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We describe the mean-field global phase diagram for a Widom-type lattice mixture of bifunctional
molecules ab and 4 A4 with general finite interactions.” Our results follow from the known features
of the phase diagrams along the symmetric sections of Griffiths’s three-component (spin-1) model
when both uniform and sublattice-ordered states are considered. The properties of the mixture are
analogous to those of a binary alloy with one magnetic component. We find first- and second-order
transitions between uniform fluid states and five different types of ordered phases.

I. INTRODUCTION

The study of the microstructure and the consequent
phase behavior of amphiphile solutions is a topic of con-
siderable current interest.! The reasons are varied.
These systems offer useful models for cell membranes in
biological systems. They are also of technological impor-
tance because of their solubilization properties. They
also present singular phase diagrams that combine isotro-
pic micellar solutions with lyotropic liquid-crystalline
phases of different geometrical packings.! The challenge
of their physical understanding rests on the derivation of
their macroscopic behavior from molecular models that
adequately represent the nature of the amphiphile in a
solvent (or solvents) environment.

In 1968 Wheeler and Widom? introduced a lattice of
bifunctional molecules 4 4 (0—O), BB (&—®), and AB
(O—e@) that abstracted some features of a ternary system
composed of two immiscible solvents and an amphiphile.
The molecules are confined to the bonds of a regular lat-
tice filling every bond with one, and one only molecule,
allowing only same-letter molecular ends to meet at a
given lattice site. This restriction makes the model mix-
ture equivalent to the nearest-neighbor spin-; Ising mod-
el in the same lattice. The basic character of each con-
stituent is specified by means of infinite repulsions or no
attractions between molecular ends. Because in all the
configurations consistent with the filling rule an amphi-
phile molecule AB is never found pointing the “wrong”
end towards either solvent, the phases of the model have
a “permanent” microstructure in the sense that a perfect-
ly oriented film of 4B molecules separates 4 A from BB
molecules. Temperature does not affect the phase dia-
gram, and the only relevant thermodynamic fields are
chemical potential differences.

In the binary mixture 4 A4+ AB limit of this model
only two phases are possible—an A A-rich isotropic mi-
cellar solution where all 4B molecules are grouped into
units resembling “empty” micelles (each with an aggrega-
tion number equal to the lattice coordination number),
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and an AB-rich long-range sublattice-ordered phase
where the micelles form a closed-packed pattern. Their
associated phase boundary corresponds to an order-
disorder transition in a lattice gas at the critical packing
fraction where the absence of BB bonds implies nearest-
neighbor exclusion of B sites, or equivalently, to that
occurring in an antiferromagnet in the limit of an
infinitely large coupling as the applied magnetic field
passes through a critical value.

Recently, the model of Wheeler and Widom has been
reconsidered through a variety of generalizations®~’ in
an attempt to test its potentialities as a more realistic rep-
resentation for amphiphile systems. An important type
of generalization to the original model is that in which
finite molecular end-end interactions are allowed;®> 7 and
therefore, in them, the microstructure referred to above
is affected by temperature. Exact results’ have been ob-
tained for the case when the molecular ends 4 and B of
the amphiphile AB are considered identical to those of
the solvents 44 and BB. However, with only three
kinds of end-end interactions, denoted by € , 4, € 45, and
€gp (g;>0 for repulsions), different conformations for a
film of oriented AB molecules that separates a given
number of A A and BB molecules all have the same ener-
gy.>® Surfactant-film bending energies are assumed"? to
be responsible for many characteristic features of
amphiphile-solution phase diagrams, such as the three-
phase states in water-surfactant-oil mixtures in these mul-
ticomponent fluids. Thus, as would be expected, with the
exception of a temperature dependence of the phase tran-
sitions, the phase diagram of the generalized model is
similar to that of the original one.

A different generalization of the original Wheeler-
Widom model to finite interactions but one which allows
for nonvanishing-film bending energies has been recently
proposed.®” 1In this version the nature of the molecular
ends of the amphiphile, denoted by ab (O—M), differ
from that of the ends of the solvents. This differentiation
makes the mixture no longer equivalent to a spin-4 Ising
system and has a strong effect on phase behavior.®’ The
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formulation of the Ising spin system equivalent to the
mixture model has been provided;’ the properties of the
A A +ab+ BB mixture are represented now by a spin-3
model with staggered fields, and those of the 4 A4 +ab
binary case by a related spin-1 system. This model has
also been recently studied by other authors.®

Here we present the global phase behavior of the
binary A A +ab mixture under mean-field approximation
. when two interpenetrating sublattices are considered.
We take advantage of the opportunity that knowledge of
the global phase diagram of the Furman-Dattagupta-
Griffiths (FDG) three-component model® (when both uni-
form and sublattice-ordered phases are considered)
presents to add to the phase behavior given in Ref. 7. In
two preceding articles,'®!! referred to here as I and II, we
presented, respectively, the FDG global phase diagram
mentioned above and the transcription of its so-called
symmetrical sections to the language of a binary alloy
with one magnetic component. Because the mean-field
properties of the 4 A4 +ab micellar solution model are
also given by the same symmetrical sections, we employ
the physically transparent example of the magnetic alloy
to interpret our results. We also make repeated use of
the notation for multiple phase coexistence and associat-
ed critical states developed in I and employed in II.

