
PHYSICAL REVIE%' 8 VOLUME 39, NUMBER 10 1 APRIL 1989

Orientational phase transitions in systems of adsorbed molecules
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We have applied the cluster variational method of Kikuchi and co-workers to systems with con-
tinuous degrees of freedom, in particular to planar rotor models, which we use for the study of
orientational phase transitions in systems of adsorbed molecules. The method is based in approxi-
mated expressions for the free energy as a functional of the n-site distribution function, and the con-
ditional minimum of the free energy is given by integral equations which are solved numerically.
We apply the method to the herringbone transition of N2 molecules on graphite and also to the
orientational phase transition of molecules on a square lattice.

I. INTRQDUCTIGN

Adsorbed monolayers of molecules on crystal surfaces
present a large variety of structures. Besides the Quid,
commensurate, and incommensurate phases classi6ed ac-
cording to the periodicity of the adsorbate with respect to
the substrate, they may also appear as phases with
different orientational order. The best known exam-
ple' is that of N2 molecules adsorbed in a cornmensu-
rate &3X&3 structure on graphite. The molecules are
orientationally disordered above 30 K but below this tern-
perature they form a herringbone structure as shown in
Fig. 1, with six degenerate configurations. A similar
orientational ordering may be predicted for molecules on
a square lattice such as the surfaces of MgO, LiF, or cer-
tain noble metals, which would go from a high-
temperature disordered phase to the low-temperature
structure shown in Fig. 2, with two degenerate
configurations. '

Computer simulations ' have shown that these phase
transitions may be understood with simplified models of
planar rotors, with the center of the molecules fixed at
the lattice sites and the rotation restricted to the sub-
strate plane. These models also offer a good starting
point for the different theoretical approaches. The
mean-field approximation (MFA) has been applied to ro-
tors on triangular' and square lattices, ' but as it may be
expected for systems in two dimensions, the success has
been limited. The MFA predictions for the transition
temperature are too far above the computer simulation
results, and in the case of the herringbone structure, . the
MFA fails even -to give the correct order of the phase
transition. We have recently presented a study of these
systems beyond the MFA, ' partially based on the cluster
variational method of Kikuchi and co-workers. ' ' In
this article we present a detailed account of the method
applied to planar rotor models and show how it may be
used to include in a systematic way the correlation effects
at short range. We compare the results with two
different computer simulation: the Monte Carlo calcula-
tion of Mouritsen and Berlinsky" for the herringbone
transition of planar quadrupoles on a triangular lattice
and the molecular dynamics simulation of site-site

Ii4

FIG. 1. The herringbone structure of N2 molecules on graph-
ite. The orientation of the molecules correspond to the
minimum of the quadrupole-quadrupole interaction; there are
six equivalent structures which may be obtained from the figure
by rotation of 2~/3 and by shifts of a lattice space. The labels
1,2,3 are used as reference in the text.

FIG. 2. Minimum energy configuration for molecules on a
square lattice. There are two equivalent structures which may
be obtained by rotation of m/2. The labels 1,2,3,4 are used as
reference in the text.
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Lennard-Jones (LJ) molecules on a square lattice done by
Kalia e~ QI. '

In the next section we give a summary of the MFA re-
sults for these models, in Sec. III we present the general
lines of the Kikuchi approximation and develop it for the
application to models with continuous degrees of freedom
like the planar rotors, for which the free energy is written
as a functional of the n-sites orientational distribution
functions. Section IV deals with the study of the square
and triangular lattice structures in the Bethe approxima-
tion which considers the basic cluster formed by two
nearest-neighbor sites. In Sec. V we apply higher-order
approximations which include the correlation between 3
and 4 sites in the triangular and square lattice, respective-
ly. In the last section we conclude with an estimation of
the method capabilities and possible extensions.

