade, considerable progress has been
made in understanding the localization properties of in-
dependent electrons in a random potential. ' Anderson
localization, as a result of the multiple scattering of
waves due to the random potential, is recognized to be
common to electrons, phonons, and various kinds of clas-
sical waves. It is now generally believed that in di-
mension d ~ 2 all the states are localized. For the tight-
binding electrons in d =3, the phase diagrams of the An-
derson transition have been studied numerically using the
finite-size scaling method for various types of random po-
tential. ' By taking into account the coherent back-
scattering effect, the self-consistent diagrammatical
theory developed by Vollhardt and Wolfle (VW) in con-
junction with the coherent-potential approximation
(CPA) has been shown to be very successful in determin-
ing the localization phase diagram. ' This diagram-
matical theory has also been used to study the localiza-
tion properties of the electromagnetic waves, scalar
waves, ' '" and phonons, ' ' etc.

For most of the studies in the past, the disordered po-
tentials are assumed to be completely random at different .

lattice sites in the discrete models and a finite correlation
length is always assumed in the continuous models. Re-
cently, attention has been focused on the effects of the
correlations among the disordered potential to the locali-
zation and transport properties of the system. For the
case of scalar waves, it has been shown by using the
replica-field-theory method that the correlations are im-

portant to the localization properties. ' In particular, for
the case of long-range correlations with a power-law de-
cay of the form (a +r ) ", the long-wavelength asymp-
totic behaviors for the localization length in d =1 and 2
are found to be n dependent. For the case of tight-
binding electrons, the effects of the short-range correla-
tions to the localization properties have been studied by
various methods in d =1.' ' In d =3, the effects of the
short-range correlations to the conductivity have been
studied for the binary alloys in the metallic limit by in-
cluding the correlations in both the bare conductivity and
the coherent backscattering correction. ' Independently,
we have generalized the theory of VW in the context of
self-consistent Born approximation (SCBA) to include the
correlations in the disordered potential. ' For an ex-
ponential decay correlation, the phase diagram in the
near-band-edge region is found to be strongly correlation
dependent.

In this work we will briefly derive the generalization of
the theory of VW in the context of SCBA to include the
correlations in the disordered potential for both tight-
binding electrons and phonons. An approximation which
is exact in the weak scattering limit is introduced for the
coherent backscattering contribution to the irreducible
two-particle vertex. For the case of electrons in d =3, we
have investigated the phase diagram numerically in the
near-band-edge region for the binary alloys with short-
range correlations. This is the region where SCBA is val-
id. Even outside this region, the SCBA is believed to give
a phase diagram which is qualitatively correct. ' The
idea of quasiuniversality predicted by reduction to the
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white-noise model (WNM) in the long-wavelength limit
will be examined. For the case of phonons in d =1 and
2, up to an arbitrary constant of order unity, the corn-
plete expressions for the localization length and other
physical quantities are obtained in the long-wavelength
limit for both short-range and long-range correlations.
In the case of short-range correlations, all the physical
quantities follow universal behaviors as predicted by the
reduction to the WNM. In the case of long-range corre-
lations, different expressions are obtained depending on
the definition of the mean free path used in the theory.
When the single-phonon mean free path is used, our re-
sults give the same asymptotic behaviors found previous-
ly by using the replica method. ' In d =1, except for one
particular case, different asymptotic behavior appears
when the transport mean free path is used. In d =2,
different prefactors may appear. The use of a transport
mean free path also introduces another length scale to the
problem and raises the question of the validity of the
single-parameter scaling theory in the presence of long-
range correlations.

In Sec. II the theory of VW is formulated in the pres-
ence of correlations for the tight-binding electrons. In
Sec. III the phase diagrams for the three-dimensional
binary alloys with short-range correlations are investigat-
ed in the near-band-edge region and the quasiuniversality
is discussed. The formulations for the case of phonons
are given in Sec. IV. In Sec. V the complete expressions
for the localization length are given for d = 1 and 2 in the
long-wavelength limit for both short-range and long-
range correlations. Conclusions and discussions are
given in Sec. VI.

II. FORMULATIONS FOR THE CASE
OF TIGHT-BINDING ELECTRONS

Considering a single-band tight-binding Hamiltonian
for independent electrons in a d-dimensional lattice with
the lattice constant a,

H = g E; Ii & & ~
I
+ r g I

~ & & jl,

P~ ~(q, ~)= . &6+ (E+ )6 ~ (E ) &,

[co—q.V~ —X~ (E+ )+X (E )]P~ ~.(q, co)

5
=DR (q, co) '. —g U (q, co)P (q, co)

2771
(7)

with .

p+=p+ E+ =E+-CO

2' -+ 2 '

and

V~=, AR~(q, co)=R& (E+ ) R~ (E )
—.

The function U~ ~ (q, co) is the two-particle vertex in the
particle-hole channel. Two classes of important diagrams
for U are shown in Fig. 1. Figure 1(a) shows the Born ap-
proximation vertex while Fig. 1(b) shows the maximally
crossed diagrams which are responsible for the localiza-

. tion effect. Here, every interaction line in U associates
with a structure function S (or a correlation function C in
the real-space representation). Summing both sides of
Eq. (7) over p and p' and using the Ward identity, the fol-
lowing equation is obtained in the small q and co limit:

e(p) =t g e'~ s,
5

where the superscripts "+"and "—"stand for the re-
tarded and advanced Green's functions and 5 represents
all the nearest-neighbor vectors. S(q) is the structure
function which is identical to one in the absence of the
correlations, i.e., C(R; —Rj)=6;J.