II. THE SPIN-1 SYSTEM EQUIVALENT TO
THE MICELLAR SOLUTION MODEL

With the two species 4 4 and ab there are six kinds of
end-to-end encounters between pairs of molecules, the
values of which are denoted by € 44, € 445 € 45> €aas Eab>
and g,,. In Ref. 7, a construction is described for an Is-
ing spin-1 model with nearest-neighbor interactions
which is equivalent to the model micellar solution.
Specific features in this construction are the following: (i)
Only those pairs of molecules placed along contiguous
bonds at right angles have nonzero interaction energies.
(ii) The Ising spins are located at the bonds (or secondary
sites) of the lattice. (iii) The primary and secondary lat-
tices are divided into two sublattices each, P and Q for
primary, and o and x for secondary sites. [See Fig. 1(a).]
(iv) The values S =0, 1, and — 1 are assigned to the spins
according to the molecular occupations shown in Fig.
1(b). S =0 indicates occupation by A A4, and S==1
specifies orientations of ab. The orientation assignments
appear reversed in sublattices 0 and x to ensure that
configurations for pairs of nearest-neighbor spins, ir-
respective of their positions, make uniquely defined con-
tributions to the total energy. (v) The energy values for
each configuration of nearest-neighbor spin pairs are
given in Table I, where the two columns refer to the fact
that molecular ends meet at sites of type P or Q. With
the above-mentioned considerations the A A-ab lattice
mixture is equivalent’ to the Ising system with a spin-1
Hamiltonian
H=q ' [-J 3 8:S;—K 3 S?S}

Cij) Cif)
—C 3 (S?S;+S,8}) | —HZ,S,+A3,S?,
(ij)
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FIG. 1. (a) Sublattice arrangement for primary (P and Q) and
secondary (o and x) sites. (b) Spin value assignation of molecu-
lar orientations in the two sublattices o and x.

with fields given by

J=1e,— g tEy), (2a)

K=¢,,+e =€ 4 1(e0 &y +2g4) , (2b)

FC=3(e 40— € 4p)—3(Eag —Epp) » (2¢)

H=0, ' (2d)
and

A=Le p—e )T e u—Eg4)— 1, (2e)

where u=p,, —u 44 is the chemical potential difference
between the two species. The sign in front of C is positive
if the pair of spin belongs to a primary site of type P, and
is negative otherwise, i.e., C is a staggered field. Also the
total magnetic field H acting on any spin vanishes.

As shown in Ref. 7, within mean-field approximation,
the staggered quality of C drops out when uniform phases
in the spin-1 model are considered. As we shall see short-
ly, this also occurs for some of its sublattice-ordered
nonuniform phases within the same approximation. The
sublattice subdivision for which this happens is that stud-
ied in I and II, i.e., when the secondary lattice is divided
into two interwoven sublattices, a and [, such that
nearest-neighbor pairs of sites fall each on one sublattice.
Therefore, we can make use of the phase diagrams of I
and II to learn about the mean-field phase behavior of the

TABLE I. Spin-spin interaction energies.

Encounters at sites P Encounters at sites Q

S Sj €;j S,' SJ €;j
0 0 €44 0 0 €44

1 0 € 4q 0 € 4p
-1 0 € 4p -1 0 € 4a
1 €20 1 €pp

—1 €ab -1 €ab

- —1 E€pp - —1 €4a
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micellar solution model. It is convenient then to recall’
the form of the equivalences in Egs. (2a)-(2e) in the
language of the ternary mixture of three components x, y,
and z. Its five (FDG) relevant fields, three interaction en-
ergy parameters a, b, and ¢, and two chemical potential
differences v;, and v,, are related to the bifunctional
molecular interaction parameters and chemical potential
differences by’

ap=¢ g —3(€ 44 T E€p)=bg , (3a)
bP=eAa_%(EAA+8aa):aQ > (3b)
Cp=Eg _%(Eaa tep )ZCQ ’ (3c)
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and
vi=vo=u+ L2 e e, (3d)

where the subindexes refer to nearest-neighbor pairs of
particles associated with primary sites of type P and Q,
respectively. In this language, x and y represent the two
possible orientations of the amphiphile ab and z
represents the solvent A4 A4.

