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We describe the essential features of the mean-field phase diagram for the spin-1 Ising model with
general nearest-neighbor interaction when sublattice ordering is made explicit. The phase diagram
(in five-dimensional field space) can be classified into 84 zones where uniform with ordered phase
coexistence is identified and multicritical behavior is determined. This generalized Ising model was
studied extensively, in its ferromagnetic version, by Furman, Dattagupta, and Griffiths towards the
end of the last decade. Here we complement that study with the antiferromagnetic phase behavior
associated with the same model. Two different mappings between uniform and ordered phase ex-
istence conditions facilitated our task and indicated the interconnections that exist between fer-
romagnetic and antiferromagnetic properties in the model. Known features, like the "shield" re-
gion, appear reproduced in other energy-parameter locations, but also new features occur, such as
additional tricritical and fourth-order critical lines connected by sixth-order critical points.

I. INTRODUCTION

In 1977 Furman, Dattagupta, and Griffiths (FDG)
(Ref. 1) presented a comprehensive description of the glo-
bal phase diagram associated with a model three-
component system. This model can be thought of as the
mean-field approximation to a spin-1 Ising magnet with
the most general type of nearest-neighbor interactions,
or, equivalently, to a fully packed alloy of three com-
ponents with the same pair-interaction range. This, to-
gether with the work of Scott and van Konynenburg on
the closely related van der Waals model for a binary Quid
mixture, allows for a thorough characterization of the
unexpectedly rich phase behavior that these otherwise
simple systems have. The FDG analysis was restricted,
however, to the study of uniform phases, deliberately ex-
cluding the possibility of antiferromagnetism. In fact,
only some discussions about the capabilities of the model
for the description of crystallization phenomena by
means of the study of its sublattice-ordered states have
appeared since then in the literature, and only a few
specific system phase diagrams are known. Neverthe-
less, it has been evident that the model must exhibit an
abundant and possibly intricate phase equilibria involving
sublattice-ordered phases.

For this reason, our main concern in this paper is ihe
characterization of the prominent features of the phase
diagrams of the FDG three-component model when sub-
lattice ordering is considered. In particular, we work
with two interpenetrating sublattices such that nearest-
neighbor sites belong to di6'erent sublattices. For three-
dimensional systems our analysis is directly applicable to
simple-cubic and body-centered-cubic lattices. We refer
briefly to the case when k )2 interwoven sublattices are
considered, and which are required, for example, in the

study of the model when defined on a face-centered-cubic
lattice and also for some specific applications on the
simple-cubic lattice. The task of characterization of each
kind of phase equilibria taking place under these cir-
cumstances (amongst ordered and also ordered and disor-
dered states) is considerably simplified through the use of
interconnections that occur between the ferromagnetic
and the antiferromagnetic properties of the model.

The main tools in our analysis are two diA'erent
equivalences that exist between sublattice ordered and
disordered states. One of them relates properties of sys-
tems located in opposite energy triangles while the
second one holds for systems located along the symmetric
sections of the energy triangles. (In the work of FDG the
eight octants spanned by the three interaction-energy pa-
rameters in the model are projected into eight "energy"
triangles. The medians of these equilateral triangles con-
stitute the symmetric sections. Definitions and notation,
similar to those of Ref. 1, are explained in Sec. II.)
These mappings allow us to use the known mean-field
properties of the uniform, sublattice-disordered phases
that characterize this model to delimitate the stability
zones for the sublattice-ordered states. Also, they make
possible the description of some important features of the
antiferromagnetic phase equilibrium occurring in some
locations of the global phase diagram in terms of known
uniform (and, as we shall see, also ordered) phase equilib-
rium properties taking place somewhere else on the same
diagram. The overall description of the phase diagram
that we generate consists of a classification of the
interaction-energy parameter space into 84 two-
dimensional zones, with the property that within each re-
gion the corresponding system phase diagrams are topo-
logically similar. Symmetry properties reduce the num-
ber of qualitatively di6'erent zones to 17 in which we
identify the possible n-uniform and m-ordered-phase
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coexistence together with their associated multicritical
behavior.

In the ferromagnetic phase diagram, ' multiplicity of
phases and therefore the more complex system phase dia-
grams occur when all spin couplings are positive; this is
the principal or P energy triangle. At the center of this
triangle is located the so-called "shield" region where
four-phase states occur and three lines of tricritical points
originate. Towards the corners of this triangle there are
other four-phase regions associated with three fourth-
order critical points from which six additional lines of tri-
critical points extend beyond the P triangle. ' Multiphase
equilibria gradually simplify as the system is "taken
away" from the P triangle and the interaction-energy pa-
rameters change signs. When. all spin couplings are
sufficiently negative, at the central region of the opposite
S triangle, only single-phase states are found. ' As expect-
ed, the opposite trend is true for sublattice-ordered
phases. They are more numerous and phase equilibria
are more complex when all couplings are antiferromag-
netic, and these simplify and finally disappear as one
moves to the fully ferromagnetic region of interaction en-
ergy space. In the central region of the S triangle we find
three tricritical lines, associated with sublattice-ordered
three-phase states, converging at a single sixth-order crit-
ical point. This antiferromagnetic region, that we refer
to as the "rear-shield" region, has the features imagined
by FDG as a possible alternative structure for the fer-
romagnetic shield region on the P triangle. ' Because of
the equivalence we have mentioned between sublattice-
ordered and disordered states, the ferromagnetic features
of system phase diagrams of some specific regions in
interaction-energy space appear reproduced in other lo-
cations as antiferromagnetic properties, and vice versa
for the antiferromagnetic features. Thus, the shield re-
gion of the P triangle is imaged three times into the adja-
cent Q triangles, and similarly, the rear-shield region of
the S triangle appears again in the adjacent 8 triangles.
The three ferromagnetic fourth-order critical points in
the P triangle are found again as antiferromagnetic prop-
erties of the S triangle. In Sec. III we expand this outline
of the global phase diagram.

