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The effective single-band Hamiltonian for holes in the two-dimensional quantum antiferromag-
net, relevant for the CuQ, layers in copper-oxide superconductors, is studied by the exact diagonali-
zation of a finite-size system with 16 cells. Single- and two-hole ground-state properties are calcu-
lated. Pair-binding-energy and hole-density correlation functions indicate that two holes bind for
moderate exchange interactions, even in the case of the extreme anisotropic-Ising limit.

I. INTRODUCTION

At present there exists well-established experimental
evidence that copper-oxide-based superconductors (SC)
behave as strongly correlated electronic systems.!
Relevant properties are mainly controlled by CuO, lay-
ers, where charge carriers are holes introduced by doping
the reference substance, e.g., La,CuO,, being a magnetic
insulator with long-range antiferromagnetic (AFM) or-
der. Several microscopic models based on a single-
band*3 or multiple-band*~® Hubbard Hamiltonian have
been proposed for the description of electrons in CuO,
layers. The simplest prototype model, which contains at
least some important features of this strongly correlated
system, is the effective single-band model

H=—t 3 (cle,+efe)+I 3 (S8, —4nn;) ,
(i, j)s {i,j)

1)

which describes hopping of electrons in the presence of a
finite concentration of holes in the magnetic (AFM) insu-
lator, as represented by the Heisenberg exchange model.
Here c;(c;) are projected fermionic operators
c,-i =t (1—n; _;), taking into account the strong corre-
lation requirement that no double occupancy of sites is
allowed. §;=13 . asslc,-zc,-s, are corresponding local spin
operators. Summations {ij) extend over all pairs of
nearest-neighbor sites on a square lattice, as relevant for
CuO, layers.

The effective Hamiltonian [Eq. (1)] has been intro-
duced®? in connection with CuO, layers as the represen-
tation of a single-band Hubbard model for Cu d orbitals
with a large on site Coulomb repulsion U, where
J =4t%/U. Even the two-band Hubbard model has been
mapped in the relevant parameter regime onto the hole-
spin models’ and finally onto the same restricted basis
set® as in Eq. (1) with three states per cell, i.e., |1), [4),
and |0). In the latter case, |0) takes the role of a local
singlet, formed by a spin in the Cu d orbital and a hole in
the symmetrized O p orbital. Nevertheless, the reduction
leads, in general, to higher-order invariants not included
in Eq. (1). They are different for single- and multiple-
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band Hubbard models. Thus we omit a three-site term
(see, e.g., Refs. 9 and 10) connected with next-nearest-
neighbor hopping, as obtained by a straightforward
reduction of a single-band Hubbard model.

The effective model [Eq. (1)] has been studied for a
small density of holes in the quamtum AFM state by
several authors. The Brinkman-Rice'! approach to the
problem of a single-hole motion in the limiting case
J/t—0 has been applied'>™'* to the calculation of the
single-hole and two-hole ground states for the square lat-
tice and finite J/¢t. Although different analytical treat-
ments®>7!7 and numerical calculations'® have been
presented, some crucial aspects still remain to be settled.
The nature of the spin polaron, a hole in the AFM back-
ground, is not yet clarified, whether spin distortions
around a hole are more of the ferromagnetic (FM) type!®
or of the singlet spin-liquid® type, etc. The possibility of
long-range dipolar distortions has also been considered.!®
With respect to a possible hole binding, analytical results
are controversial,’>”!* mainly not being in favor of hole
binding. Numerical studies seem to indicate that in the
single-band Hubbard model SC pairing is not possible,?®
while in the two-band case some evidence for the binding
of holes has been presented.?!

Spin fluctuations are very pronounced in the isotropic
Heisenberg model with J,,=J, a=x, y, and z. The
ground state of the spin model without holes still shows a
long-range AFM order on a square lattice,?>?* hence it is
not clear to what extent single- and two-hole properties
are governed by large spin fluctuations,!>!416 the latter
being specific to the isotropic case, but not to anisotropic
models, as in the Ising limit J,, =J, >J,, =J,, =J .