II. THE MEAN-FIELD APPROXIMATION

(2.1)

where p= I/kT, UJ(p, p') is the pair interaction poten-
tial between the molecules at lattice sites i and j and the
sum over (ij) runs over all the pairs on the lattice. The
MFA result is obtained by minimizing F with respect to
all the possible functions p, (P), with the normalization
requirement

fdip;(P)=1 (2.2)

(we do not consider vacancies in the system). The Euler-
Lagrange equation corresponding to the conditional
minimum may be easily written as

exp —Pg fdP'pj(P')U;, (P, P')

p;((t )=
f dP exp —Pg f dP'p, (P') U;J($, $—')

The simplest theoretical treatment of the planar rotor
model is given by the MFA which may be formulated in
terms of the orientational distribution function of the
molecules p;(P), with the index i identifying the lattice
site and the angle P giving the molecular orientation.
The free energy of the system is taken as a functional of
p, (P) and approximated by

pF= g J dip;(p)Iln[p;(p)] —1I

f dP cos(2$)exp[KChg cos(2$)]

d exp KCI, icos 2
(2.5)

in terms of the order parameter g defined as

g= fdip;(P) cos[2(P —y;)], (2.6)

1.0

0.8

& 0.6

where y, gives the orientation of the molecule at site i
when the system is in the minimum energy configuration.
The constant C& in (2.5) gives the highest number of
"satisfied bonds" around a lattice site, that is, for the
square lattice C& =4 as it corresponds to the
configuration of Fig. 2 in which all the nearest-neighbor
pairs have a potential energy of —K. For the triangular
lattice there is no way to fully satisfy the six bonds
around each site, the herringbone structure does its best
getting two pairs with energy —K and the other four
with —K/2, so that Ch=4 instead of 6. Equation(2. 5)
has always the trivial solution g=O, which corresponds
to the disordered phase; notice that this is not to say that
the angular distribution is completely uniform,
p;(P)=1/2~. In general p;(P) will have modulations
compatible with the lattice symmetry. At large K (low
temperature) a new solution with q&0 may appear,
which corresponds to the ordered phase. By expanding
(2.5) for small g we can show that the phase transition is
of second order (contrary to the three dimensions Maier-
Saupe result) and the transition temperature in reduced
unit of the interaction is T—:1/K =C& /2=2. The order
parameter below the critical temperature may be easily
obtained by numerical solution of (2.5), and it is present-
ed in Fig. 3, together with the computer simulation re-
sults of Mouritsen and Berlinsky" for the herringbone
phase transition. To compare with the simulation results
of Kalia et al. for the square lattice we have solved the
general Eq. (2.3), with the pair interaction potential given
by site-site Lennard- Jones used there. The result is
shown in Fig. 4; in both cases the critical temperature is
much larger than the simulation value and only at very

(2.3) 04

which is very similar to the Maier-Saupe equation for a
liquid crystal, but with the orientation of the molecules
restricted to a plane. The solution of the MFA is easier
when the interaction potential is taken as the simple
quadrupole-quadrupole interaction used in"

0.2

0.2 0.6
0 0

1.0
T

)0 Ql

1.4 1.8

PU;J(P, P') =K cos(2/+2/' 40;~ ), —(2.4)

where i,j are restricted to nearest-neighbor pairs and 9;-
is the angle formed by the ij direction on the lattice
plane. In this case Eq. (2.3) may be rewritten as

FIG. 3. Order parameter for the herringbone phase as a
function of the reduced temperature, T=K ', circles are the
Monte Carlo simulation results of Ref. 11; dotted line is the
MFA; and solid line is the Kikuchi approximation presented
here.
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FIG. 4. Order parameter for the site-site Lennard-Jones mol-
ecules on a square lattice as a function of the reduced tempera-
ture in units of the LJ interaction. The circles are the result of
the molecular dynamics calculation of Ref. 9; dotted line, MFA;
dashed line, Bethe approximation; and solid line, Kramers-
Wannier approximation.

low temperatures the order parameter is in good agree-
ment with the simulation results. Moreover, in the case
of the herringbone structure the MFA prediction of a
second-order transition is in disagreement with the first-
order phase transition found in the simulation and the
renormalization-group analysis. It becomes then clear
that a study of the problem beyond the MFA is quite
necessary before we may claim a full theoretical under-
standing of the problem.