The structure of the paper is as follows. In Sec. II we
recall briefly the definition of the FDG model and de-
scribe the method developed to study its antiferromagnet-
ic phases. To facilitate the description of our results we
choose a notation close to that employed by FDG in their
original paper, and therefore we delegate our compromise
with the reader for clarity of presentation and physical
information to a large extent to that excellent article. In
Sec. III we present a description of the global phase dia-
gram in terms of the locations, intersections, and nature
of the tricritical and fourth-order critical lines which (to-
gether with the edges of the energy triangles) form the
boundaries that separate different interaction-energy pa-
rameter zones. We also describe selected system phase
diagrams representative of each zone. Again, as in Ref.
1, the phase diagrams we present employ only thermo-
dynamic "field" or only thermodynamic "density" vari-
ables, and describe coexistence and critical manifolds or
(hyper)surfaces with a notation that takes advantage of

the permutation properties of the model variables. Sec-
tion IV is a brief summary and discussion of results. In
the following two papers we present applications to two
different realizations of the three-component model, the
first is to the case of binary alloys with one magnetic
component and the second to a model of a solvent-
amphiphile solution of the Wheeler-Widom type. In
both cases it is possible to appreciate the capability of the
global phase diagram in providing complete descriptions.

II. THE THREE-COMPONENT MODEL
AND ITS SUBLATTICE-ORDERED STATES

v', =kT'ln(x/z)+q(b'z+c'y —a'y b'x)—(4a)

and

v2=kT'In(y/z)+q(a'z+c'x —a'y b'x ) . —(4b)

Whenever Fq. (3) admits n minima of equal depth II' at
(x„y, ), (x2,y2), . . . , (x„,y„), we say that n phases coex-
ist for the current values of the six thermodynamic
"field" variables a', b', c', T', v'„and v2. Since multipli-
cation of Eq. (1) by a positive factor, that can be taken to
be the inverse temperature 1/kT', does not affect phase
coexistence, only five thermodynamic fields are relevant
in the description of the FDG phase diagram. Also the
adoption, as in Ref. 1, of the normalization condition

I
a '

I
+ Ib

'
I
+

I

c'
I

= 1

suggests the convenience of specification of two of the en-
ergy parameters in terms of the third. Choice of the tem-

Consider a ternary mixture of X, X~, and X, particles
of components X, 7, and Z, respectively, situated on the
X +N +N, =X sites of a regular lattice. For uniform
states the mean-field Helmholtz potential per site /', can
be written as,

/' =k T'(x lnx +y lny +z lnz )

+q(a'yz+b'xz+c'xy ),
where k is Boltzmann's constant and T' the absolute tem-
perature, q is the coordination number; a', b', and c', are
phenomenological energy parameters, and x, y, and z
represent the mole fractions of the three components.
The close-packing condition

x+y+z =1

implies infinite chemical potentials, but their difFerences
are in general finite, of which two are independent.
Therefore, the uniform equilibrium states occurring at
temperature T' and chemical potential differences v& and
v2 are provided by points (x,y) in the triangle 1 ~ x ~ 0,
1~y ~0, 1~x+y ~0 that satisfy the equation

II'(v'„v2) =min [(/' —v', x —
v2y ) I .

x,y

Equation (3) defines the (negative) of the pressure —II',
i.e., the minimization determines x and y, and the result-
ing value is called O'. The above condition leads to the
relations



7018 V. TALANQUER, C. VAREA, AND A. ROBLEDO 39

perature scale is equivalent to giving a value to this third
energy parameter. In the same spirit it is convenient to
introduce' the "activity" variables

g„' =exp( v,' Ik T' ) /g', (6a)

g' =exp(v' IkT') lg',

g,
' =exp(v,' lkT')/g',

(6b)

(6c)

with

and

g'= exp( v'IkT')+e xp( v'IkT')+exp(v, 'IkT'), (7)

In similarity with Eqs. (2) and (5) one has,

In their description of the global uniform-phase diagram,
FDG employed the barycentric representation on equila-
teral triangles for the three sets of quantities, the energy
parameters a, b, c, the activities g, g, g„and the mole
fractions x,y, z. This consists in representing the point,
say (a, b), with Ial+Ibl+Icl=l as the center of mass of
three "masses" of magnitude a, b, and c, located at the
vertices of an equilateral triangle. See Fig. 1. We indi-
cate' with a capital letter the number of positive energy
parameters, P =3, g =2, R =1, and S =0. As shown in
Fig. 2, there are one P and one S triangle and there are
three Q and three R triangles. The subscripts in the nota-
tion in Fig. 2 are explained at the beginning of Sec. III.
The symmetrical sections on these triangles are those for
which the values of two of the energy parameters are
equal. To every system, i.e., a and b fixed, there is a
phase diagram to be described at each temperature in ei-
ther an activity or a mole-fraction triangle. The barycen-
tric representation exhibits an important symmetry prop-
erty of the model: any permutation of a, b, c accompanied
by the corresponding permutations of x,y, z and g, g, g,
leaves Eq. (1) unchanged and therefore indicates where
any particular feature in the global phase diagram is
reproduced. We employ below this particular set of coor-
dinates in our description of diagrams with sublattice-
ordered phases.

To study nonuniform ordered phases we now subdivide
the lattice into two sublattices (a,P) such that X/2
points belong to each one, and the nearest neighbors of
every site belong to the other sublattice. The mean-field
Helmholtz potential per site is now written as

/=(kT/2)(x lnx +y lny +z lnz

+x ~lnx ~+y ~lny ~+ z~inz~)

+(q/2)[a(y z~+y~z )+b(x z~+x~z )

+c(x y~+x~y )], (10)

where the unprimed g a, b, c, etc. , variables help distin-
guish quantities referring to the sublattice divided system
from those of the reference uniform system in Eq. (1).
The superindexed x, y, and z indicate sublattice mole
fractions. In parallel with Eqs. (1) and (4), the minimum
condition,

II(v„v2)= min [/——,'[v, (x +x~)+v2(y +y~)]J,x,xf'y y~

leads to the relations

v, =kTln(x Iz )+q(bz~+cy~ ay~ bx~)— —

=kT I ( n/xz~)+q(bz +cy —ay —bx ),
and

v2=kT ln(y /z )+q(az~+cx~ ay~ bx~)— —

=kT In(y~/z~)+q(az +cx —ay —bx ) .