To study the transport and localization properties, we
follow the main steps of VW (Ref. 7). The Bethe-Salpeter
equation for the averaged two-particle Green's function

(q, ~) has the following form for small q:

where t is the constant nearest-neighbor hopping matrix
and a; is the site energy at site i with the probability dis-
tribution P(E;). In the presence of correlations, the two-
site correlation function for the site energies c; and c. . can
be denoted as &c,;E &

= W C(R; —R ) where W is the
variance of the distribution function P(E; ) and the corre-
lation function C is normalized by C(0)=1. In the
SCBA, the averaged single-particle Green's function
& G (z) & [ =R (z), z =E+i ri] is determined by the follow-
ing equations, in the momentum representation. '

P+ t I'+
I
I

s('p —p' )
N

I

P P

R

r
/

r
/

J'

coP (q, co) —qP~ (q, co) = Np(E), — (10)

R
&

(E)= &p~R (E+iri) ~p & =[E—e(p) —X+—(E)] ', (2) (a) (b)

8
X~~(E)= g S (p —p')R —,(E),

P

S(q)= g C(R;)e

and

(4)

FICx. 1. Two important classes of diagrams for the two-
particle vertex U in the momentum representation, (a) for the
Born approximation, (b) for the maximally crossed diagrams.
R+ and R are, respectively, the averaged single-particle re-
tarded and advanced Green's functions. Every interaction line
(dotted lines) is now associated with a structure function S. 8'
is the variance of the site energy distribution.
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P~P

PJ (q, co)= g (V q)Pp '(q, co),
P P

p(E)= . QbR (E),
2mN

where bR~(E) is equal to bR ~ (0,0) of Eq. (9) and p(E) is
the electron density of state per site. To obtain the
current relaxation equation for PJ (q, co) we multiply Eq.
(7) by (V q) and sum over p and p' again. With the use
of the expansion '

q2V2
[co+M (q, co))P (q, co) — P (q, co)=0,

with

(14)

4,'(q ~)= XN,',, (q ~)
P —1

2mip(E)N
(V q)(V& q)dXg 1+ P- (qco),

p p- VE

(12)
with the mean group velocity VE de6ned as

Vg/d = g (Vp q) bRp(E), (13)
2vnp E N

the equation for PJ (q, co), after some manipulations, be-
comes

M (q, co)= g(V q) bRp(E)[Xp (E+)—
Xp (E )]

2iri p(E) VzN

—g (Vp q)bRp(E)Up p (q, co)bR (E)(V "q)
P~P

Solving Eqs. (10) and (14), to the leading order in q and co, we find

~E( )
i p(E)N

i co+D (co, E—)q
E qD (co,E)p(E)N

i co+D—( co, E)q

with

(17)

(19)

i'
D(co,E)= (18)

dM (O, co)

In the region of extended states, D (O,E), denoted as D (E), is the diffusion constant which is related to the dc conduc-
tivity cr(E) by the Einstein relation o(E)=2e p(E)D(E)/gaia . With the use of Eq. (3) and the Born approximation
(BA) for U [Fig. 1(a)],

8'
U' '(q, co)= S(p —p'),

in Eq. (15), we find that the bare diffusion constant D&&(E) of Eq. (18) becomes

iVF
DBA(E)=

dM' '(0 0+)

2rrp(E) VE—
d 8'

g bR (E)S(p—p')bRp (E)(Vp q)(Vp —Vp).qX pp

(20)

The contribution of the maximally crossed diagrams to U [Fig. 1(b)] can be summed using the time reversal symmetry,
. yleldlng

8'5U™,(O, co)=, g S(pi+ —p)S(p' —pa+)P' '(q, co),
Pl P2

(21)

where q=p+p' and P'„„'(q,co) is the Born approximation to the function P (q, co) of Eq. (6) or (7). In order to
evaluate Eq. (21), we introduce an approximation by taking into account the fact that the function P~ ~'(q, co) has the

peaked values when p, =p2 as can be seen from Eq. (7). This is particularly true when U' ' of Eq. (19) is small. Thus
Eq. (21) can be approximated by
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8'5U, (0,~)-=, QS(p, + —p)S(p' —p, +)g P~ ~'(q, ~)
P) P2

4 ibR (E)
~~S( — )S( ' — ) +D (E)~p+p'I'P)

(22)

where the Born approximation solutions P' '(q, co) and
'(q, m) of Eqs. (16) and (17) have been used in Eq. (12)

to obtain the last equation of Eq. (22). With the use of
M' ' in Eq. (20) and the result of 5U' ' in Eq. (15), the
self-consistent equation for the renormalized diffusion
constant D (co, E) can be obtained following the pro-
cedure of VW, yielding

D (co, E)=DB~(E) 1—P(E), 1

q i co/D—(co,E)

(23)

3DB~(E)ltr
E

(25)

with
4

P(E)= 4 z g V&S(p —p')S(p+p')
2ni p(E) VEN p p

X[A,R (E)]~6,Rp(E) . (24)

The summation of q in Eq. (23) has an upper cutoff q,
which is proportional to the inverse of the mean free path
lE, i.e., q, =xon. /1F, where the arbitrary constant xo is
believed to be of order unity. If we use the transport
mean free path lE' which is defined as