In this paper we study the effective model [Eq. (1)] by
performing an exact diagonalization of a small-size sys-
tem, our calculations restricted to 4X4=16 cells with
periodic boundary conditions. In comparison with ap-
proximate analytical treatments,”!?2”!* which had relied
on rather restricted basis sets, our method with a com-
plete set for a finite system yields some essentially
different results. This is particularly true of the nature of
the interaction between holes, and in a brief account of
this work we presented evidence that binding of (two)
holes can occur.?* On the other hand, as far as numerical
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calculations are concerned, the model [Eq. (1)] has advan-
tage over the single-band Hubbard model due to only
three basis states per cell. Still only few numerical calcu-
lations for the model [Eq. (1)] have been performed.'®%

In Sec. II we present our modified Lanczos method
used in the calculation of the ground states for one and
two holes in the model [Eq. (1)]. Results for a single-spin
polaron are presented in Sec. III. The energy spectra and
the character of spin distortions around the hole are ex-
amined. Section IV is devoted to results for two holes.
The binding energy and different correlation functions
are calculated, which point to the existence of hole pair-
ing. We also examine the case of the extreme anisotropic
spin exchange, in order to discuss the influence of spin
fluctuations on the hole binding and other properties.
We summarize our results in Sec. V.

II. NUMERICAL METHOD

Due to the smallest possible number of basis states, i.e.,
three per cell, the effective model Eq. (1) allows a numeri-
cal study of larger size systems than in the case of Hub-
bard models?>?! and coupled hole-spin models.?® We
choose a single size, i.e., a very symmetric system of 16
cells, which in the case of two holes represents our
present computational limit.

Essentially we are using the Lanczos procedure defined
by the iteration

H|®,)=b,_||®,_{)+a,|®,)+b,|®,,,), (a)
a,=(®,|H|®,), b,_=(D,_,|H|D,), (2b)

which generates a set of orthonormal basis functions
|®, ) under the appropriate initial choice of the function
|®,) and b_,=0. Diagonalizing the tridiagonal matrix
of elements {a,},{b,} we obtain energies (eigenvalues)
and corresponding eigenfunctions expressed in terms of
|®, ). We are interested only in the lowest-energy states
|W,) for a given symmetry. In all cases considered this
can be achieved with less than 40 Lanczos steps. In con-
trast to usual implementations of the Lanczos method,?’
we use as basis states those of blocks j =1,...,4,i.e., in
our case of the 2X2 lattice (see Fig. 1). These block
states |@j), [=1,...,81 are characterized by several
quantum numbers: the number of holes nj, spin S/, S7,
and reflection symmetries m ){,m}{' .

The Hamiltonian (1) can be written as a sum of block
diagonal and interblock terms:

. .
H=3 H;;+H,+H),;+Hy,+Hy , (3)
=1

and interblock matrix elements are, e.g.,
hidre =S @@k | H s 10k ) g} ) @

Due to the conservation of nj+nj and S/+S/, as well
as of m{mJ and mJmJ', the number of nonzero elements
is strongly reduced. We thus store as arrays only
nonzero elements 4 and their indices /kl’k’. The Lanczos

procedure is then performed using the product basis

7075

° ° ° ° ° °
_.____.....l...._._._..._1

[ ] ' l °
| |
| |

° | | °
| |
SR S — 1

. .
| |
| |
| |

. | | | °
e )

° ° ° ° ° °

FIG. 1. Cluster of 16 sites with periodic boundary conditions
on a square lattice used in this calculation. The four blocks,
each containing four sites, are shown. The oriented thin line
defines the ordering of fermions on the lattice.

[duny > =101 Y@ Yen s ) . (5)

Since the initial |®,) is chosen to have good quantum
numbers N,=3;n/, S,=3;S/ and reflections M, ,
=TI, mi,, we can find an appropriate subset of states
{lkhp}, where all states can be directly indexed and easily
accessed. It should be pointed out that simple rules for
the sign problem are obtained if fermions are counted in
the sequence of blocks (see Fig. 1).

The method as described above has several advantages.

(a) The Lanczos iteration is very fast due to prestored
matrix elements. Since on a square lattice the dimension
required for the product basis {/khp} is roughly equal to
the number of nonzero matrix elements (4), the computa-
tion time is optimally distributed among the calculation
of matrix elements and simple Lanczos iterations (2a) and
(2b). For typical cases studied, i.e., N,=2, S,=0 on
N =16 sites, the relevant basis set dimension is
N, ~100000 and the convergence requires a computa-
tion time of ~2 h on a VAX 8650.