These expressions can be conveniently rewritten as

(12a)

(12b)

FIG. 1. Barycentri(-. representation on equilateral triangles of
the energy parameter space 0 & lal & 1, 0 & Ibl & 1, and 0 &

I cl & 1

with lal+ Ibl+ Icl = 1.

and

v, q[b(z +z )+c(y—+yp) a(y +y~) b(x —+x~)]=kT—In(x~/z~) q(bza+cy —ay& —bx~)—

=kT In(x~/z~) q(bz~+cy~ ay~ —bx~)— —(13a)

v2 q [a (z +z ) + c(x +x ) a(y +y ) b(x +—x )]=kT ln—(y /z ) —q(az +cx —ay —bx ~)

=kT 1n(y~/z~) q(az~+cx~ ay~ —bx~) . — —(13b)
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Equations (13) show clearly that the transformation

T'= T, a'= —a, b'= —b, c'= —c,
v', =v, —q[b(z +z~)+c(y +y~)

—a(y +y~) b(x—+x~)],

(14a)

(14b)

since in that representation it has the form

(16)

and

v2= v~ q[—a (z +z~)+c(x +x ~)

a—(y +y~) b—(x +x~)], (14c)

y=y +y~, 5.=x —x~, 5, =y —y~,

implies that stable ordered states (x,x~;y, y~) in the
system a, b, c at temperature T and chemical potential
dift'erences given by v& and v2 occur only if there are two
solutions (x,y ) and (x~,y~) of the uniform-phase equa-
tions (4) [with parameters defined through Eqs. (14)].
Similar equivalences hold between the occurrence of mul-
tiple (ordered or disordered) phases in the a, b, c systems
and the number of distinct solutions of Eqs. (4). The sta-
bility of the ordered state (x,x~;y, y~) is determined
through the evaluation of the Hessian & of g Close to
uniform states, % is conveniently written in terms of the
variables,

where &/~ ) =~ +2~~++J~, b/~ =/J —+J~, and
&/,', ) =~ —2/, ~+/~, with /; ~=(6+/(5x; 5x~)
(x, =x, x2 =y ). The matrix associated with Eq. (16)
is diagonalized by blocks at 5 =5 =0. The zeros of the
uppermost block represent the instabilities of uniform
states against other uniform states, and are the usual spi-
nodal lines of the ferromagnetic FDG model. The zeros
of the bottom block represent the instabilities of uniform
states against ordered states. The term with the minus
sign in &/'~ ) indicates that the spinodal lines resulting
from the bottom block of & precisely correspond to the
uniform-against-uniform state instabilities of the image
system on triangle a = —a ', b = —b ', c = —c'.

To make use of the known uniform-phase FDG dia-
gram in determining phase diagrams that allow for
sublattice-ordered phases, we employ the above-described
mapping between systems in opposite triangles a, b, c and—a, —b, —c in the following way. For given values of
a, b, and c (or T) we first determine the boundaries in

FIG. 2. Projection of the complete global phase diagram on the eight energy triangles. The capital letters that denote di6'erent
phase diagram zones indicate the number of positive energy parameters a, b, and c; P =3, Q =2, R =1, and S =0. The subindexes
help identify sets of equivalent regions. These are obtained by permutations of a,P, y in the same manner as a, b, c See the text fo.r a
more complete explanation of notation in this figure.



7020 V. TALANQUER, C. VAREA, AND A. ROBLEDO 39

(v„v2) space that delimit the zone or zones where stable
(but possibly not all equilibrium) ordered states appear
according to the transformation in Eqs. (14). Outside
these regions there can only occur uniform states. In
determining the boundaries in this space for stable or-
dered states, we find it useful to represent the uniform-
phase diagrams (for systems with fixed interaction param-
eters a', b', c' and temperature T') in the field space
(v'i, vz), where we indicate not only the loci of possible
coexistence and associated critical points, but also the
different uniform-phase stability zones. As shown in Fig.
3(a), two-phase coexistence is represented by a simple
line, three-phase coexistence by the intersection of three
two-phase coexistence lines, etc. The stability condition
appears in this figure as a set of spinodal lines that delimit
different stability regions, and, for our purposes, very
conveniently, the superposition of spinodal regions that
contain the coexistence lines, clearly correspond to those
regions at which multiple solutions to Eqs. (4) are possi-
ble. Thus, the calculation of spinodal curves at a given
temperature for a system described by the interaction pa-
rameters a', b', and c' defines, through Eqs. (14), those
zones where a system characterized by the set a = —a',
b = —b', and c = —c' exhibits stable ordered states at the
same temperature.

Inside the regions where ordered states occur in (v„v2)
space it is necessary to determine through direct calcula-
tions the coexistence and critical lines amongst the possi-
ble ordered phases as well as those between these ordered
phases and the (known) uniform-phase equilibria within
the region. Phase coexistence, between ordered, ordered
and disordered, or disordered states requires, of course,
the equality of the pressure p = —H in addition to that of
T, v&, and v2. The expression for H associated with the
ordered state (x,y;x~, y~) is

a'= —a, b'= b, —c'= —c, T'=(k —1) 'T, (18a)

vi=v, —q(k —1) ' b gz"+c gy"
—p y y"' by—"x', (18b)

'v~=vz —q(k —1) ' a g z"+c g x~'

gyy(''Ibex(') (18c)

II= —,
' IkTln(z z~)+q[(a +b —c)(x y~+x~y )

+2ay y~+2bx x~]I . (17)

In Fig. 3(b) we show a typical phase diagram that results
after such calculations are performed. The ordered states
appearing in it correspond to those indicated by the spi-
nodal regions in Fig. 3(a), the solid lines represent two-
phase coexistence, dashed lines indicate second-order
transitions, and their intersections (critical end points)
bound different kinds of phase coexistence.

The approach we have just outlined can be generalized
to investigate the model's phase equilibrium properties
when the principal lattice has a different geometry or
when it is subdivided in a different manner. Consider, for
example, the case of k sublattices such that the nearest
neighbors of every site in each sublattice belong neces-
sarily to the remaining k —1 sublattices. It can be easily
shown that the stability regions for ordered states at tem-
perature T in the system with a, b, and c interaction pa-
rameters are determined through the superposition (in
chemical-potential —difference space) of the stability re-
gions for uniform phases in a system described with fields
given by

Vp
Vp

Sp inoda I cu ~ve

Two —plase
coexistence 5pinodal

curve

U

/

/
/

/
I

I

I

I ~ Three —phase
coexistence

I

I

I

I

I

I

Vi

uniform —ordered
phase coexistence

U

(b)

U

Two unifoI'm —phase
coexistence

V,

FICx. 3. (b) phase diagram that results after the transformation in Eqs. (14) is performed for the system in (a) and the stability of
dÃerent resulting phases is analyzed.
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There is another very useful mapping that relates the
phase equilibrium properties between pairs of systems lo-
cated along the symmetrical sections of the energy trian-
gles. To describe this mapping, we first note from Eqs.
(12) that for the systems located along a =b the ordered
states with symmetrically occupied sublattices x =y~
and x~=y (with z =z~) require that v, =v2. We recall'
too that phase coexistence between the uniform phases
(x,y~) and (x~=y,y~=x ) when a =b also requires
v', =vz. To determine the relationship between these
states we substitute the sublattice-occupancies symmetry
condition (along with x +y +z = 1) into Eqs. (12) to ob-
tain

P triangle
a'&0, c'&0

i

I

I

R triangle
a'&0, c'&0

v, =kTln(x /z )+q[b 2by —(2b ——c)x ]

=kT In(x~/z~)+q[b 2by~ —(2b ——c)x~],
v2=kTln(y /z )+q[b 2bx —(2b ——c)y ]

=kT ln(y P/z~)+q [b —2bx ~ (2b —c—)y~] .