Pq„' =P~„P„„+P„~Ptt~=a + ( 1 —a) (27)

the simple case of equal concentrations of A and B atoms
(c =0.5) with the site energies c.„=W and E~= —W to
avoid the band asymmetry and the appearance of the im-
purity states in the dilute limits. The correlation is intro-
duced by a parameter e which is defined as the probabili-
ty P„„that a given nearest-neighbor (NN) of an 3 atom
be an A atom. The probability Pz„ that a given NN of
an A atom be a B atom is then P~~ = 1 —P„~=1—o:. We
also have P~~=P~~ and P~~=1 —P„~. When a=c
=0.5, the alloy is completely random. The alloy has the
clustering (or anticlustering) property when a is greater
(or smaller) than 0.5. In d =1, once the NN correlation
is defined, the correlation function between any two sites
is determined uniquely so long as there are no multisite
correlations in the system. This is not true in a three-
dimensional lattice. For instance, due to the existence of
loops, the next-nearest-neighbor (NNN) correlation can-
not be determined from the NN correlation alone. To
avoid more than one parameter in the problem, for sim-
plicity, here we use the tree approximation for NNN
correlation and set all the correlations beyond NNN to
be zero. This is a good approximation if the correlation
strength c7=n —0.5 is small. The probability P~„' that a
given NNN of an A atom be an A atom becomes

the mobility edge E, in d =3 is then determined by the
relation

and

P' ' =1 P' ' =2a(1 —a) —.
P(E, )1=

p(E, ) VE xoa
I C

6nDBA (E~). (26)
With the above approximation, the correlation function
becomes

The reason that 1E' of Eq. (25) is called the transport
mean free path is because of the presence of an equivalent
term ( V&

—
V& Vz. ) in DB~(E) of Eq. (20) which accounts

for the momentum change along the direction of initial
propagation. ' Alternatively, the single-particle mean
free path lE can be defined from the relaxation of the
single-particle propagator. ' ' However, these two
definitions of the mean free path will not give any qualita-
tively different physical results if the correlations are
short range. Here, for the case of electrons, only the
transport mean free path of Eq. (25) will be used in the
theory.

(s, s, ) =0.5E„(P„„E„+P~„E~)
+0 5E (P . s +P„s„)=(2a—1)W

(s,.sk ) =(2a —1) W and (E;e&)=0,
(28)

where (i,j), (i, k), and (i, l) are, respectively, the NN,
NNN, and beyond NNN pairs. From Eq. (4), the struc-
ture function S(q) can be obtained. The SCBA is valid
when both 8'and c7 are small. In the near-band-edge re-
gion, the typical wavelength is much greater than the lat-
tice constant a and we can approximate Eq. (5) and the
S(q) by

III. PHASE DIAGRAMS
NEAR THE BAND-EDGE REGION

AND QUASIUNIVERSAI. ITY

2

e(p)—= —6t+, m*=(2ta )
2&l

S(q)—=S(0)—Szq a (30)

In this section we will take the binary alloys as an ex-
ample to study the effect of short-range correlations to
the mobility edge in the near-band-edge region. Since
only the correlation effect is of interest, we consider here

with

S (0)= 1+6(2a —1 ) + 12(2a —1 )

S2 =-(2a —1)(8a—3) .
(31)
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Using the above approximations, all the averaged physi-
cal quantities become isotropic and all the momentum
summations in Sec. II can be replaced by integrations.

To calculate the phase diagram, we take t as the energy
scale and a as the length scale or equivalently t =a =1.
For the given small Wand a, using Eqs. (29) and (30), the
SCBA's of Eqs. (2) and (3) are solved numerically for
Xz(E) and Rz+(E). The momentum integration is cut off
at po =&3~/2a. Using the calculated b R~(E), the corre-
sponding p(E), Vz, DB&(E), and P(E) can be evaluated
using Eqs. (11), (13), (20), and (24), respectively. The mo-
bility edge E, is then determined from Eq. (26). We have
taken the arbitrary constant xo to be 1. The phase dia-
grams in the near-band-edge region are shown in Fig. 2
for c7=a —0.5=0, 0.1, 0.2, 0.3, and 0.4 where the dimen-
sionless energy scales are used for 8' and E. %'e do not
consider the case of negative c7 here. A negative K gives
two length scales, a and the correlation length, to the
problem which cannot be adequately described by the ap-
proximated S(q) of Eq. (30). Also, due to the trunca-
tion introduced in Eq. (28), a negative a may lead to a
negative S(0) or negative correlation length which is un-
physical. It is worth noting that the dependence of the
localization length on K has been studied by various
methods in d =1 for both positive and negative o.. ' ' In
the case of complete randomness K=O, the mobility edge
curve shown in Fig. 2 is not inconsistent with the finite-
size scaling result of Ref. 6 for 8'/t ~ 1. Comparing to
the case o.=0, when c7) 0, the mobility edge curve first
shifts to the lower energies for small W/t and then bends
over to higher energies as W/t is increased. The cross-
over value of W, W, (a), is a decreasing function of a.
This correlation-dependent crossover behavior will be-
come transparent in the following discussions. First, we
analyze the effect of the correlations to the phase diagram

