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A theory is given for three closely related effects involving a nonmagnetic electron-tunneling bar-
rier separating two ferromagnetic conductors. The first is Julliere s magnetic valve effect, in which
the tunnel conductance depends on the angle 0 between the moments of the two ferromagnets. One
finds that discontinuous change of the potential at the electrode-barrier interface diminishes the
spin-polarization factor governing this effect and is capable of changing its sign. The second is an
effective interfacial exchange coupling —J cosO between the ferromagnets. One finds that the mag-
nitude and sign of J depend on the height of the barrier and the Stoner splitting in the ferromagnets.
The third is a new, irreversible exchange term in the coupled dynamics of the ferromagnets. For
one sign of external voltage V, this term describes relaxation of the Landau-Lifshitz type. For the
opposite sign of V, it describes a pumping action which can cause spontaneous growth of magnetic
oscillations. All of these effects were investigated consistently by analyzing the transmission of
charge and spin currents Rowing through a rectangular barrier separating free-electron metals. In
application to Fe-C-Fe junctions, the theory predicts that the valve effect is weak and that the cou-

pling is antiferromagnetic (J (0). Relations connecting the three effects suggest experiments in-

volving small spatial dimensions.

I. INTRODUCTION

This paper treats three related phenomena involving
two ferromagnets separated by a nonmagnetic tunneling
barrier. Each phenomenon involves the relative direc-
tions of the two magnetic vectors. First is the magnetic
valve, in which the tunneling conductance G =Go(1
+ecosO) varies with angle 8 between the magnetic vec-
tors. The first report of this effect cited @=0.07 for a Fe-
Cie-Co film junction. ' Smaller valve effects were observed
when the barrier was antiferromagnetic NiO rather than
diamagnetic Ge. '

The second effect is the Heisenberg-like interfacial ex-
change coupling energy —J cosO. Ferromagnetic-
resonance evidence ' of exchange coupling in Fe-C-Fe
films supports this concept if the 10-20 A of amorphous
carbon barrier can be regarded as insulating.

The third effect, newly predicted here, is a dissipative
interfacial exchange interaction proportional to external
voltage V. For one sign of V, this term describes
Landau-Lifshitz-like relaxation of magnetic vibration.
For the opposite sign of V, it describes a pumping action
which, if strong enough, can excite free vibration.

Our treatment relies on the free-electron model of the
conduction electrons. Besides being simple, this model is
favored by M. B. Stearns' theory (see Sec. VI) of spin-
polarized tunneling between iron-group ferromagnetic
metals and superconductors. These studies indicate that
tunneling through A1203 film barriers originates or ter-
minates in strongly conducting bands which are partially
polarized by exchange coupling to weakly conducting
strongly polarized 30 bands. In rare-earth metals, whose
spin density is very localized in 4f states, polarized tun-
neling even more strictly involves conduction bands
which ought to resemble those of free electrons. (Spin-

Consider two ferromagnetic conductors separated by a
plane nonmagnetic tunneling barrier. The barrier may be
provided by a thin ( —5 —100 A) insulating film or vacu-
um. In a free-electron approximation of the spin-
polarized conduction electrons inside each ferromagnet,
the longitudinal part of the effective one-electron Hamil-
tonian may be written

&g= —
—,'(d/dg)'+ U(g) —h(g) tr . (2.1)

Here our system of units incorporates unit electron mass
and unit Planck constant. Equation (2.1) includes terms
due to kinetic energy —( —,

' )(d/dg), potential U(g) and
internal exchange energy —h cr where —h(g) is the
molecular field and tr (=2s) is the conventional Pauli
spin operator. Although transverse momentum k~i is
omitted from the above notations, the effects of summa-
tion over k~I will be accounted for in our results.