(19)

These equations can be written in the form that Eqs. (4)
take for the uniform states referred to above provided we
adopt the particular transformation

T'= T, a'=b'=(2b —c)/2, c'= —c,
v', = v2 =v, +qc /2 .

The transformation in Eqs. (20) above does not satisfy the
normalization condition for the energy parameters in Eq.
(5). An alternative formulation of this mapping that is
compatible with this normalization condition is given by

(21a)

FIG. 4. Variation of energy parameter c with image parame-
ter c' according to the transformation for symmetric sections in
Eqs. (20).

obtain all system phase diagrams on the symmetrical sec-
tions of the eight energy triangles from the knowledge on
the uniform-phase diagrams along the a =b section of the
P triangle and the sublattice-ordered phase .diagrams
along the —a = —b, —c & —,

' section of the S triangle.
The first section is known from the work of FDG, while
the second had to be explored by us via numerical calcu-
lations. These systems represent at least two interesting
models: (i) binary alloys with one magnetic component
and (ii) lattice models for micellar solutions. Since in the
following two articles we discuss these two models in de-
tail, our description here of the symmetric sections covers
only some general features. .

III. THE GLOBAL PHASE DIAGRAM

c'= cT'/T, — (21b) A. General overview

a'=(2a c)T'/(2T) . — (21c)

Employment of the symmetrical occupancies condition
together with the transformation above into the expres-
sion for II in Eq. (17) leads to the "pressure" equality
(II') =(lI')~ for phase coexistence between the two uni-
form phases a and P. Thus, this mapping reproduces all
the phase-diagram features of the system a'=b' in the di-
agram of the image system a =b. It can be concluded
from the relations 2a'=2a —c and c'= —c, together with
the normalization condition in Eq. (5), that intervals of
the symmetrical sections of given length are imaged into
intervals of diFerent length. Thus, the images of the full
a =b, b =c, and c =a sections of the P triangle cover not
only the same sections each in one of the adjacent Q tri-
angles but also one-half in each of the —a = —b,—b = —c, and —c = —a sections of the S triangle. In the
same manner the other half of the symmetrical sections
on triangle S are covered by the corresponding symmetri-
cal section on triangles R. In Fig. 4 we show the value of
the energy parameter c as the image system parameter c'
is taken across the symmetric a'=b' sections of the P and
R triangles. The use of this mapping (along with the per-
mutation properties of the triangles) makes it possible to

The global phase diagram consists' of a set of mani-
folds or (hyper)surfaces (in the five-dimensional field
space spanned by a, b, T, g, and g ) that represent
dift'erent kinds of phase coexistence and critical points.
In the FDG work A represents two coexisting phases
and B denotes a conventional critical point where two
phases coalesce. Likewise, three-phase states A ter-
minate at a critical end point AB or at a tricritica1 point
C. Four phase states A may appear bounded by critical
points that coexist with two phases A B, by a double
critical point B, by a tricritical end point AC, or by a
fourth-order critical point D. Since according to the
mapping in Eq. (14) every ordered state can be associated
with two uniform-state free-energy minima, we extend
the above notation to include sublattice-ordered phases in
the following way. We represent a single ordered state by
(AA), n-ordered phase coexistence by (AA)". Critical
points arising from coalescence of only ordered phases
are denoted by (88), (CC), etc. The first, represents a
critical point between two ordered states that results in
an ordered state, while the second is a tricritical point be-
tween three ordered phases that become a single ordered
state. Phase coexistence between n uniform and m or-
dered states is represented by A "( A A) . A critical point
where one ordered phase transforms into a uniform phase
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is represented by (B). Coexistence between two ordered
phases ( A A ) may terminate following four diff'erent
paths. (i) One state transforms into a uniform one in the
presence of the other, this is denoted by (B)(AA). (ii)
The two ordered phases transform into a uniform phase
simultaneously at a fourth-order critical point that we
denote by ((D) ). (iii) The two phases simultaneously
transform into two disordered phases at a critical point of
the type (B), which in turn may lead to phase coex-
istence A . And (iv) both phases become critical at the
point labeled (BB), which can further transform into an
ordered state ( A A). Similarly, coexistence between one
ordered state and a disordered one may evolve along the
paths: ( A A ) A ~(B)A ~ A or ( A A ) A ~(C)~ A.
The fourth-order multicritical point where two uniform
and one ordered phases become identical is denoted by
(D). The highest-order criticality observed in the sublat-
tice divided model is a sixth-order multicritical point (F).
This results from three- (ordered) phase coexistence ter-
minating at a uniform state. This situation arises at four
different isolated points in five-dimensional field space,
whose projections fall, in energy space, at the center of
the S triangle and at one point each on the symmetric
sections of the R triangles. These and other kinds of
manifolds appearing in the global phase diagram are list-
ed in Table I.