in the long-wavelength limit. In the presence of the
correlations, the scattering strength of the disordered po-
tential is determined not only by the variance 8' but also
by the correlation function C(R; —RJ). In the limit
when the characteristic length which is about 1/(typical
p) is much greater than the correlation length, the prob-
lem is reduced to the WNM with W S(0) as the effective
scattering strength. As defined in Eq. (4), S(0) is the
effective number of sites within the correlation range and
is related to the correlation length L by S(0)a =L . In
this limit, it has been proposed and shown in some
cases ' that the physical quantities follow universal be-
haviors by choosing the proper energy scale co3 and
length scale I.O3 and shifting the origin of the energy to
the nonuniversal band edge. It will be interesting to see if
the mobility edge curves shown in Fig. 2 follow such a
quasiuniversal behavior in the long-wavelength limit. Us-
ing the definitions of y= W S(0)a and vari /2m*=a t
given in Ref. 20, Eo3 and L03 are found to be W S (0)/t
and t a /W S(0), respectively. Since the left-handed side
of the mobility equation (26) is a dimensionless constant,
if the quasiuniversality holds, we would expect that
the shifted and renormalized mobility edge E,
=[&,(W, a) Eb(W, a—)]/Eo3 be a constant value in the
WNM limit where E, and Eb are, respectively, the mobil-
ity edge and the band edge. In Fig. 3 we have replotted
the mobility edge curves of Fig. 2 using the new energy
scale E, . Indeed the scaling is seen and the universal
value for mobility edge is about 0.019. This universal
value depends on the choice of the arbitrary constant xo
in Eq. (26) as will be seen explicitly in the later discus-
sions. Figure 3 also shows that the scaling region in 8'
space is systematically suppressed as a is increased. This
can be easily understood from the idea of effective
scattering strength W S(0) which suggests that the re-

1.0
W/t:

0.8

1.0
W/ t.

0.8—

0.0

0 ' 6
0.6
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0.2

0.0
—0. 10 —0.05 0 F 00 0.05

v. / t+6
0.10 0.0
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FICx. 2. The mobility edge curves which separate the local-
ized region (left region of the curve) from the extended region
(right region of the curves) for K=O, 0.1, 0.2, 0.3, and 0.4. The
arrows show the crossover values, W, (cx)/t.

FIG. 3. The mobility edge curves of Fig. 2 are replotted us-

ing the shifted and. renormalized energy scale E for ca=0, 0.1,
0.2, 0.3, and 0.4. Inside the scaling region, the mobility edge
curves assume a constant universal value of 0.019.
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and

Eb —— 6t+70(Eb—) (32)

8 a
ro(Eb ) =— 3 I dp'Re

(2~)'
S(p')

ro(Eb ) rp (Eb )
p

2m

gion in the 8' space where the WNM is valid is propor-
tional to I/&S(0), which is a decreasing function of a
according to Eq. (31). Outside the scaling region, the
concept of effective scattering strength breaks down and
the mobility edge depends on 8'and K independently.

In the WNM limit, the mobility edge can be studied
analytically using the following procedure without solv-
ing the SCBA of Eqs. (2) and (3). By writing R~+(E) of
Eq. (2) as [E+6t rt—, (E) imp—(E) p —/2m*] ', in the
limit when W and c7 are small, ImR +(E) can be approxi-
mated by m5[—E+6t r~(—E) p /—2m']. For a given
energy E, let us de6ne the typical p as the value such that
E +6t r~(E—) p /—2m "=0. By using the above ap-
proximation, we can express all the physical quantities in
terms of the typical p without knowing r~(E) explicitly.
By calculating the approximated band edge Eb using Eq.
{3)and the typical p, at the mobility edge using Eq. (26),
the mobility edge E, can be taken as Eb+p, /2m '. Since
the typical p at the band edge is p =0, from the function
y~(Eb)=0 and Eq. (3) we have

—= —6— [3S(0)—Sza po]
6m t

3xoS (0)+
16m

(39)

With the values of po= &3m/2a and xo = 1 used in the
numerical calculations, E, /t of Eq. (39) gives very good
agreement with the curves shown in Fig. 2 in the region
below the crossover value W, (a)lt. Thus the phase dia-
grams shown in Fig. 2 can be understood as follows.
When W/t is small, the shift of the mobility edge toward
1ower energies follows essentially the shift of the band
edge which is of order ( W/t ) . When W/t is increased,
the coherent backscattering effect which is of order
( W/t) tends to bend the mobility edge toward higher en-
ergies. It is the competition of these two effects which
gives the crossover behavior shown in Fig. 2. The
coefficients of the terms ( Wlt) and ( W/t) in Eq. (39)
give the correlation dependence of the crossover values
W, {a)lt which is not inconsistent with the results shown
in Fig. 2. In the limit when p, is small, from Eqs. (25),
(35), (36), and (38), we have

2
4a t

S(0) W

—8' m*a po [3S(0)—S2a po],
37T2

(33)

+3xoS (0)
4ma

(41)

and

m*a pp(E) =
2~2

VE —-p lm *,

z
77p

a m* W [3S(0)—8S2p a ]

(34)

(35)

(36)

where S2 is given by Eq. (31). In Eq. (33) we have ap-
proximated ~ .=~o, which is valid in the small o; limit.
Using the 5-function approximation for hR~(E), Eqs.
(11), (13), (20), and (24) can be evaluated, yielding

Thus the Ioffe-Regel constant p, /E for the localization is
a constant ( = +3xo /m ) in the WNM limit which is in-
dependent of the correlations and has the value 1.732
when xo=1. In fact, our numerical calculations show
that outside the scaling region the value of p, /E is always
in the range —1.73—1.80; even the value of p, has been
increased by more than an order of magnitude. In the
WNM limit, we would expect that all the physical quan-
tities follow quasiuniversal behaviors. Using the
energy and length scales, e03= W S (0)lt and

L03 =t a /W S(0), found earlier, the dimensionless func-
tions of p(E), Vz, DBA(E), and p(E)a of Eqs. (34)—(37)
can be expressed by the following universal functions of
the shifted and scaled variable E:

2m*'W'[3S'(0) —12S{0)Sp~a2+8S~@4a4]
P(E)=

p [S(0)—2S~p a2]

(37)

Substituting Eqs. {35)—(37) into Eq. (26), p, is then deter-
mined. In the WNM limit, by keeping only the leading
terms in p„Eq. (26) gives

s m' W S(0)
1 =3xoa

mp, a

L03s03p(E)a =(E)'~ /4m

(L03s03) 'VE =2(E)'

(L03s03) DPA = (E)8m

and

L f3(E)a
3 1

03 2

with

(42)

(43)

(44)

(45)

From Eqs. (32), (33), and (38) and using the relation
2m *=(ta ) ', the mobility edge E, becomes

E —EE= p 2a 2t4

W S (0)
(46)
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In the WNM limit, we would also expect that the scahng
shown in Fig. 3 holds exactly. With the use of Eq. (39),
we And immediately that the universal mobility edge con-
stant E, =(E, E—b)/F03=-3xo/16 which has the value
0.019 shown in Fig. 3 when xo is taken to be 1.

i V—F b,R;;(E)
D (E)=BA

X g bR (E)S(p,—p2)AR (E)1

p p

IV. FORMULATION FOR PHONONS X (V .q)(Vp —
Vp ) q), (52)

Consider a d-dimensional hypercubic harmonic mixed
crystal with random masses I; but constant isotropic
force constant K between NN sites. The equations of
motion, in the frequency space, for the displacement u;
along any direction of the lattice have the form

V

d

/3(E) =

g—(Vp q) b R (E)/b, R,, (E),

—d E
b,R (E)V4 X2 pl pl p2 pi P2~~ V S( — )S( + )

ii E pp&

(53)

(2dk —m;E )u; =(2dk —mE b, m;E —)u; =ICQ'u&,
I

(47) and

X fhRp (E)] b.R (E), (54)

where the summation of I is over all the NN sites of i,
m = (m; ) is the averaged mass, and E is now the fre-
quency of the phonons. In the absence of the correla-
tions, the localization properties of the three-dimensional
binary systems have been studied by the authors using
the theory of UW in conjunction with the CPA. ' In the
presence of the correlations, it is not known how to in-
corporate the CPA into the theory of VW. Here we will
formulate the problem in the SCBA. The correlation
function for the disordered mass b.m;(=m; —m ) can be
denoted as (b,m;b. m ) =y C(R; —RJ) where y is the
variance of the mass distribution I'(m, . ). From the simi-
larity between the equations of motion for the electrons
with Hamiltonian Eq. (1) and the phonons of Eq. (47), it
is easy to see that the averaged single-phonon Green's
function in the SCBA is given by

D (co,E)=DB„(E) P(E)

q q i co/D (c—o, E)

with

V =, AR,;(E)=—gb, R (E),Be(p) 1

p g
& ll N p

(55)

(56)

V (E)= —gV ImR+(E),
2~Emp „(E) & (57)

where R;;(E)= ( 6;;(E)) is the averaged diagonal Green's
function in the site representation. As discussed in Ref.
13, the group velocity of the phonons V, which is not
the Vz given in Eq. (53), can be defined as

R*(E)=[(mE —e(p) —
Xp (E)]

2E4
&, (E)= QS(p —p')R,+—(E),

p

(48)

(49)

where pph(E) is the phonon density of states and is given
by

pph(E)= Im(m;G;,+(E))—= b,R;;(E) . (58)

The transport mean free path used for the cutoff'q, in Eq.
(55) becomes

S(q)=QC(R;)e (50)

e(p)=K 2d —pe'P
5

Like the case of electrons, the transport and localization
properties for phonons are related to the averaged two-
phonon Green's function Pp p(q, co) which has the same
form as Eq. (6) for the electrons. ' With the use of Eq.
(48), the Bethe-Salpeter equation also has the same form
as given in Eqs. (7)—(9) except that the first term co in Eq.
(7) is replaced by 2Emco. From now on, the derivations
of the bare and renormalized difFusion constants, Da~(E)
and D(E), are completely parallel to the case of. elec-
trons. Here we will simply write down the following re-
sults:

3Da~«)l~= (59)

The above equations are valid in the low-frequency re-
gion where the scattering is weak. Since the phonons are
extended in this region when d =3, we will only study the
localization properties for d = 1 and 2 in the next section.
In the absence of a better theory, even outside the region
of validity of the SCBA, the equations given in this sec-
tion may also provide a method to investigate qualitative-
ly the eff'ect of the correlations to the transport and local-
ization properties of the phonons in the whole frequency
band as it does for the case of the electrons. ' '

V. LOCALIZATION BEHAVIORS
IN d = 1 and 2.AND UNIVERSALITY

A. General results for small E

In the long-wavelength limit, the equations given in the
last section can be much simplified. The function e(p) of
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Eq. (51) can be approximated by Ka p and all the
momentum summations can be replaced by integrations
with a suitable upper cutoff po. As we will see later, in
the weak scattering limit, the value of po is irrelevant.
Here, we consider the following two kinds of correla-
tions:

C(R; —RJ )=e

C(R; —R.)= (aa )'"

(~R; —R~+aa )"

(60)

(61)

Again, the above correlation functions are normalized to
C(0) =1. These forms of the correlations have been used
in Ref. 14 for the continuous medium which can be ob-
tained by letting a ~0 and o;~ ~ while keeping aa con-
stant. Here we only require that o; be suf5ciently large so
that the lattice summation in Eq. (50) can be approximat-
ed by an integration. In Ref. 14, the asymptotic behav-
iors of the wave localization in a continuum have been
studied by using the replica method in conjunction with
the CPA (or SCBA) in d =1 and 2. ' Here we will study
this problem independently using the theory of VW to
obtain the complete expressions for the localization
length. However, some of the results of Ref. 14 are quite
useful and will be quoted here.