In our model of tunneling, we provisionally consider a
vanishing external voltage V, and use the rectangular bar-
rier U = Uo for 0 & g & d and U =0 otherwise, as indicat-
ed in Fig. 1. By assumption, h =0 inside the barrier. But
h=h„or hei is constant, with ~h„~= ~hii~ =ho, within
each semi-infinite ferromagnet; the two ferromagnets, 3
and B, have identical material properties except when ex-

polarized photoemission, on the other hand, involves d
electrons with large state density which are less well
represented by free electrons. )

We proceed systematically with analysis of (Sec. II)
spin and charge transmission coefficients, (Sec, III) the
magnetic valve effect, (Sec. IV) energy-conserving ex-
change coupling, (Sec. V) dissipative exchange coupling,
and conclude with (Sec. VI) a discussion of results.

II. TRANSMISSION COEFFICIENTS
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FIG. 1. Schematic potential for two metallic ferromagnets
separated by an insulating barrier. The molecular fields h~{t)
and hz{t) within the magnets form angle 0. They ar'e instan-
taneously parallel to the static axes z and z' at t =0.

(2.2)

where k is electron momentum. (Henceforth we use the
notations o =+1 and cr = 1', $ interchangeably. ) The den-
sity of states p&& has the schematic form shown in Fig. 2.
Inside the barrier, the energy is

E = ——'v+U g=+].o~ (2.3)

where i~ is imaginary electron momentum. A similar
Hamiltonian, but with h&0 only inside the barrier, has

plicitly noted. However, the directions of h~ and h~, as
well as the corresponding spin quantization axes z and z',
differ by angle 0 (see Fig. 1). Note that only the mutual
relationship between coordinate systems x,y, z and
x',y', z' matters. Their orientation with respect to the
plane of the junction does not matter. Inside the fer-
romagnets, the one-electron energy is

ik —ik g
—ik, g

gt, =k) e ' +Rte ', g), =R)e (2.4)

where R &, R &
are coe%cients to be determined. In region

2 (barrier, 0~ g ~ d), the wave is evanescent and has com-
ponents

f 2=3 e '~+B e ~, a. =1 $, (2.&)

with A and B to be determined. Region 3 (ferromag-
net B, d ~ g) has only the transmitted wave

been investigated in connection with the traversal time of
tunneling.

Our procedure is this: In zero-order approximation,
d = ~ and the magnetic states are quiescent. The total
spins S~, S~ (parallel to h „and h~, respectively) per unit
junction area are not strictly defined for semi-infinite
magnets. Nevertheless, we take d finite but large, and
calculate the lowest-order contributions to the areal
charge-current density I, and spin-current density
Iq=dS~/dt= —dS„/dt at the instant t =0. Both I,
and Iz will be evaluated using stationary wave functions
in the same spirit as in the elementary theory of tunneling
resistance. We will thus find included within Iz both en-

ergy conserving (Heisenberg-type) and novel nonconserv-
ing interfacial exchange terms. [We will use the fact that
S„(t)and S~(t) can vary with t only by flow through the
barrier because our assumed X-electron Hamiltonian &~
has only Coulomb and kinetic terms which commute
with S~ and S~ when the electrodes are separated. In
the absence of explicit spin-dependent terms, e.g. , spin-
orbit coupling or Zeeman energy, internal contributions
to S„and S~ must vanish. ] The coordinate systems x,y, z
and x', y', z' are considered fixed and therefore valid only
in a small neighborhood of t =0, since h~ and hz will

generally depend on t.
Consider a spin-up incident plane wave having unit in-

cident particle flux in region 1 (ferromagnet A, g(0 in
Fig. 1). Considering the effects of all boundary condi-
tions, the eigenfunction of && (eigenvalue E&) in region 1

has spin components

(2.6)

with C to be determined. The axis of spin quantization
for the above waves is z (direction h=h~ ) in regions 1

and 2, and z' (direction h=hz ) in region 3. Note that we

need consider only real values of k& and ~. The wave
vector k& =ip (O~p ( co) for Er=EF, (Fermi energy) is

imaginary in the one-band case (see Fig. 2). It is real in
the two-band case (see Fig. 2), E&=EF2) ho, and limited
to the range 0 & k

&
& k&.