In Fig. 2 we show the eight energy triangles with the

84 areas of distinct phase behavior. Of these, seventeen
are qualitatively difFerent and the rest may be constructed
by symmetry. As in Ref. 1, each region in Fig. 2 is denot-
ed by a capital letter that indicates the number of positive
energy parameters (P =3, Q =2, R =1, S =0) followed
by subindexes and occasionally by a prime. [To obtain
the notation of sets of equivalent regions the subindexes
a, P, y must be permuted in the same manner as a, b, c
(and x,y, z and g„,g, g, ).) The systems that form the
boundaries of the di6'erent two-dimensional regions have
special properties, and the graphical representation we
have chosen for these dividing lines in Fig. 2 is as follows.
(i) Solid lines (other than sides of triangles) represent pro-
jections of C tricritical points in the case of the P triangle
and (their continuations) on the adjacent triangles Q, and
(C) tricritical points on triangle S and (their continua-
tions) on triangles Q. Double solid lines on triangle S and
on the adjacent triangles R represent systems for which
both (CC) tricritical and ((D ) ) fourth-order points occur.
The dashed lines on triangles Q and R indicate the pres-
ence of fourth-order (D) points, and on triangle S the
presence of fourth-order ((D)) points. (ii) The dotted
lines on the principal triangle P represent systems where
four-uniform phase coexistence is possible in a finite
range of temperatures (type-II A - states in the notation
of Ref. 1). The same type of lines on triangles Q delimit
zones where every system displays two distinct A ( A A )

TABLE I. Notation for the different manifolds of the three-component model. Repeated letters
within parentheses refer to ordered states. A letter within parentheses is used for those manifolds at
which ordered states become uniform. Occasionally two parentheses are needed to distinguish between
two different manifolds. Letters 8 ( =2) through I' ( =6) denote the order of the critical point.

Manifold

A"
8
C
BA
BA
82
AC
D
(AA)"
(BB)
(BB)(A A)
( CC)
A "(AA)
8(AA)
(8)
A (8)
A (8)
(AA)(B)
(8)'
A (B)(AA)
(8) (AA)
(C)
A (C)
(D)
((D))
(F)

Description

se (AA)

phase

Coexistence of n uniform phases
Ordinary critical point between uniform phases
Tricritical point between uniform phases
Critical end point among uniform phases
Coexistence between two uniform phases and a critical state 8
Double critical point between uniform phases
Tricritical end point among uniform phases
Fourth-order multicritical point between four uniform phases
Coexistence of n-ordered phases
Critical point between two ordered states
Critical end point among ordered phases
Tricritical point between three ordered phases
Coexistence of n-uniform and m-ordered phases
Coexistence between an ordered phase and a critical state 8
Critical state for an ordered phase transforming into a uniform phase
Coexistence among a uniform phase and a critical state (B)
Coexistence between a critical state (8) and two uniform phases
Phase coexistence between an ordered phase and a critical state (8)
Coexistence of two critical states (8)
Coexistence among a uniform phase, a critical state (8), and an ordered pha
Coexistence between one ordered phase and a double critical state (8)
Tricritical point between a uniform state and an ordered phase.
Coexistence between a uniform state and a tricritical (C) point
Fourth-order multicritical point among two uniform phases and one ordered
Fourth-order multicritical point between two critical ordered phases (BB)
Sixth-order multicritical point between three critical ordered states
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states along a finite range of temperatures. On the S tri-
angle these types of lines represent systems with a
(BB)(A A) point occurring at T =0, and delimit regions
where ( AA) states occur. This is analogous to the case
of systems located at the edges of the P triangle where
BA points occur at T=0. (iii) The dashed-dotted lines
on triangle S and adjacent triangles R delimit regions
where there appear additional A ( 2 A )-type states at in-
termediate temperatures. On triangles Q these lines
separate systems differing in the high-temperature prop-
erties of their ordered states. (iv) The systems on the
lines drawn with crosses on triangle S correspond to the
symmetrical images of systems on triangle P that exhibit
four phase coexistence of type II.

When the mappings described in Sec. III did not pro-
vide sufficient information we found it necessary to deter-
mine numerically the values of the parameters where the
important features of the phase diagram occur. We give
here the values for the location of some special points on
the energy triangles. However, not all of the boundaries
in Fig. 2 were determined with numerical precision, be-
cause the continuity in behavior associated with adjacent
regions in energy space allowed us to complete the con-
struction of the global phase diagram, with a fair degree
of confidence, through consistency reasoning. There
remains, of course, the possibility that we have over-
looked some additional coexistence regions in the five-
dimensional field space that our numerical work did not
probe. Further numerical investigations would be re-
quired to rule out other kinds of behavior, or to confirm
the assigned nature of the boundaries between different
manifolds.

B. Triangle a &0, b &0, c &0

Within the S triangle (shown in detail in Fig. 5) it is
possible to distinguish three qualitatively different kinds
of system phase diagrams. These are shown in Figs. 6—8
and correspond, respectively, to the energy points labeled
1 to 3 in Fig. 5. In the central region of the triangle, the
systems belonging to zones So, So&, and So& are charac-

FIG. 6. System phase diagram for the energy point labeled 1

in Fig. 5 (a =b = —0.3 and c = —0.4). (a)—(c) show isothermal
cuts at progressively higher temperatures, (d) shows ordered-
phase coexistence surfaces. Similar sequences are shown for
other energy points in the following figures.

terized by three-phase equilibrium amongst ordered
states. For every system in these regions the ( 2 A) lines
extend fro~ zero temperature to a critical end point
(BB)(AA). The three associated two-phase coexistence
surfaces ( A A) are bounded at all temperatures by lines
of critical points (BB) The st. ability regions for the or-
dered phases (0 regions) are bounded at all temperatures
by second-order transitions between ordered and uniform
phases, i.e., lines of (B) critical points. The set of critical

FIG. 5. Projection of the global phase diagram on the S ener-
gy triangle.

FIG. 7. System phase diagram for the energy point labeled 2
in Fig. 5 (a = —0.2, b = —0. 1, and c = —0.7).
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FIG. 8. System phase diagram for the energy point labeled 3
in Fig. 5 (a =b= —0. 1 and c= —0.8).

(B) lines define a surface that extends from zero tempera-
ture and encloses the totality of the ordered states. A
phase diagram characteristic of this region is shown in
Fig. 6. Figures 6(a)—6(c) correspond to isothermal cuts at
progressively higher temperatures. Figure 6(d) illustrates
the ordered-states coexistence surfaces in field space.

The systems with energy points on the double solid
lines in Fig. 5 that separate regions So Sop and So& ex-
hibit symmetrical phase diagrams with triple-point
( A A) lines that terminate at a tricritical point (CC), the
common end of three critical (BB) lines. These double
solid lines, the projection of the (CC) points, originate at
'the center of the S triangle and terminate in the adjacent
R triangles. The center of the S triangle, the rear-shield
region, represents a system with a multicritical point (F)
where not only do the three ordered phases become iden-
tical but they also transform into a uniform phase.
There, the common end of the three critical (BB) lines
touches one branch of the critical (B) surface. The three
tricritical (CC) lines (in the five-dimensional field space)
simply converge into a single higher-order critical point
(F). This connectivity of tricritical lines coincides with
that suggested in Ref. 1 as a possible alternative to the to-
pology of the shield region at the center of the triangle P.