With the above considerations, Eqs. (48)—(50) can be
simplified as

R„+(E)=[m(E— cp—)+iy (E)]
S( Ip —p'l )y, (E)

y (E)
p (po ~ E2 c 2+ ~2 2+~2

S(q)= f dRC(R)e'q1

(62)

(63)

(64)

where c =Ra /m and the function y (E) is the imagi-

nary part of the self-energy X~+(E) and is negative ac-
cording to our definition. It can be shown that the real
part of X~+(E) is of order E + with b, )0 for all the
correlations considered in Eqs. (60) and (61) and thus can
be ignored. With the use of Eqs. (62) and (63), it will be
shown in the Appendix that the expressions for D~~, Vz,
P(E), Vs, and p'i, ' of Eqs. (52) —(54), (57), and (58) reduce
to

dr (E)
P(E)=

arm c Ep „(E)
where f dQ represents the summation of the unit vec-
tors p and —p in d = 1 and the integration of the angular
variable in d =2. The momentum p of y~(E) in Eq. (68)
is the typical momentum, i.e., p =E/c. In the localized
region, the diffusion constant D (co,E) of Eq. (55) is relat-
ed to the localization length gi ( E) by D ( co, E)

i cog—(E). Substituting this relation into Eq. (55), we
find

(68)

d

1=P(E) fdQqf. . . q, =
2' ' q'+PI'(E)'

7TX O

lE

(69)

where the function P(E) is given by Eq. (68). If the trans-
port mean free path is used, we have, from Eqs. (59) and
(65),

3DB~(E)
lE'=-

c
(70)

Alternatively, we can define a single-phonon mean free
path which, in the weak scattering limit, is related to the
single-phonon relaxation time ~E by I& =cv.z. By writing
[R +—(E)] ' of Eq. (62) as m[(E+iy/~z) —c p ], and
choosing y —3/2, lz becomes

—3Em cz=
2d —i (E)

(71)

This form of lz can also be obtained from Eq. (70) if the
term (p, —p, .p2) in DB~(E) of Eq. (67) is replaced by
p, . ' It is exactly this difference in the definitions of Iz'
and IE that leads to different asymptotic behaviors when
the long-range correlations are present. Here we have
deliberately chosen y =3/2" to make the two mean free
paths defined in Eqs. (70) and (71) identical when the
correlations are short range so that their difference will
be more transparent when the long-range correlations are
considered. For any given correlation function, the prob-
lem now is to find the explicit forms for y (E) and
Dr~(E) from Eqs. (63) and (67) and solve Eq. (69) for
gl (E).

DBw(E) =—

Vz=-4m E c, Vg(E)=c, —
d E

p h(E)= fdQp,
2mc

2d
2~Pl t (E) 2

dE2y2 a

X f dp, dpi' b,R (E)

XS(lpi —p2I)bR~ (E)(pi pi'p2)

(65)

(66)

B. Short-range correlations and universality

—y S(0)E aE
(72)

For the case of exponential correlations of Eq. (60) or
the power-law correlations of Eq. (61) with 2n )d, the
correlation function C(R) is integrable. By letting the
argument of the structure function S(q) be zero and us-
ing the 5-function approximation for ImR (E) as de-
scribed in the Appendix, Eqs. (63) and (67) can be in-
tegrated, yielding

(67) DB~(E)-=Em c /2" 'y (E)—, (73)

and where d =1 and 2. As mentioned before, from Eqs.



7128 QIAN-JIN CHU AND ZHAO-QING ZHANG 39

(70)—(73), we have 1z'=1z. Substituting Eqs. (72) and (73)
into Eq. (69) and using Eq. (68), we find the following re-
sults for:

3 m
tan

—2—2

y S(0)aE

for d =1,
(74)

2—3 —2—2

g", (E)=g(E)=. . . p
xo~y S(0)a E y S(0)a2E

&PdL Pd m c =Ra2 =——2= 2

L =y S(0)c a

which give
I /d

(76)

(77)

y S(0)
Pd

m
a,

——2me
~od =

a

—2

y S(0)

' 2/d

(79)

—2c m

y2S (0)
(80)

where Eod(=c!Lod ) is the natural unit for the frequen-
cy. Using the renorrnalized scale E =E/Eod, the dimen-
sionless functions of y~, DBA, and gi given in Eqs.
(72)—(75) become

for d =2 . (75)

Like the case of electrons, the efFective scattering
strength y S(0) is the relevant disorder parameter. The
straightforward integration of Eq. (64) gives (i) for ex-
ponential correlations, S (0)=2a for d = 1 and
S(0)=2ma for d =2, and (ii) for power-law correlations
with 2n )d, S(0)=v'~aI (n —

—,')/I (n) for d =1 and
S(0)=ma /(n —1) for d =2 where I (n) is the I func-
tion. In order to see the scaling behavior, we follow the
same procedure as given in Ref. 20. The reduction of
Eq. (47) to the WNM gives the usual wave equation with
the 5-correlation function in the mass density. It can be
shown that the natural units cpd for the product of the
mass and the frequency squared and Lpd for the length
are related to the parameters of the original problem by

The results of Eqs. (81)—(84) are consistent with the
known result. '