III. KIKUCHI APPROXIMATION
FOR PLANAR ROTOR MODELS

The cluster variational method developed by Kikuchi
and co-workers, ' ' includes earlier approximations,
like Bethe and Kramer-%Pannier, into a systematic
treatment where the free energy of a lattice model is cal-
culated as a function of the probabilities for the different
configurations in a cluster of n sites. The MFA may be
regarded as the n = 1 case, the Bethe or quasichemical ap-
proximation, which considers configurations of nearest-
neighbors pairs, is the n=2 case. The Kramers-Wannier
approximation for the Ising model in a square lattice cor-
responds to n =4, with a cluster formed by the four sites

I

of the elementary square in the lattice. The method may
be applied to any lattice model and any cluster size with
the only limitation of the computational feasibility. In
any case the entropy of the system is approximated, with
probabilistic arguments, by an expression like

q

S =a& g p;ln(p;)+a g q ln(q )

m„

+a„g rkln(rk)+
k=1

(3.1)

where p,. are the probabilities of finding any of the I
possible configurations for the n-sites cluster and

are the probabilities for the m, m
configurations of smaller clusters up to a single site. The
values of q, rk, . . . may be obtained as a sum ofp s. The
constants az, aq, a„.. . depend on the lattice structure
and the cluster size, we refer the reader to the original
works of Kikuchi et al. ' ' for different ways to deter-
mine them. The internal energy of the system is given in
terms of the pair interaction potential and the pair distri-
bution probabilities, . so that together with (3.1) one may
obtain the free energy of the system, F, as a function of
the set of p, 's. The equilibrium cluster configuration
probabilities are found by minimizing F with respect to
the p; s. The Kikuchi approximation has been applied to
a large variety of lattice models and although it is not
good to study the long-range fluctuation effects, like non-
classical critical exponents, it certainly gives a systematic
way to improve the predictions for the critical tempera-
ture, order parameter, and thermodynamic properties.
In the application to Ising or Potts models the number of
different configurations is relatively small and it is possi-
ble to reduce the number of independent variables by us-
ing all the symmetries which imply some degeneracy in
the configurations. Thus, for the Ising model in a square
lattice the Bethe approxiination (n=2) requires two in-
dependent variables, and Kramers-Wannier ( n =4,
2"=16 configurations) requires at most five independent
probabilities. However, in the application to planar rotor
models we have a continuum of configurations which
cannot be treated separately. Instead we propose to de-
scribe the system in terms of the n-sites angular distribu-
tion functions p;1. . . &(P, P', . . . , P") and to transform the
sums in (3.1) into integrals over the angles

gp;in(p;) fdP dP"p; . . I(P, . . . , P")in.[.p; . . . (P, . . . , P")], (3.2)

where we drop additive constants which together with
the kinetic energy contribution will only give a shift to
the free-energy axis. The distribution functions of the
smaller clusters may be obtained by integration of
p;J. . . i(P, . . . , P") with respect to some angles and the
potential energy may be obtained in terms of the pair po-
tential U~ (P, P') and the pair distribution function
p, (P, P'), so that finally we will get the free energy of the
system as a functional of the n-sites distribution function.

IV. THK BETHE APPROXIMATION

The first step beyond the MFA is the Bethe approxima-
tion which in our case becomes

13I' = g fd4d0'p;, (0 0')»[p;, (4 4')]
(ij)
—(v —1)g fdip;(P)ln[p;(P)]

+&r fde de'p;, (4' 4''»„(4' 0'» (4 1)
(ij)
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Pl(lj(') fdop12(0 0 } f d4'Pl2(0 4') P2(0) ~ (4.2)