If we now move the energy point from the center of the
S triangle towards any of the dotted lines in Fig. 5, the
critical end point (BB)(A A) [see Fig. 6(d)] shifts to lower
temperatures, reducing the span of the three-phase points
( A A) until they disappear when the point (BB)(A A)
reaches T=0 at the dotted lines. In Fig. 7 we show a
phase diagram representative of a system located in the
region labeled S„. This type of system presents a two-
phase coexistence surface of the type A ( A A ) that arises
from zero temperature. This surface is also bounded by
two lines of (B)(A A) end points and continues into the
ordered-states phase region as two wings of ( A A) coex-

istence sheets. At higher temperatures, the two lines of
(BB) critical points, that border the coexistence wings
( A A), intersect the critical surfaces (B) at two tricritical
points of the type (C). Above these temperatures only
the A ( A A) coexistence surface remains.

If we move now the energy point from region S to re-

gion S in Fig. 5 two additional equilibrium surfaces of
A ( A A) type appear within a finite range of tempera-
tures, so that at these temperatures there are three
branches of A (AA)-type coexistence [see Fig. 8(b)]. At
higher temperatures the (BB) lines that border the ( A A )

wings intersect one of the two (C) lines that limit the
A ( A A ) surfaces originating a new (B)(A A ) line from a
((D)) state [see Fig. 8(c)]. The (AA) -type coexistence
disappears along with the two lateral branches of 0 re-
gions [Figs. 8(c)—8(d)] leaving only an A(AA) coex-
istence surface, which is limited by a line of critical
points (C), and disappears when the temperature is fur-
ther raised. As we move within zone S towards that
part of the symmetrical section of triangle S marked by a
line of crosses in Fig. 5, the two wings of A ( A A) coex-
istence reduce in extent on approaching the dashed-
dotted lines where they disappear. At the same time the
high-temperature central surface of A ( AA) coexistence
bounded by (C) lines shrinks.

A representative phase diagram for the symmetrical
systems on the line of crosses in Fig. 5 is shown in Fig. 9.
A low-temperature isothermal cut is shown in Fig. 9(a),
where the interesting feature is a line of two-phase coex-
istence A (AA) points. This arises from zero tempera-
ture and is bounded by two different (B)(AA) critical
points, the result of the intersection of the ( A A ) and the
(B) coexistence surfaces. The two branches of (AA)
points are in turn bounded by (BB) critical lines. If tem-
perature is increased, see Figs. 9(b) —9(d), A (AA)-type

Aj

FICx. 9. System phase diagram for the energy point labeled 4
in Fig. 5 (a =b = —0.2 and c = —0.6).
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coexistence disappears through the merging of the two
lines of (8)( A A) points leaving a single ( A A) surface
[Fig. 9(c)]. See Fig. 9(e) for a representation in field
space. The symmetrical section for this type of system is
bounded by the energy point ( —0. 186, —0. 186, —0.628)
which is the image (under the mapping for symmetrical
sections) of the ferromagnetic D, fourth-order point of
Ref. 1. The D, point marks the beginning of the type-II
( A ), coexistence region on triangle P. Under the map-
ping for the symmetrical sections, A ( A A ) coexistence
corresponds to uniform-states three-phase coexistence,
the symmetrical (8)( A A ) point corresponds to the lower
critical end points (BA )„coexistence of two ordered
states to four-phase coexistence ( A ), and the symmetri-
cal (88) critical points to the (8 ), double critical points
in the notation of FDG. This behavior terminates at the
energy point ( —

—,', —
—,', —

—,
' ), image of the (0,0, 1) point of

the P triangle.

C. Triangle a &0, b &0, c &0

We now describe the system phase diagrams belonging
to R-type triangles. In Fig. 10 we show the R triangle for
which the parameter c is positive, and in Figs. 11—13 we
show the phase diagrams that correspond to the energy
points labeled 5 —7, respectively, in Fig. 10. Since now c
is positive, uniform two-phase coexistence of the A type
must be present at low temperatures for all energy points.
At fixed temperature this line emerges from the g, =0 ac-
tivity axis that represents (x,y, z =0) binary mixtures.
Energy points on region R & generate phase diagrams
similar to those described before for the S, -type region.
The main difFerence between the S and the R & system
phase diagrams is the continuation of the low-
temperature A ( A A)-coexistence surface of the S -type
diagrams into a uniform two-phase coexistence 3 sur-
face. This occurs because one of the three 0 regions
present on the S triangles does not form in the R p sys-
tems. The A surface is bounded by a line of ordinary
critical points 8 and by the A (8) coexistence line. At in-

FIG. 11. System phase diagram for the energy point labeled 5
in Fig. 10 (a = —0.05, b = —0.9, and c =0.05).

(y

(cI)

FICx. 10. Projection of the global phase diagram showing the
R energy triangle with a &0, b &0, c )0.

FIG. 12. System phase diagram for the energy point labeled 6
in Fig. 10 (a =b = —c = ——').

3
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FIG. 13. System phase diagram for the energy point labeled 7
in Fig. 10 (a = —0.013, b = —0.07, c =0.8).

termediate temperatures two new A ( A A )-coexistence
surfaces emerge, one of them develops from the A (8)
line and generates a line of three-phase coexistence of the
type A ( A A) [see Fig. 11(d)] which is bounded by A (8)
and 8 ( A A) critical points at low and high temperatures,
respectively. The manifolds of type A ( A A) are similar
to those found by FDG for the uniform model in this
energy-space region except that here one of the states in-
volved in the three-phase coexistence falls within the 0-
region. Because the energy point representative of this
region, labeled 5 in Fig. 10, satisfies

~
a~ (

~
b~, the zone of

ordered states that emerges from the g =0 activity-
triangle side terminates at lower temperature than that
originating at the g =0 side. This development brings
along the shrinking and vanishing of the ( A A) surface
as temperature is raised. The prevalence of uniform A
phase coexistence over A ( A A ) equilibrium rules out the
appearance of more than one equilibrium zone ( A A ) .
The system phase diagrams on region R'& differ from
those for region R