3y'
y~(E) = E co intro,

2m
(86)

DBA«) =-
N1 c

g Eco into
(87)

lE tr
2 lE —2m
3 o& y colnm

(88)

C. Long-range correlations

When 2n ~d, the correlation function of Eq. (61) is
nonintegrable and the structure function S ( ~ p

—p'
~

) be-
comes singular when p=p'. lt has been shown in Appen-
dix A of Ref. 14 that when 1 & 2n & 2 in d =2 the angular
integration of the structure function in Eq. (63), i.e.,

d Q,S p —p', converges so long as p and p' are finite

and the 6-function approximation can still be Used for
ImR (E). However, when 2n (1 (for both d =1 and 2)
the angular integration of the structure function gives a
singular function of ~p

—p'~ and the 5-function approxi-
mation is no longer self-consistent. In this case, one has
to solve Eq. (63) self-consistently for the y~(E). Once
yz(E) is known, the single-phonon localization length g
is obtained from Eqs. (69) and (71). However, for the
transport g', we have to evaluate Ds&(E) from Eq. (67).
Since S(~pl —p2~) is singular at p, =p2, the presence of
the term p I

—p, .p2 in Eq. (67) becomes extremely impor-
tant in the cancellation of the singularity in S( ~p,

—
p2~ ).

The efFect of the term p I
—pl. p2 in DB~(E) is to enhance

the relaxation time and to increase the mean free path
and localization length. Thus we would expect that
1E') lE and g') g in general. In fact, we have found
that the angular integration of the function
S(~p, —p2~)(p, —p, .p2) converges for all 2n d and the
5-function approximation can be used for AR and ARPl Pp

in Eq. (67). Since the calculations are quite lengthy and
tedious, here we will only present the results of the calcu-
lations.

For d=1, the following results are obtained to the
leading order in E.

(a) n =-,':

E
—ly (E) E 2+d/2d

L OdEodD BA(E) -=2/E "+
(81)

(82)
g(E) g N'«) —2m 2A

(yg 3y ~ ln~

L od'gI(E) =—
2g/E2, d =],

{) 1 2m'
exp 2

d =2
xo

(83)
9

tan
2xp&

(89)

Also, from Eqs. (66) and (68), we have
d —1

L od Eod12«)ad

L2 —dP(E)ad E 2/2(d —2) (85)

where p is given by Eq. (74) and co =Eaa /c is the dimen-
sionless frequency. Comparing to Eq. (80) of the short-
range case, the scaling of the frequency does not contain
the mass fluctuations. Since A ') A is independent of xp,
we have gI') Pl as expected. In this case g' and P& have
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the same asymptotic forms.
(b) 0&n &-,':

2 1/[2(1 —n) ]

(E) F (n) y ~E2~n(1 —n)
p = 1

m
(90)

F2(n)= —2 " I (2—2n)I (n —
—,') cos(n~)/I (n) .

(c) n =-,':
(102)

(91)

g'(E)
aa

1/2 2
(3—2n) /[4( 1 —n) ]

m3
x pF &

( n )G ( ( n )

X ~(2n —n —2)/[2(1 —n)] (92)

—2—2m c
DB~(E) -=

G, (n)y Eco"
(E) y E colnco2 2

Pp

—2—2m c
DB~«) —=

2p Eco

—2 kI'«)
into +a

3m 7Tm
exp

xo~y co lnco y coin~

(103)

(104)

g(E)
aa

2
1/[2(1 —n)]

m

F, (n) y~

—1/(1 —n)
CO (93)

(d) 0&n & —,':
(105)

with
1/[2(1 —n)]

F, (n)= I (n)I (1 —n)I (1—2n) sin(nm')

m.4"

(94)

2
' 1/[2(1 —n)]

y (E)—= F(n)— m~2 n/(1 —n)—2m
—2—2

DBA«) —=

G3(n)y Eco "

(106)

(107)

8nd

G&(n) =2~" 'I (1—2n)sin(nm), (95)

g(E) r, ' (2n —1)/[2(1 —n)]

2F3(n) y2

where A in Eq. (93) is given by Eq. (74). In this case, g'
and P& have different asymptotic behaviors. Sirice the re-
lation 0& n & —,

' implies 2+n —2n )2, by comparing the
exponents of co in Eqs. (92) and (93), we have gI'/g~ ~
as Q)~0

For d =2, the following four different behaviors are
obtained for 2n & d =2.

(a) n = 1:

~"(E)[n (1—2n)]/(1 —n)

aa
1/[2(1 —n)]

m3

2xo& y

1

1/(1 —n)

1/[2(1 —n)]
7T mX exp

2F3(n) y~ 6)n /(1 —n)

(E) my E co 1nco2 2 2

2m
—m c'—2—2

DB~(E)= 2 2~y Eco lnco

(96)

(97)

with

F3(n)=
I (1 n)I ( —,

' —n )—
24n

(108)

(109)

ea o.a

(b) —,
' &n &1:

g(E) gI'(E) 3m
exp

x Kp colnco

—m

y co inca
(98)

aIld

I (1 n)[ ver(1——n)l ( —,'+n )
—QI (1+n)]

r(n)r(n + 1)

(110)

y~(E) -=
F(n)y E co"—

(99) Q=(1 —
) g (2m —1)!!