If x% y* and z% and x?, yB, and z# represent the mole
fractions of the three species for each sublattice in an or-
dered phase of the spin-1 model of Eq. (1), the grand po-
tential per secondary site @ in the mean-field approxima-
tion is

2a)=kT(x"‘lnx"‘+y"lny"+z"‘lnz“+x31nx3+yﬁlny5+zﬁlnzﬁ)+%[ap(y“zﬁ-f—z“yﬁ)—%bp(x"zB+z"xﬁ)

+cP(xayB+y"xB)]+%[aQ(y°‘zB+z"yB)+bQ(x"‘zB—}—zaxﬁ)—%—cQ(x“y/5+y“x5)]—vl(x"-%—x/”)—vz(y“-i-yﬁ) s 4)

or

20=kT(x%nx*+yny *+z%nz %+ x Pinx 8+ y Plny #+ 2 Plnz P)

+a(yzP+z%P+x2P+2%P)+e(x P +y oxP)—(x *+ xP+ye+yP) , (5)

where
a=b=Lap+bp)=L1(J +K)=1(e o +e 4 —€ )~ ez +ep) , (6a)
C=cp=2J=¢g, —+(g,tey), (6b)

and

g=v;=v,=3(J +K —280)=p+1(2e 4, —e,0—€p)

‘Thus, the phase behavior of the model micellar solution
in this approximation is given by the symmetrical sec-
tions of the FDG three-component model under the addi-
tional restriction v, =v,.

III. SYSTEM PHASE DIAGRAMS

In view of II it is also convenient to think of the two ab
orientations as the up and down spin values of a magnetic

1T
] % (7T
T I
T TI0T 7]

FIG. 2. Ordered sublattice arrangements of bifunctional mol-
ecules. (a) Close-packed ab molecules in the O, phase. (b)
Closed-packed ab molecules in the O, phase. (c) Sublattice
segregation of 4 A and ab molecules in the O, phase. The half-
filled squares indicate no preference in the ab orientations. Su-
perpositions of O, and O, on O, produce, respectively, repre-
sentations of the O, and O phases.

(6c)

species and of the solvent 4 4 as a nonmagnetic alloy di-
luent. In this way we can classify the different types of
system phase diagrams for the mixture according to
whether they are “ferromagnetic” or ‘“‘antiferromagnet-
ic,” as well as to whether they are of the “segregating” or
of the “ordering” kinds. All we require for this tran-
scription is to (i) identify the end-end interaction parame-
ter expressions that correspond to the magnetic coupling
and to the heat of mixing of the alloy image; and (ii)
translate the structure of each alloy phase into the corre-
sponding structure for the 4 4 +ab mixture according to
the identifications shown in Fig. 1(b). (Note, for example,
that a uniform spin-1 phase does not necessarily trans-
form into a uniform phase of the 4 4 +ab mixture.) [See
Fig. 2(a)]. With these instruments the global phase dia-
gram for the micellar soluton can be readily obtained
from that of the magnetic alloy in zero field described in
1I.

To accomplish point (i) we first recall from II that the
magnetic coupling in the alloy model is given by the
FDG energy parameter ¢, which according to Eq. 6(b) is,
in mixture language, a “heat of mixing” of the two
molecular ends of the pure amphiphile substance. “Fer-
romagnetic” behavior corresponds to same-letter ends
meeting at primary sites, where the ab molecules acquire
the long-range aggregated arrangement shown in Fig.
2(a), and denoted by O, in subsequent figures. ‘“Antifer-
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romagnetic”’ behavior corresponds to the alternating-
letter ends arrangement at primary sites shown in Fig.
2(b), and denoted by O, in the following figures. We refer
to mixtures with ¢ >0 as type I mixtures and those with
¢ <0 as mixtures of type II.

In the preceding paper, II, the heat of mixing of the
magnetic alloy is given by the spin-1 energy-parameter
expression A=4a —¢, which of combined with Egs. (6a)

and 6(b), becomes
A=2(€Aa+€Ab)~28AA-%(Eaa+5bb+2eab) . (7)

And if we define molecular interaction energy parameters
Eww> Ess, and €y as

Eww —€44 > (8a)

s =1(€,tE4) (8b)
and

Ess =a(€gq T Epp T2€45) , (8¢)

where the subindexes W and S denote the solvent (“wa-
ter”’) and the amphiphile (“surfactant) species, respec-
tively. Equation (7) becomes

&I
RN

AA-rich

AA-rich

(b)

(a)

El
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A=4eys —Hepp +egs)], 9

so that the purely chemical heat of mixing of the magnet-
ic alloy corresponds to the average, or molecular, heat of
mixing of the micellar solution. We refer to mixtures
with A>0 as segregating, and to mixtures with A <O as
ordering.