Moreover, the function p, z(P, P') has to be normalized

fd4d4'P12(4 0 } (4.3)
I

where v is the coordination number in the lattice, the
sums over (ij) run over all the lattice bonds, i.e., pairs of
nearest neighbors (which we consider as the only in-
teracting sites), and the sum over i runs over all the lat-
tice sites. The equilibrium pair distribution and free en-
ergy is obtained by minimizing I' with respect to
p;J(p, lI)'). In the orientationally disordered phase all the
lattice bonds and sites are equivalent, so that the function
p; (p, p') should only depend on the bond index ij
through a trivial shift of the angular origin, to take into
account the orientation of the bond. The minimum of F
may then be calculated with respect to a single function,
say p, z(lI), p') to represent all the bonds. There are some
restrictions on this function: The symmetry of the single
site distribution, p, (P)=pz(P), has to be guaranteed, so
that

These conditions may be introduced through Lagrange
multipliers g(P) and p so that the Euler-Lagrange equa-
tion for the problem is obtained by setting equal to zero
the functional derivative of

0=I3F/N p—f dp dp'p»(p, p')

f—dd s(4)f d4'[Pt2(4 4') P—i2(4'' 4)]

Xbeing the number of lattice sites. The result is

(4.4)

P,2(p, lI
') =C [Pi(p )P2(p ) ]

X, exp[ —PU, 2(P, P')],a(P)
a

(4.5)

where we have defined C =exp(2p/v) and a (P)
=exp[2$(P)/v], which should be used to satisfy the con-
ditions (4.2) and (4.3). This leads to the integral equa-
tions

fd4'pi(4')' "'a(0') exp[ —&U»(4' 0)]
a(P)=

fdic'P2(4')'

'"", exp[ —PU (0 0')]

1/2

(4.6)

and

p)(P)=
p& p2, exp — U]2

fd0d0'[pi(4}p2(0')]' "', exp[ —PU»(4 0')]
(4.7}

which should be solved consistently. This may be done
by an iterative process which only involves the one-site
functions a(P) and p&(P)=P2(P). Starting from a(P)=1
and p&(P) = I/2n the process converges in few iterations.
The resulting a (P) and p&(P) are used in (4.5) and (4.1) to
obtain the pair distribution and the free energy. For the
study of the ordered phases we have to take into account
the existence of different kinds of sites and bonds. The
number of independent functions PJ(ltl, lI)') in (4.1) de-
pends on the lattice structure. In the square lattice all
the bonds are equivalent (with the appropriate rotations
and/or reAections) while in the herringbone structure on
the triangular lattice there are two different types of bond
distributions which should be kept as independent vari-
ables. In any case the problem may be solved along the
same lines that for the disordered case, with equations
similar to (4.5)—(4.7) but re(lecting the symmetry of the
structure.

A. The ordered phase in the square lattice

In the low-temperature structure shown in Fig. 2 all
the nearest-neighbors pair distribution functions are
equivalent, e.g. , with the index 1,2,3 referring to the po-
sitions marked in Fig. 2, we have P23($ lljk )

=p&z(P+m/2, P'+m/2). However, the relation (4.2) is
not valid any more and it should be substituted by

P (4)=fdA»(4 0')

= fdg'p»(P'+~/2, P+m/2}=pz(P+n/2),

(4.8)

this changes the equation for the Lagrange multipliers so
that (4.5)—(4.7) with v=4, become

P12(4, 0') =C[pl(4)P2(y )]'"a,+ /2
exp[ —PU12(4, 4')], (4.9)

f d 4 pi(b')'"a (4')exp[ —&Ui2(4', 4
—~/2 }1

a(P)=
fd4'p~(0')'", , + /2 exp[ —»»(4 0')]

1/2

(4.10)

and
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d 'p, p2 ', exp —UI2

fdude''fpl(4')p2(4'')]'", exp[ —&U12(0 4'')]
(4.1 1)

The numerical solution of these equations is very similar
to those of the disordered case, the only difference is that
the initial guess for the iterative process should break the
symmetry between the two degenerated structures, this is
easily done by starting with a one-site orientational distri-
bution with the inhomogeneity associated to one of the
structures. At low temperature it is more effective to ini-
tialize both p&($) and a (P) with the results of a previous
run for higher temperature. The disordered phase may
also be recovered from the more general Eqs. (4.9)—(4.11),
above the critical temperature the iterative process will
destroy any asymmetry in the initial guess and converge
towards the disordered phase. The critical temperature
obtained is T, =10.3 to be compared with the MFA value
of 14.8 and the computer simulatio~ between 8.75 and 9,
all in the reduced units of the Lennard-Jones interactions.
The order parameter below T, is presented in Fig. 4. It
presents good agreement with the simulation for T ~ 6.