=, 2 m!(2m +2n —1)

nm cDa~«) -=
2(2n —1)Fz(n)y Eco " (100)

Except the case n =1, g' is always greater than pl for
0 & n & 1 and their difference lies only in the prefactor as
can be seen from Eqs. (98), (101), (105), and (108).

with

2n —1 k( (E)
n cxa

3m
, exp, (101)

—m

2xomF2(n)y co
"+' 2F2(n)y co

"

VI. CONCLUSIONS AND DISCUSSIONS

The theory of VW is generalized in the context of the
SCBA to include the correlations among the disordered
potentials for both tight-binding electrons and phonons.
Although the SCBA, in contrast to more elaborated
theories such as the CPA, involves only the second mo-
ment of the distribution function I', it is correct when the
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dg (L)
d lnL

=(2—d)g +2(g ) (112)

for the localization length did not have the factor
p, —p, p2. If this factor is included in the case of
0(n & —,

' and d =1, the bare conductance obtained from

effective scattering strength W S(0) is small in the elec-
tron case and in the long-wavelength limit of the phonon
case where the scattering is weak. Outside the above re-
gions of validity the SCBA still provides information con-
cerning the effects of the correlations as has been demon-
strated in the calculations of the one-dimensional elec-
tron case. ' How to incorporate a CPA-like approxima-
tion into the theory of VW when the correlations are
present is still a challenging problem.

For the case of electrons in d =3, the phase diagrams
for the binary alloys with short-range correlations are
solved numerically near the band-edge region. The idea
of quasiuniversality is confirmed and a scaling region is
found in the 8' space. Inside the scaling region, the
effective scattering strength O' S(0) is the only relevant
disorder parameter. The effect of the correlations is
found to suppress the scaling region in 8 space. Outside
the scaling region the concept of the effective scattering
strength breaks down and the mobility edge has to be de-
scribed by 8'and the correlations independently.

For the case of phonons in d = 1 and 2, the localization
length and other physical quantities are studied analyti-
cally in the long-wavelength limit. When the correlations
are short range, the effective scattering strength y S(0)
also applies and the idea of universality holds as expect-
ed. In the presence of long-range correlations, different
expressions for the localization length are obtained de-
pending on the definitions of the mean free path used in
the theory. Since the divergence of the structure function
in the forward scattering angle does not contribute to the
relaxation time in the transport sense, the transport local-
ization length is generally greater than the single-phonon
localization length which is obtained from the single-
phonon relaxation time. In d =1, when 0&n & —,', even

the asymptotic behaviors are different. In d =2, the
differences appear in the prefactors. All the expressions
for the single-phonon localization length g obtained here
give the same asymptotic behaviors found previously in
Ref. 14 by using the replica method. In that work, the
bare conductance I/go [ ~p&h(E)DBA(E)] used in the
single-parameter scaling relation

Eqs. (66) and (91) gives a localization length which
diverges like co ' "+" when Eq. (112) is used. This

' "+"behavior is inconsistent with the result of Eq.
(92), which is just the geometric mean of co '~" "' of Eq.
(93) and co ' "+". This suggests that, in the presence of
long-range correlations, at least in d =1, the scaling rela-
tion of Eq. (112) is incompatible with Eq. (69) when the
transport mean free path is used. The question is wheth-
er the single-parameter scaling relation of Eq. (112)
should be modified if the transport relaxation time is
relevant to the problem or the use of transport mean free
path in the momentum cutoff of Eq. (69) is inadequate in
the framework of VW. In fact, the use of transport mean
free path for the momentum cutoff introduces additional
length scale to the problem as can be seen from Eq. (69)
where the quantity P(E) of Eq. (68) is described by the
single-phonon mean free path of Eq. (71). The presence
of this new length scale, according to the theory of VW,
has important consequences to the localization length. It
changes the asymptotic behavior in d = 1 and affects the
prefactor in d =2. Since the mean free path and the lo-
calization length are the physical quantities which de-
scribe the transport properties of a system, we think that,
in the case of long-range correlations, the transport relax-
ation time will play a certain role in determining the
physical properties of the system. Further work is re-
quired to clarify this problem.
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APPENDIX

In the long-wavelength limit, V of Eq. (56) becomes
2ICa p, since y (E) in Eq. (63) has the asymptotic form
F. + with 6 & 0, as has been shown in Ref. 14 for all the
correlation functions given in Eqs. (60) and (61). The
function ImR (E) in the integrand of Eqs. (53), (57),
and (S8) can be approximated by —m. 6[m(E cp )]-
and the momentum integrations become straightforward,
leading to the Eqs. (65)—(67).

In order to derive Eq. (68) from Eq. (54) we use the re-
sults of Eqs. (S8) and (65) and make the following ap-
proximations for Eq. (54):

p( )
id y4E' a-

4vrm c p „(E)

2d

f f d p)d p2$(l p) —p21)$(lp)+p~l)&R, ', (F)&R„(E)

—idy4E' a
4m. m c p h(E)

2d

f f dp&dp2$(lp& —p2l)S(lp~+p2l)bR& (E)bR& (E)

dyE a
8vrm c p „(E)

2d f dQ $(lp, +pl)f dp)bR~ f f dp2S(lp, —p2l)bR (E),
dip yp
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where the peaked value of one of the hR~ (E) in the first

integrand has been used to give the second integrand. By
taking into account the fact that b,R (E) has the peaked

P2
value when p2=p=E/c and the functions S(~p& —pz~)
and S(~p, +p2~) cannot diverge simultaneously in the

case of long-range correlations we have approximated
the function S(lp, +ptl) by dtt-S(~p, +pl)/f dttP
in the last expression. Finally by using Eq. 63 twice, the
last expression immediately gives Eq. (68).
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