Segregation of paramagnetic phases in the model alloy
described in II corresponds to phase separation of uni-
form phases (denoted by the letter U in the phase dia-
grams) that differ only in their content of the species 4 4
and ab. Segregation of ferromagnetic or antiferromag-
netic phases occurring for some alloy systems in II corre-
sponds here to phase separation of ordered phases of type
O, or of type O,, respectively. Paramagnetic ordered
phases in the model alloy [twofold degenerate states (A4 A)
in the notation of I] correspond to ordered phases in the
mixture in which one sublattice is preferentially occupied
by A A and the other by ab molecules. In the latter sub-
lattice the two amphiphile orientations are equally prob-
able. A representation of this phase is shown in Fig. 2(c),
which we denote by O;. Finally, the ordered ferromag-

(c)

(d)

7 / — /
H // H 8/
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/ ab-rich
Oy //cb-rich O // pra)
oy, —~ /
- //‘ //
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FIG. 3. Phase diagrams in (@, T') space for 4 A +ab mixtures
of type I that correspond to different locations on the symmetri-
cal section of the P triangle. Unbroken and dashed lines
represent, respectively, first- and second-order transitions.

FIG. 4. Phase diagrams in (&, T) space for 4 A +ab mixtures.
In (a) and in (b) they are of type I and show the two different
kinds of ordering systems for the symmetrical section of the R
triangle. In (c) and (d) they are of type Il and show the two
kinds of ordering systems, analogous to (a) and (b), found along
the symmetrical section of the S triangle,
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FIG. 5. Phase diagrams in (&, T) space for 4 A +ab mixtures
of type II analogous to those shown in Fig. 3 that correspond to
different locations on the symmetrical sections of the S and Q
triangles.

netic and ordered antiferromagnetic phases in II [(A4.4)?
states in the notation of I] correspond here to ordered
phases in the mixture in which one sublattice is preferen-
tially occupied by 4 A4 and the other by ab molecules.
The two amphiphile orientations are not equally probable
in either sublattice and they follow in one case the pat-
tern of the O, phase and in the other that of the O,
phase. Representations for these phases, denoted by O,
and O;, respectively, can be obtained by superposing
Figs. 2(a) and 2(b) on Fig. 2(c).

A detailed description of all the types of system phase
diagrams for the model mixture would become a repeti-
tion of that given in II. We only present here the corre-
sponding phase diagrams in the space of temperature T
and chemical potential difference @ between the two
species. These are shown in Figs. 3—5 where we have em-
ployed the notation of I and II to mark the special points
where multiple-phase coexistence and high-order critical
points of the FDG model occur. The reader may savor
examining them together with Fig. 3 of II, which shows
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the relevant section of the FDG global phase diagram for
the micellar solution model projected on the (T, c) plane.

IV. SUMMARY AND DISCUSSION

We have obtained, under both mean-field approxima-
tion and the consideration only of a particular type of
nonuniformity, implied by a simple lattice subdivision, a
rich family of phase diagrams for the A4 A +ab model.
Simplified in this manner, the overall behavior of the
model can be understood in terms of a binary alloy with
one magnetic component. There are two types of amphi-
philes ab which correspond to “ferromagnet” and “anti-
ferromagnet” and are distinguished by the sign of

— — 1
C =€y T(Eaa +8bb) .

The solvent amphiphile mixture 4 4 +ab can in turn be
“segregating” or “‘ordering.” Amongst the phase behav-
ior found, there is phase separation of uniform phases as-
sociated with only one (upper) critical point. When this
occurs a single type of ordered phase appears when the
mixture is rich in ab (Figs. 3 and 5). On the other hand,
ordering solutions exhibit three different sublattice-
ordered phases.

The phase diagrams described are not necessarily
correct for the unapproximated A4 A4 +ab model. Even
within the mean field, the phase behavior found is not
complete. We have not probed into the interesting
feature of the model mixture that is the staggered quality
of the spin-1 field C. It is likely that some important
physical properties of a micellar solution may be
represented by the changing sign of C, since this arises
from the orientational degrees of freedom of the amphi-
phile ab. The sublattice subdivision that we considered
here has the effect of removing (within the mean field)
this property in the equivalent spin-1 model. Other sub-
lattice arrangements preserve the alternating nature C
and may lead to the identification of additional phases
(and phase transition lines), some of which may resemble
(more closely than the phases described here) real uni-
form micellar-aggregated and nonuniform liquid-
crystalline phases.

The exercise that we have illustrated here for the
binary 4 A +ab mixture can be extended to the ternary
mixture 4 A +ab+ BB. This case can be described in the
language of a ternary alloy of one magnetic component
and two different nonmagnetic diluents. The increased
(but simple to account for) complexity in phase behavior
may correlate with that of real microemulsions. The less
ambitious objective of generalizing the original Wheeler-
Widom model in order to enrich its phase behavior has
been accomplished.
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