(b) Since the block basis |} ) has good S/, one can easi-
ly construct symmetrized initial |®,) having good total
spin S,,. This is especially straightforward for small
Sior €8 Sy =0 being mainly of interest. Thus S is
directly controlled and conserved during the procedure,
which is not the case for the usual Lanczos methods in
the site-product or q-product basis. On the other hand, q
is not a good quantum number in our procedure. It is,
however, determined by inspection from the block sym-
metries mJ,mJ and their symmetrization in the initial
| D).

(c) At least in the regime of rather localized holes, sim-
ple initial |®,) can be constructed, which retain substan-
tial weight in the final |¥,). In this sense the method is
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well adapted to generalizations of real-space renormaliza-
tion procedures as used in one-dimensional systems, as
well as to the study of larger systems with additional
blocks but with a truncated basis.

III. SPIN POLARON PROPERTIES

Although single-hole states were studied by a number
of authors,'?”!7 several aspects regarding the energy
spectra as well as the ground-state properties of the spin
polaron still require clarification. We are using much
larger basis sets N, ~20000 as compared to analytical
approaches,lz_14 which also relied, basically, on the
Lanczos procedure.

Low-energy states for a single hole have been investigat-
ed in the whole regime of physically interesting values of
J/t, thatis for J/t S 1.

(a) We found that for J /¢ 2 0.088, the ground state has
S =3 and is in our N =16 system, in addition, degenerate
for all q lying on the edges of the reduced AFM Brillouin
zone, i.e., at q_,=(xw/2,tw/2), qs=(0,7), and
q¢=(m,0) (note that we choose a,=1). The ground state
is thus a sixfold degenerate spin doublet. The energy of
the spin polaron, defined relative to the AFM ground
state Eo(N, =0) as

AE] :EO(Nh zl)—'Eo(Nh =0) ,

is shown in Fig. 2. An approximate degeneracy of
single-hole states for two nonequivalent q, e.g., q; and qs,
has been reported also by other authors.!>!%16 An exact
degeneracy, however, is likely to be specific to a very
symmetric N =16 lattice with periodic boundary condi-
tions. It can also be traced back to the exactly equal
values of spin correlations C(R)=(S(0)-S(R)) at non-
equivalent distances R =V'2 and 2 from the pure isotro-
pic Heisenberg model. (The same phenomenon has also
been reported in Ref. 18.) The necessary condition seems
to be that the random walks associated with each of the

AE,

0 02 04 06 08
I/t

FIG. 2. Ground-state energy AE, (in units of ) of one hole
relative to the AFM ground state vs J /¢t. Here and in all subse-
quent figures the thin lines connecting the points are guides to
the eye only. Note, however, that the dashed part of the line is
an exact result.
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above correlations are, term by term, of equal length.
This is indeed the case for the 4X4 lattice considered in
this work.

(b) The theorem of Nagaoka'® requires that as J /t —0
the ground state should become ferromagnetic, i.e., with
S =1L in our system. The crossover to the FM polaron
occurs at quite low J /¢. The ferromagnetic state is found
to be stable for J /¢ <J,/t=0.088, while S =1 remains
the ground-state spin value for J/rX0.088. At
J/t=0.075 we obtain S =3, whereas below this value a
rapid crossover to § =1 occurs, presumably over all in-
termediate S values. This seems to be consistent with re-
sults obtained by other authors.?® We did not pursue
these fine-scale effects any further numerically. We also
note that for J /¢t >>1, e.g., J /t =4.5, the character of the
ground state is also found to change over to a doubly de-
generate spin doublet with q=q;s .

(c) The lowest-energy states at other q in the Brillouin
zone are easily calculated by using the initial |®,) of the
corresponding symmetry. In the most interesting regime
0.15J/t <1 we investigate the bandwidth of the lowest
E,(q) branch. At q=(m,7), however, we find that E,(q)
corresponds to S =3, which cannot be interpreted as a
simple excited hole state but rather as a spin excitation
above the single-hole ground state. On the other hand, at
q=0 the lowest state is S =3, so we define the bandwidth
as W=E,(q=0)—E,(q;). We plot W versus J /t in Fig.
3, where W is found to scale almost linearly with J in the
intermediate J /¢ regime. Clearly, one might associate W
to the mass of the mobile quasiparticle as m* < 1/W,
hence m* < t2/J.1%1417 However, as already noticed, the
single-hole excited states could be predominantly mag-
nonlike, which makes the relation of W to m* somewhat
ambiguous. We have also calculated the single-hole
states in the anisotropic case J,=J, J,=0 and found
that, in contrast to the isotropic case, the lowest-energy
states now have q=(0,0) and q=(m, 7).