Pl(4)= f d4'P12(0 0')= f d0'P12(0' 4')=P2(4»

P2(v) =fda'P23(v. c')

= f dP'p23(P'+m/2, $+n/2)=p3(P+n/2),

(4.12)

(4.13)

and the normalization condition (4.3), the main difFerence
with the square lattice is that two different Lagrange mul-
tipliers a,2(P) and a23(P) are required. The result is
again a set of integral equations relating p, (P), a&z(P),
and a23(P), which have to be solved numerically. The re-
sult of this calculation is that the system never stabilizes

I

B. The Bethe approximation for the herringbone structure

The application of the Bethe approximation to the her-
ringbone phase in the triangular lattice requires the use of
two different functions for the nearest-neighbor pair dis-
tribution functions. The pair 12 in Fig. 1 is clearly
different from the pairs 23 and 31, the two later are relat-
ed by appropriate rejections and rotations. The func-
tional minimization of F in (4.1) has to consider p, 2(P, P )

and p23(P, P') as independent functional variables. They
have to satisfy the symmetry conditions related to the
one-site distribution functions

l

the ordered phase, even at very low temperature the
minimum free energy is given by a phase with order pa-
rarneter r)=0 [defined as in (2.6)]. This may be analyzed
in terms of the two-sites correlation function in the disor-
dered phase given by the Bethe approximation (4.5) at
very low temperature. In that case the Boltzmann factor
of the pair potential has a very narrow maximum at the
orientations giving the minimum of (2.4). At T =0
(P~ ~ ) the potential energy contribution to F in (4.1) is
—K per lattice bond, so that I3F/N= —3 K. This is
lower than the exact ground-state configuration given by
the herringbone structure, with PF/N = —2 K. So, even
at T=O the free energy in Bethe approximation is mini-
mized by the disordered phase, This failure is due to the
treatment of the bond distribution as an independent
variable in the Bethe approximation so that the frustra-
tion effects of triangular lattice are not taken into ac-
count. The herringbone structure corresponds to the ex-
act minimum energy configuration, in which all the
bonds cannot be satisfied at the same time. In summary,
the Bethe approximation provides a good improvement
over the MFA for the square lattice, but not for the tri-
angular lattice, for which it fails even to predict the pres-
ence of a phase transition. This failure should be regard-
ed as a peculiarity of the herringbone structure in the tri-
angular lattice which responds to the frustration effects
created by the interaction potential (2.4) on a triangular
lattice. It is then clear the need for a treatment which,
within the Kikuchi scheme, considers a larger cluster in-
cluding three-sites correlations.

V. BEYOND THE BETHE APPROXIMATION

A. The triangular cluster approximation
for the herringbone structure

Along the line of the Kikuchi scheme, the next step
beyond the Bethe approximation for the herringbone
problem is to consider the clusters of three-sites forming
the basic triangle in the lattice. We may expect that this
is enough to take into account the frustration effects
which invalidate the Bethe approximation. This approxi-
mation was derived in the original works of Kikuchi'
for the Ising model, in our case the free energy is written
as

IF= g fdgdg'dP"p jk(4', f', P )ln[pjk(P, P', P")]
(,ij k)

X fd4d4 p (4' 0 )Ilnlp "(4' 0') "—PUj(0 0')]I+ & f d4'p (0)in[p (4')]
I

(5.1)

where the function P; k(p, p', p" ) refers to the triplets of nearest-neighbors forming the basic triangle on the lattice. The
sum over (ijk) runs over all those triangles, the sum over (ij ) runs over all the nearest-neighbors pairs, and the sum over
i is over all the lattice sites. In the disordered phase all the triangles, bonds, and sites have the same distribution func-
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tions, while in the herringbone phase there are two different kinds of sites [although their distribution function p, (P) is
made similar by a rotation of m./2], and several kinds of bonds, which may be expressed in terms of two independent
functions, p, 2(P) and pz&(P) as we saw above. All the triangles may be referred to a single function P,2&(P, P', (t"). The
free energy F in (5.1) has to be minimized with respect to pi23(P, P', P" ) with the bond and site distributions given by the
corresponding integrals. There are some symmetry conditions to be satisfied by p, z~(&t&, P', P" ), with the structure shown
in Fig. 1 the bond 12 has to be symmetric