&
in that one of the A ( A A ) wings for

intermediate temperatures is absent. When the energy
point approaches the dashed lines on Fig. 10 the points
B(AA) and A(8) that bound the A (AA) three-phase
coexistence line in the R &-type diagrams come closer to-
gether. On the dashed line they meet at a critical point
(D), and, as a consequence of this, the regions of the type
R,b and R, no longer exhibit A ( A A ) coexistence.
Phase diagrams in these regions are similar to those
found in regions R & and R '

& in all other respects.
In the symmetric section of this triangle we find a spe-

cial point, denoted by a solid square on Fig. 10, at which
the double solid line [projections of both ((D)) and (CC)
points] that originated at the S triangle transforms into
the dashed line [projections of (D) and (8) ( A A) points].
This point is located at a = —

—,', b = ——', and c =
—,
' (and

its permutations give the positions of two additional and
equivalent points on the other two R triangles). In Fig.
12 we show several isothermal cuts of the phase diagram
corresponding to point 6 on Fig. 10 on the double solid
line. The first-order A transitions between uniform
states transform into ( A A) states when the 0-region sta-
bility zone is entered; this occurs via a (8) point. In the
interior of the 0 region an (AA) line connects this
( A A ) manifold with other two ( A A ) surfaces, each
bounded by a line of (BB) points. At higher tempera-
tures the triple line terminates at a (CC) point, the inter-
section of three (88) critical point lines, two approaching
from low temperature and the other from high tempera-
ture. The remaining high-temperature ( A A ) coex-
istence ends at a ((D)) fourth-order point arising when
the (BB) and the (8) lines touch. In Fig. 12(d) we show
this behavior in (g„g,g„T) space. There, we show only
the cut of the (8) surfaces within the A coexistence sur-
face, i.e., the (8) points. The energy point denoted by
the solid square in Fig. 10, is the image point of the
center of the rear-shield region under the transformation
in Eqs. (20) (see Fig. 4), and therefore it is also a sixth-
order critical point (F). There, the triple line ( A A) ter-
minates; also there the surface of (8) critical points that
envelopes the ordered states touches both the B line of
A uniform phase coexistence and the (BB) line that
bounds the low-temperature wings of ( A A ) ordered
phase coexistence. That is, there the (CC) and ((D))
lines in five-dimensional space merge.

At the other side of this point, (c ) —, ) in the symmetric
zone between regions of the type R,b and R&„ the three-
phase coexistence states ( A A) exist at low temperatures.
The symmetric branch of ( A A ) coexistence arises from
the A -coexistence surface found by FDG for these ener-

gy points as it touches the (8) boundary of ordered-states
stability regions. As temperature is raised the (AA)
states come closer to the (8) boundary and generate a
point of the type (8) (AA) when these two types of
states touch. At higher temperatures two new branches
of A ( A A ) coexistence originate at the high-g, boundary
of the 0 region. These two branches merge with the
remaining nonsymmetrical branches of A ( A A ) coex-
istence generating a loop that encloses the 0 region. This
loop shrinks with increasing temperature and collapses at
a ('D) multicritical point. Close to these symmetric
points, in regions of the type R,&, the coexistence zones
are not symmetrical. This causes an intersection at non-
symmetric locations between the (8) surfaces and the
branch of phase segregation originating at $, =0. As a
consequence of this A ( A A) transitions are observed at
low temperatures [see Fig. 13(a)]. At intermediate tem-
peratures, two new branches of A ( A A ) coexistence ap-
pear at the high g, boundary of the 0 region. These
grow and merge with the two critical points (88) when
the ordered-state stability zone detaches itself from one of
the edges of the activity triangLe, then a loop bounds the
0 region [see Fig. 13(c)]. At these temperatures, and on
the other side of the activity triangle, the line of A ( A A )

states crosses the (8) surface at a A (8)( A A ) coexistence
point from which a line of A ( A A ) points continues and
terminates at a point A (C). This very complicated be-
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havior disappears at zero temperature at the boundaries
between the R and the Q triangles.

D. Triangle a )0, b &0, c &0

The Q triangles are characterized by the presence of
two well-defined surfaces of uniform-states phase equili-
bria, which~restrict further the zones for stable ordered
states. As shown in Fig. 14, we distinguish in these trian-
gles six zones of distinct phase behavior. In zones QI', r we
find a surface of uniform A transitions that extend from
the pure binary limits, $„=0 (the x =0 binary alloy) and

g» =0 (the y =0 binary alloy). This surface intersects the
spinodal surface (8) for ordered-states stability at two
critical points of the type A (8). Between these two
points, the first-order transitions A, transform into
those of the type A (AA). At higher temperatures, the
triple line of A phase coexistence found in the ferromag-
netic study of FDG (Ref. 1) appears here transformed
into a three-phase coexistence of the type A ( A A) [Fig.
15(b)]. This line' does not extend to zero temperatures,
and is bounded by an A (8) point from below and a
8 ( A A ) point from above. Phase coexistence of the type
A ( A A ) disappears when the two (B) surfaces that
comprise the regions of ordered states merge and detach
from the segregating branch, as shown in Fig. 15(d).
Phase diagrams in regions denoted by Q,& in Fig. 14
represent a superposition of the triple lines and corre-
sponding critical end points from the phase diagrams in
regions Qbr and Q,'r. As in the case of FDG the triple
lines do not meet in the full five-dimensional field space.
Again the only difFerence between our results and those
of FDG originates from the intersection of the (8) sur-
faces with the A surfaces, generating, in this case, two
triple lines of the type A ( A A ).

Close to the other corners of triangle Q, in regions la-
beled Q&r and Q, (point 9 in Fig. 14), the ordering ten-
dency is less pronounced, as this is determined by the
value of the energy parameter c, and the ordered-states
stability region does not mask uniform 2 triple lines. It

FIG. 15. System phase diagram for the energy point labeled 8
in Fig. 14 (a =0.1, b =0.45, c = —0.45).

is clear from Fig. 16 that the evolution of the triple lines
is completely equivalent to that obtained by FDG in the
same regions and these manifolds appear bounded by BA
critical end points at high and low temperatures. The
dashed and solid lines in Fig. 14, represent the end of re-
gions with three-phase manifolds. In the case of the
boundaries between regions Qbr and Q,&, the solid lines
in Fig. 14 represent manifolds of tricritical C points,
while in the case of the boundaries between regions Qbr
and Q (or Q,&) they represent (D) fourth-order critical
points. There are no three-phase manifolds in regions

(B/)

FIG. 14. Projection of the global phase diagram showing the
Q energy triangle with a & 0, b )0, c & 0.