The character of the spin polaron, associated with a
hole in the AFM background is of even greater interest.

(a) The hole gains, through nearest-neighbor hopping,
in kinetic energy E,;,. Strong correlations built in the

usf yd ]
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FIG. 3. Quasiparticle bandwidth Wvs J /t.
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model [Eq. (1)] do not significantly reduce E,;, with
respect to the maximum uncorrelated value E 5" = —4¢.
We find that for N =16 and in the region where the
ground state has S =1, the ratio n=Ey;, /E{}3* is only
weakly dependent on' J, i.e., approximately linear,
n=~0.775—0.2J /t for 0.1 <J /t <0.6. This kinetic ener-
gy gain is large when compared, e.g., to the result
7n=0.63, obtained for the Hubbard model in the U— o
limit by using the projected, i.e., generalized, Gutzwiller
trial wave_functions,9 but smaller than the analytical re-
sult =7"3/2=20.866 obtained in Ref. 11.

(b) The nature of the spin configuration around the
hole can be tested only indirectly, via several correlation
functions. A direct analysis of the ground state is to
some extent complicated by the fact that qs40 there.
Since the spin polaron has S, =1, a nontrivial quantity
is the distribution of the magnetization

s(R)=7 (¥ln,(R;)S,(R; +R)[¥,) , (6)

where we denote the hole density by n,(R;)=1—n(R;).
In the same manner one can study the modified spin
correlations in the vicinity of the hole

C(R,R)=T (¥o|n,(R,)S(R; +R)-S(R; +R,)|¥,) .

(N

Results for s(R), plotted in Fig. 4 for all nonequivalent
distances R, show that in the region of J/t <0.5 the ex-
' tra magnetization is distributed over a large number of
surrounding sites, thus implying a substantial radius of
the spin polaron. It is only for larger values of J/t > 0.5
that a redistribution of excess S, is in favor of nearest
neighbors and of lattice sites within one AFM sublattice,
i.e.,, R =1 and V'5, whereas the gain on the other sublat-
tice can even be of the opposite sign. Note that spin
correlations C(R,R,) explicitly depend on both vectors
R,R,. In Fig. 5 we present the three lowest correlations.
These values should be compared to the AFM state
without holes, where for N =16
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FIG. 4. Distribution of excess magnetization s(R) vs J/t,
plotted for all nonequivalent distances R on a 16-site cluster.
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FIG. 5. Modified spin-spin correlation function C(R,,R;) vs
J/t. The numbers 1-3 label the three nonequivalent pairs of R,
and R, given in the insert, where the hole is represented by the
open circle.

C(R;,=1)=—0.3509 ,
C(R,,=V2)=0.2137,

R;;=R;—R,. The effect of a hole on nearest-neighbor
correlations with R, =1 is the reduction of them. The
radial correlation, with R;=(0,1), R,=(0,2) is found to
be more suppressed, while the azimuthal ones, with, e.g.,
R;=(0,1) and R,=(1,1), are less affected. The correla-
tions between next-nearest neighbors, e.g., with
R,,=V'2, are also depressed or even change sign (see
curve 1 in Fig. 5). These results indicate that the spin
configuration is strongly perturbed in the vicinity of the
hole. It is not easy to interpret our results in terms of
several analytical approaches'>”!¢ to spin polaron
configurations. Since azimuthal nearest neighbors
R, =1 are not significantly affected and second-neighbor
R,, =V"2 correlations are essentially zero in the relevant
range of J /t, an appreximate description can be given in
terms of a ring of singlets surrounding the hole. We
should stress, however, that since the translational invari-
ance of the ground state is broken, due to q=%0, the inter-
pretation of the correlation function data becomes less
straightforward.