P12(0 &e')= J de"P123(( &4 &0 ) Jdk P123(4 &0&0 ) P12(4 0&)

and the bonds 23 and 31 are related by

P (4 0')= J d0"P (4'' 0" 4)= Jdo"P»( —0" 0 0'—)=P»( —4 —0')

(5.2)

(5.3)

These relations introduce some Lagrange multipliers which are functions of two angles. There is also a constant
Lagrange multiplier associated to the normalization of pi&&(P, P', P" ). By using the equivalent to (4.4), we may write the
Euler-Lagrange equation for this problem as

P123(4&0 & P ) C~12((t'&4 )~23(4 & P )I 31((( &4')

where

(5.4)

I'„(P,P') = pj (P, P') AJ (P, P')exp[ PUJ (—P, P') ]

[p;(P)p, (P')]'
(5.5)

and

(5.6)

with

&;,(4 0')= Jdk" I;k(4' 0"»k (4" 0'» (5.7)

the index ijk running on cycles over 123, and by integra-
tion of (5.4),

p;, (p, p')=CI;J(p, p')&;, (p, p') . (5.8)

Equations (5.5)—(5.8) may be solved iteratively, from an
initial guess which breaks the symmetry between the
dNerent structures. The calculations are now heavier
than for the Bethe approximation, because we have to
deal with functions of two variables, and perform the
convolutions in (S.7), but it is still possible to carry on the
computation in a personal computer. A simplified ver-
sion of the equations may be obtained for the disordered
phase, by taking into account the full symmetry of that
case, but this may also be studied with the general equa-

The functions A; (P, (t&') are related to the Lagrange mul-

tipliers used to satisfy (5.2) and (5.3) and the C is the nor-
malization constant. These equations may be applied to
the disordered phase or to any of the six degenerated her-
ringbone structures; the particular structure is chosen
by the relation which should satisfy the functions
For the structure in Fig. 1, A i2(0 0 ) A12(4 0 )

to be used to guarantee (5.2) and Az~(P, P')
= A»( —P, —P') ', to get (5.3). This leads to a set of
coupled integral equations for the functions A, - and p;.
which may be written as

R,2(P', P)

tions above, which in that case converge towards a sym-
metric solution. The result of this calculation with the
quadrupole interaction (2.4) is that the phase transition,
missing in the Bethe approximation, appears now at a
temperature, T= I/K=0. 998, must closer to the simula-
tion result, "T=0.775, than the MFA value T=2. How-
ever, the transition is continuous (as in the MFA) con-
trary to the simulation prediction of a first-order phase
transition. The order parameter (2.6) as a function of the
temperature is shown in Fig. 3, the result is very close to
the simulation values up to the first-order transition ob-
served in the latter. As a result of our calculation we also
obtain the distribution functions of two and three sites in
both the ordered and the disordered phases. In Fig. 5(a)
we show the two-sites distribution at a temperature
slightly above the phase transition, the maxima are along
the line P+P'=sr/2 as it corresponds to the minimum of
the potential energy (2.4) (with 9,"=0) and the minima
are along the line P+ P' =n, which gives the maximum of
U, (P, (t&'). In the Bethe approximation the shape of
p,"(P,P') is mainly given by the Boltzmann factor in (4.5),
so that the contour lines will be nearly straight lines with
constant P+P'. The modulations along these lines which
are observed in the results of the present approximation,
are the signature that the frustration efFects are taken
into account. In Figs. S(b) and (c) we show the distribu-
tion functions for the two di8'erent kinds of bonds at
T=0.8, below the phase transition. The function
pi2(P, P') has a very narrow maximum at P=P'=sr/4, as
it corresponds to the pair of parallel molecules in the her-
ringbone structure, the shape of the maximum is still ex-
tended along the P+P'=m. /2 line, showing that the main
Auctuations will kept the pair distribution along the
minimum of the potential energy, as in the disordered
case. The function P2~(P, P') has a narrow maximum at
P=m/2 and P'=3m/2, so that this is the nonsatisfied
bond with a potential energy of a half of the minimum
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value. All this suggests that the Kikuchi approximation
is good to describe the short range correlation effects, in-
cluding the frustrations effects which were missing in the
Bethe approximation. However, there are long-range
effects, responsible for the change of the transition order,
which are sti11 missing in this approximation.