FIG. 16. System phase diagram for the energy point labeled 9
in Fig. 14(a =0.1, b =0.8, c = —0. 1).
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Q, & (Qb ) and Q~. Their phase diagrams are similar to
those obtained for their neighboring regions in all other
respects. Dashed-dotted lines between Q, & (Q& ) and Q
diff'erentiate zones where the 0 region collapses (Q,&

and

Qb ) from that where the 0-region persists.
The symmetric transformation described in the Sec. II

maps the central point of the shield region on triangle P
into the point (a =—', b =

—,', c = —
—,
'

) marked by a dot in

Fig. 14. The image of the shield region on the symmetri-
cal section in this Q triangle is bounded by the points
(a =0.292, b =0.292, c = —0.416) and (a =0.236,
b =0.236, c = —0.529). We have denoted this region by

Q~ and isothermal cuts of a representative system phase
diagram are shown in Fig. 17. On the symmetric sec-
tions of these uniform diagrams (g =g~ ), we can recog-
nize the familiar structure of the, . phase diagrams of the
shield region. The coexistence line between ordered and
uniform phases A ( A A ) that originates from zero tem-
perature is the image of the symmetric 3 line on the P
triangle [Figs. 17(a) and 17(b)], the four-phase coexistence
points that form a continuous manifold in the five-
dimensional field space in the shield region of the P trian-
gle, now appear as coexistence lines of the type A ( A A ).
As shown in Figs. 17(b) and 17(c), these A ( A A ) points
join the symmetric three-phase coexistence line with
another two (asymmetric) lines of three-phase coex-
istence, and also with two uniform 2 lines. At higher
temperatures, the branch of 2 transitions detaches from
the A ( A A ) transition, and the ordered-states stability re-
gion finally closes into the image line of the C, manifold
in FDG [which here represents the manifold of (C)
points]. This interpretation (provided by our two map-
pings) clearly indicates that the boundaries of the Q' re-
gion along the symmetrical section of the triangle Q cor-
respond to (C) A states (c = —0.416) and B(AA) states

(c = —0.529), images of the CA and BA points, respec-
tively, that bound the symmetrical section of the shield
region of triangle P.

E. Triangle a &0, b &0, c &0

If an energy point in regions Q,& or Qb p moved into
the principal energy triangle P (shown in detail in Fig.
18), the ordered-states stability region shown in Fig. 1'6 is
still found in the regions comprised between the edges of
the P triangle and the dotted circle in Fig. 18. The 0 re-
gions appear now reduced in extent in the activity trian-
gle and they no longer touch its sides. As it turns out,
these ordered states are always metastable or unstable
with respect to uniform states and therefore, the global
phase diagram associated with this region excludes the
possibility of phase equilibrium between uniform and or-
dered phases. Its general behavior is that described in de-
tail by FDG.

IV. DISCUSSION

We have explored the phase behavior of the FDG
three-component model when a two interwoven sublat-
tice subdivision is considered. We have combined our
findings into a global phase diagram that comprises all of
the eight interaction-energy —parameter triangles. The
antiferromagnetic phase behavior found was compared
with, and superposed on, the original ferromagnetic
phase diagram of FDG. ' Our main results are the follow-
ing. There is a competition between ordering and segre-
gation modulated by the values of the energy parameters
a, b, and c. When they are all positive, on the principal
triangle, only uniform phases are equilibrium states, even
metastable ordered phases can occur only outside the cir-
cle marked in Fig. 18. All the features obtained by FDG
(Ref. 1) for this triangle are preserved under sublattice
subdivision, such as the shield region, the D points and

by

FIG. 17. System phase diagram for the energy point labeled
10 in Fig. 14 (a =b = 4, c = —2).

FIG. 18. Projection of the global phase diagram showing the
P energy triangle. Metastable ordered states only occur outside
the dotted circle.



39 SUBLATTICE-ORDERED PHASES OF GRIFFITHS'S. . . MODEL 7029

the C lines. On the other hand, when all the energy pa-
rameters are negative, on the S triangle, the opposite situ-
ation prevails and equilibrium uniform states can only
occur by themselves or coexist with ordered states. Or-
dered states are common on this triangle and become as-
sociated with lines of (CC) tricritical points that stem
from a sixth-order multicritical point (F) at the center of
the triangle. Also, other, (C)-type, tricritical points are
often found on this triangle. On triangles Q and 8 an in-
termediate situation arises, and a portion of the uniform-
phase features described by FDG becomes metastable
with respect to ordered-phase states, more so on the R
triangles than on the Q triangles. A rich collection of
multicritical points and lines was found on these six tri-
angles and include three sixth-order (F) states, lines of
fourth-order ((D)), and (D) points and tricritical (C)
points. The two map pings between uniform- and
ordered-phase properties for pairs of energy points de-
scribed in Sec. II provide an understanding of how all of
these features of the global phase diagram are interrelat-
ed.

A predominant characteristic of the phase diagram of
the sublattice-divided model is the (8)-critical hypersur
face that bounds the stability region for the ordered
states. The nature of this hypersurface is intimately re-
lated to the particular lattice and sublattice subdivision
chosen. There are lattices, like the fcc lattice, such that
nearest-neighbor sites may belong to the same sublattice
under two-sublattice subdivision. In this case order-
disorder transitions are of the first order except at a few

points in field space. This situation is similar to the case
of solid-liquid transitions where critical melting can
occur only at isolated points.

The system phase diagrams associated with the
symmetrical sections of the energy triangles, that as we
have seen display Inost of the highest-order critical states
found, are usually the sections of interest in applications
such as magnets and alloys, ' and micellar solutions. In
the following two papers we review the properties of
these sections in the languages of binary alloys with one
magnetic component and of a model binary mixture of
amphiphiles in a solvent. There we appreciate how the
competition between ordering and segregation referred to
above describes the transit from segregation and fer-
romagnetic to ordering and antiferromagnetic alloys, or
from uniform solvent-amphiphile solutions to liquid-
crystalline —type phases.

As pointed out in the work of FDG we do not expect
that all descriptions of real systems are appropriately ob-
tained by fixing a point in energy-parameter space. In-
stead, some descriptions may require a movable point
(a, b, c) whose position depends on the temperature and
the chemica1 potentials. Lattice models for microemul-
sions equivalent to the FDG three-component model
with field-dependent energy points have been proposed
and their properties studied.
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