IV. BINDING OF HOLES

Our calculations of eigenstates for two holes N, =2 are
not as extensive as for one hole since the computational
requirements are substantially higher. On the other
hand, contrary to the N, =1 case, the ground state does
not seem to change the quantum numbers with J/¢. In
the whole regime we investigated, the two-hole ground
state was found to be a spin singlet S =0 and doubly de-
generate, corresponding to q;=(0,7) and q,=(7,0). The
latter conclusion already differs from the results of other
authors.'»* These differences might be attributed to the
much smaller basis sets used in previous calculations.!>*

Our results on the effective binding energy of the hole
pair, defined through
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A:Eo(Nh=2)+E0(Nh=0)—2E0(Nh:l) > (8)

are presented in Fig. 6. They show that for the isotropic
exchange A is negative in the whole regime of J /t > J_ /t.
This is an indication of the existence of the attractive in-
teraction between holes where the binding approximately
scales with J. In order to check the importance of quan-
tum spin fluctuations on A, we also performed the calcu-
lation in the limit J, =0 for four values of J,=J. These
data are also plotted in Fig. 6 and show that one still has
A <O for J/t 0.4, where the reduced value of A can be,
to some extent, attributed to lower effective J in this lim-
it. Thus our results show that quantum spin fluctuations
enhance the binding, in contrast to some analytical argu-
ments. '3
A <0 by itself cannot be used as a reliable test for the
occurrence of binding since we are comparing states with
different quantum numbers, specifically with different S
at N,=0,1,2. An additional test is the hole-density
correlation function
g(R)=3 (Woln,(R))n, (R; +R)|¥,) . )

1

In the case of the hole attraction, g(R) shows a max-
imum at small distances R, while for repulsive holes the
maximum will shift to largest possible R. As shown in
Fig. 7(a) our results are consistent with the former case,
at least for large J/t. For J/t>0.5, g(R) is largest for
nearest neighbors, R =1. In the intermediate region
0.2<J/t <0.5, the preference is on next-nearest (diago-
nal) neighbors R =V'2, while for J /¢t <0.15 the repulsion
between holes becomes evident through the enhanced oc-
cupation_of most distant sites. Our observation that
g(R =Vv2)>g(R =1) seems to be consistent with recent
Monte Carlo results® for the single-band Hubbard mod-
el. We also tested the anisotropic case J, =0. The be-
havior is found to be qualitatively similar [see Fig. 7(b)],
except that the transition to the repulsive regime occurs
at higher J /t ~0.5.
Results for the spin correlations

C(R)=Z (¥,IS(R;)-S(R; +R)|¥,) (10)
i
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FIG. 6. Effective binding energy A of two holes (in units of )
vs J /t. Also shown are some results for the extreme anisotropic
case J, =0 (dashed line).
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FIG. 7. (a) Hole-density pair-correlation function g(R) vs
J /t in the isotropic case. (b) Same as in (a), but for J, =0.

in the presence of two holes N, =2 are plotted in Fig. 8.
In the region J/t>0.15, the computed C(R) are some-
what reduced but otherwise not qualitatively different
from those in the AFM state without holes. A gradual
change to an entirely different state happens below
J/t <0.1. The nearest-neighbor correlation C(R =1)
becomes FM-like, while most distant spins, i.e., those at
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FIG. 8. Spin-pair-correlation function C(R) vs J/t in the
presence of two holes.
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TABLE 1. Some of the pairing correlation functions Z jz- for two values of J /. The type of pairing / is indicated in the first row.
All entries should be multiplied by the factor 1072, No entries are given for p pairing when either R or R’ is equal to 2, since in our

case this pairing is identically zero.

J/t=
) s Dx p)’ d
R’ _
R 1 V2 2 1 V2 1 V2 1 V2 2
1 1.694 —1.256 —0.215 1.417 —1.080 1.417 0.938 7.381 0.181 —1.494
V2 —1.256 1.261 0.226 —1.080 1.812 0.938 1.491 0.181 0.543 0
2 —0.215 0.226 2.108 —1.494 0 2.108
J/t=0.
1 1.978 —1.519 —0.295 1.641 —1.080 1.641 0.917 11.612 0.114 —1.459
V2 —1.519 1.427 0.264 —1.080 1.654 0.917 1.392 0.114 0.439 ‘0
2 —0.295 0.264 1.755 —1.459 0 1.755
R =V3, prefer antiparallel orlentatlon Such situations,  Z,; 4, <<1. Namely, the value for ideal d1 pairs would

also observed in other models,?® can be simply explained
by the formation of two oppositely polarized FM-spin po-
larons that repel each other. This interpretation is con-
sistent with the attractive-repulsive transition observed in
g(R)atJ/t~0.15.