B. The Kramers-Wannier approximation for the square lattice

The next step for the square lattice is the Kramer-
Wannier approximation which considers the cluster
formed by a basic square on the lattice. The free energy
may be written as

PF = g f dPdP'dP"dP"'p~/kI(P, P', P",P"')ln[p~/&, (P, P', P",P"')]
(ij kl)

r—f««'P„(«') I »[p (4 &')] ~U (4 0')]+ 2 fdip;(4)»[P (0)] (5.9)

as a function of the four-sites distribution function p;k&(P, P', P",P"'), from which all the lower-order functions

p; (P, P'), p;(P), may be obtained. Both in the ordered and the disordered phases, all the basic squares can be made
equivalent by the appropriate rotations, so that we have to consider a single function p, 234(P, P', P",P'") (with the in-
dices referred to Fig. 2). There are some restrictions on this function which have to be imposed through the corre-
sponding Lagrange multipliers, the normalization and the bond symmetries

p&2(P, P') =pz3(P+m /2, $'+rrl2) =p3&(P, P') =P4,&($+m/2, P'+m. /2), (5.10)

which require Lagrange multipliers which are functions of two angles. By using the appropriate symmetries we can
finally write the Euler-Lagrange equation as

P,234(p, p, p",p'") = CY,2(4', 4 ') Y23(p', p") Y34(p",p"') Y4& (p"', p),
where C is fixed to satisfy the normalization and

Y;,(, ')= p;, (0 0')A,)(0 0')exp[ —&U)(0 0')l

[p;(P)p, (P')]'

(5.11)

(5.12)

(5.13)

where the functions A;J (P, P ) are associated to the Lagrange multipliers used to satisfy (5.10) and have the symmetry

1 1

A23(P+vr/2, $'+m /2) '
Aq, (Q+n/2, P'+sr/2)

The two-sites distribution functions may be obtained from P, 234(P, P', P",P"') by integration over two angles as

p (0 0')=CY&(4' 0')T;, (0 0'»
with

T„(~,~ )=fd~-d~ "Y;(~,~")Y.i(~",~" )Yi, (~"',~) . (5.14)

T „(P+vr/2, $'+rr/2)
T (5.15)

with ijkl running on cycles over 1234. The symmetries
(5.10) imply the equations

detailed analysis very close to the transition temperature
should evidence the failure of any Kikuchi approxima-
tion to describe the nonclassical critical behavior, but this
is also beyond the accuracy of the computer simulation.

for the Lagrange multipliers A; (P, P'), which together
with (5.12)—(5.14) form a set of coupled integral equations
for p&2(P, P') and A &2(P, P') which may be solved itera-
tively from an appropriate initial guess. The calculations
are similar to the herringbone case, with functions of two
variables, but now there are double convolutions (5.14).
A simplified version of these equations for the disordered
phase may be also obtained, by using the full symmetry of
that phase. The results for the order parameter as a func-
tion of the temperature are given in Fig. 4 and compared
with the previous approximations and with the computer
simulation. The agreement with the later is perfect,
within the precision of the simulation results, of course a