In order to test the character of hole-pair wave func-
tions, we also calculate several pairing correlation func-
tions:

Z, =(W|AlA, W) , (11)

where A, are hole-pair operators

Ar \/N Efr(k)cch —k!l (12)

relating to the wave functions f,(k) and corresponding to
different point symmetries and total spin. We consider
only the set of A, which tests the holes being at smallest
distances R =1, V'2, and 2. The nonequivalent orthogo-
nal functions f,(k) for the square lattice can be then
classified as »r =sR-, dR-, or pR-type, where R=(n,m)
denotes the radial vector between holes, and

fsr(k)=coslk,n +k,m)+cos(k,m —k,n), (13a)
Sfar(k)=cos(k,n +k,m)—cos(k,m —k,n) ,  (13b)
for(k)=V2sin(k,n +k,m) . (13c)

If the ground state would be a q=0 spin singlet state, s-,
p-, and d-wave pairing correlations would not mix. In ad-
dition one would also have Z,, ,,;=0, where we charac-
terize R just be the distance R =(n2+m?2)!/2, Since our
|W,> for two holes is degenerate due to qs£0, some of
these mixed correlations remain nonzero, but they do not
seem to be essential. In Table I we present results for
some of the largest diagonal and offdiagonal pairing func-
tions Z,,. for two values of J/t. It is evident that the
largest correlation is Z, 4, which increases relative to
other components with increasing J/t. This indicates
that the largest coherent contribution comes from hole
pairs being in the d state on nearest neighbors. Still, this
contribution exhausts only a smaller part of |¥,), since

be Z;; 41=1. From these data we also see that all other
pairing functions, with the exception of some offdiagonal

Z, . that are small, are roughly of the same value and do
not change appreciably with J. However, for R = =v2,
which in the intermediate J /¢ regime is the preferential
distance [as deduced from the hole density-density corre-
lations g(R)], the pairing character is quite uniformly
distributed over the s and p waves, whereas d pairing is
suppressed. We also calculated the Z J1 pairing func-
tion and found it to be small, i.e., S 1073 so that there is
almost no mixing of s1 and d1 waves. '

One can as well look for a normalized A,

A= a,4,, 3lal*=1, (14)
which would maximize Z:
Z=(V,|ATA|¥,) . (15)

A can then be interpreted as the best effective two-
particle representation of the many-body wave function
[W,) for a bound hole pair. Our results show that in the
regime of bound holes, the optimal A still corresponds to
the d wave.

V. CONCLUSIONS

In the paper we presented numerical results for the
ground-state properties of a single hole and two holes in a
quantum AFM. We restricted our calculations to the
system of 16 cells. At least for J /¢ > 0.4, perturbations
due to a single-spin polaron as well as for a hole pair
seem to be quite localized, so one may expect that con-
clusions would remain qualitatively similar for larger sys-
tems. The very symmetric 4X4 system with periodic
boundary conditions used in our calculations has, howev-
er, some consequences: It leads to a large, i.e., sixfold,
degeneracy with respect to q of the single-hole ground
state, which is expected to remain only approximate in an
infinite system.!*!* To some extent quite substantial
binding energy of two holes may also be attributed to
specific nesting conditions of our lattice.
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Our results clearly indicate that bound pairs could be
stable in the effective model in a wide range of J /¢ >0.1.
The situation is thus essentially different from the corre-
sponding model (1) on a chain,?® where g (R) was found
to increase with R in the whole regime of J, being an evi-
dent indication against hole-hole attraction. However,
the interpretation of the binding mechanism in our two-
dimensional system is less straightforward. The fact that
we found a weak binding A <O even in the Ising limit,
seems to support a simple interpretation in terms of bro-
ken exchange bonds.'?” ! Namely, assuming that both
holes are entirely localized, they would prefer to be on
adjacent sites in the Néel AFM state, gaining an energy
J/2. This argument is, however, oversimplified since
holes were found to be correlated over a substantially
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larger distance R > 1, while the binding energy is even
enhanced in the Heisenberg exchange case, i.e., |A| ~J.
This is an indication that spin fluctuations!® contribute
substantially to the formation of the bound-hole pairs.
The interpretation of these results is, however, complicat-
ed by the fact that the two-hole ground state is degen-
erate, corresponding to q=0. The coherent character of
the bound-pair wave function is found to be predom-
inantly that of the d-wave type, with holes being on the
adjacent sites. Still this component does not by far ex-
haust the many-body two-hole wave function. Thus con-
tributions from other pairing functions, even those with
q+0, are expected to remain substantial. Which of these
components could possibly lead to SC pairing still
remains to be shown.
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