VI. CONCLUSIONS

We have developed an extension of the Kikuchi ap-
proximation to study systems with continuous degrees of
freedom, applying it to planar rotor models. In this case
the method is expressed in terms of approximated forms
for the free energy as a functional of the n-sites distribu-
tion functions. The conditional functional minimum
gives a set of Euler-Lagrange integral equations which
may be solved numerically. The methods gives a sys-
tematic way to go beyond the mean-field approximation,
including the correlations at short distance. In this work
we have used this scheme to study the orientational phase
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FIG. 5. The two-site distribution functions for the N2 mole-
cules on graphite in the Kikuchi approximation developed here.
(a) is at T=1, just above the phase transition with all the bonds
being equivalent. The curves correspond to values from 0.008
(level 1) with interval 0.005. (b) and (c) correspond to T=0.8 in
the herringbone phase, and they represent the two kinds of
different bonds. (b) is p, 2(P, P') and (c) is p2, (P, P') referring to
the labels in Fig. 1. The curves correspond to values from 0.02
(level 1) with intervals of 0.04.

transitions of adsorbed monolayers of molecules on a
crystal surface. We have performed the calculations for
two different models which have been used in previous
computer simulation: The herringbone structure of
quadrupoles on a triangular lattice (to mimic N2 mole-
cules on graphite) and the site-site Lennard-Jones mole-
cules on a square lattice. There are striking differences
between the results obtained for these two systems. For
the second one the results within the Kikuchi scheme im-
prove with the degree of the approximation, i.e., with the
size of the basic cluster used as a functional variable. The
Bethe approximation (n=2) compares with the simula-
tion much better than the MFA (which may be regarded
as the n = 1 case), and the Kramers-Wannier approxima-
tion (which corresponds to n=4) is in perfect agreement
with the simulation results (letting aside the nonclassical
critical behavior very close to the continuous phase tran-
sition). However, for the triangular lattice the use of the
Bethe approximation fully destroys the phase transition,
which is predicted by the MFA (at a rather inaccurate
temperature). This may be understood in terms of the
frustration imposed by the quadrupole-quadrupole in-
teraction on the triangular lattice, which is taken into ac-
count in the low-temperature herringbone structure, but
which are missed by the Bethe approximation in which
the distribution function of all the nearest neighbors is
optimized independently. The next step along the Kiku-
chi scheme for this problem uses the three-sites cluster
forming a triangle on the lattice, so that the
configurational restrictions for the bond structures are
considered. This takes back the phase transition and it
compares with the simulation result much better than the
MFA. However, the predicted phase transition is still
continuous (as in the MFA), contrary to the simulation
results and to the renormalization-group calcula-
tions. ' ' The first-order character of the phase transi-
tion has to be induced by longer ranged correlations
which are missing in our calculation. In this respect, the
difference between the regular behavior of the square lat-
tice model and the peculiar herringbone system should be
produced by the high degeneracy of the ground state,
with six equivalent configurations, while the square lat-
tice has only two degenerated states at low temperature.
Thus, the herringbone phase should be somehow similar
to the six states Potts model (although some qualitative
difFerences have been pointed in Ref. 18), for which it is
well known that the fj.uctuations play an important role
in determining the order of the transition. The square
lattice problem, being similar to the Ising model does not
present these effects.

In summary, the Kikuchi approach may be successful-
ly used to describe the orientational phase transitions of
adsorbed molecules, although it may miss some of the
peculiarities of the herringbone structure. It is worth
comparing our results with the capability of the Kikuchi
approximation to describe the q-states Potts model, for
which the transition is known to be continuous for q (4
and first order for q) 4. The mean-field approximation
gives a first-order transition for any q) 2, and this is not
changed by the use of Bethe or Kikuchi approximation,
although they improve the value of the transition temper-
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ature. For 2&q&4, the continuous character of the
phase transition is due to the long-range fluctuations and
cannot be obtained with a finite cluster approximation.
For the herringbone case we have the opposite: The
mean-field prediction of a continuous transition contrasts
with the real first order character, so that the fiuctuations
are very important but they are not of infinite range. In
this case, one could hope to get the correct result with
approximations including the correlations up to a finite
distance. However, this is still not the case for the Kiku-
chi triangle approximation which we have used here.
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