To complete the solution of the Schrodinger equation,
one must find the eight unknowns R, A,B,C
(o = 1', J, ) by matching g and d g /d g at the interfaces
/=0 and g=d. The change in quantization axis at g=d
requires the spinor transformation

FIG. 2. Density of spin-up {p~ ) and spin-down {p ~ ) electrons,
showing position of Fermi energy EF for one-band EF, and
two-band EF2 models of a ferromagnet.

1( &2= 1(t'(3 cos(9/2) + /~3 sin(0/2),

1/J f 3 sin( 8/2 ) + li '~ 3 cos( 8/2 )

and similarly for the derivatives.

(2.7a)

(2.7b)
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Some algebra produces the following approximate solu-
tion for the coefficients, which is sufficiently accurate to
calculate transmissivity to leading order in e

R =A +B —kt 'i 5, (o=&, J, ),
2k t (ii+ik

&
)B

&

(kt+ia) (~ i—k& )

—2ik t~ [ir +k i k i +i ~(k i
—k i ) cos8]e

T—
(ii ik—t) (v —iki)

(v+iki )Bg
K

ikey

2Kk 1/2(k k )e 2adsin8-

(ir ikt )—(ir —iki)
4ik —&~ i~e cos(8/2)

(~ ikt )—
—4ik t ice ""sin(8/2)

(a —
iki )(aikt ). —

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

(2.8fl

(2.8g)

We write without proof the expressions for spin
transmissivity

d
T, =1m+a g*

0'

dpi . ditty
T+ —= T, +iT =i

(2.9)

(2.10)

.d-
T =Im+1ij* (2.1 1)

Summations of —eT and AT/2 over occupied states give
the total charge (I, ) and spin (Is) currents per unit area
Aowing from A to 8. By continuity, I, and Iz do not de-
pend on g. However, the molecular field h&0 within the
ferromagnets causes irrelevant internal spin changes
(dT/dg&0), whose sum over E& and k~~ necessarily van-
ishes. Even states of small E& having negligible barrier
penetration would have to be included. Therefore, in
these sums, T and T, are conveniently evaluated any-
where within the barrier (O~g&d), where h=O and
dT/dg=O. Only states with E& near E„contribute ap-
preciably when d is large.

By substitution of Eqs. (2.8b) —(2.8e) into (2.5) and
(2.9)—(2.11) at /=0+, one readily finds to first order in

2Kde

where T=(T„,T, T, ) is the expectation value of Pauli
spin (o =2s) transmitted through the plane with given g.
Note that the above expression for T, becomes the con-
ventional particle transmissivity when the factor o in the
summand is removed:

A =a. +k t k i, B= i~( k i
—k i ),

8~k e
—2Kd

(~ +k t )(a —ik t )(~—ik i )

(2.13)

(2.14)

These relations are valid for l' incident from the left. The
other cases, 1 incident from the right, and 1, incident
from left or right, are obtainable from them by symmetry
transformations. The approximate relation T = T, fol-
lows from the relation ~g&z~/~P&2~ -e " which allows
neglect of the cr= —1 contributions in Eqs. (2.9) and
(2.11).

III. MAGNETIC VAI.VK

We will consider only the absolute zero of temperature.
For a small external voltage V, one may use the V=O
wave functions of the previous section. In the limit of a
small barrier factor e ", a narrow distribution of elec-
trons near normal incidence and with E& near Ez carry
most of the current. Therefore we may replace a(E&) and
k (E&) with ~(EF ) and k (EF), respectively, in calculat-
ing the surface conductance 6 due to tunneling. This re-
placement will be understood in all expressions that fol-
low except where noted otherwise. By summing the
charge transmission over E& and k~~ for occupied states in
the usual manner, one finds the conventional expression,
in our notation, -

I, /V =G =(e /8m fi)(a.T /d) (3.1)

for areal current density I„considering one initial spin
direction, where e is the electron charge. We have two
cases, one-band and two-band (see Fig. 2). For the one-
band case k

&
=ip is imaginary. Writing a =a '+i a ",

b =b'+ib", we find

a"=b'= &e

(~ +kt)
(3.2)

6=Gfbf(1+P» cos8), ~P»~ (3.4)

where the eftective spin polarization of the ferro-
magnetic-barrier couple is

and the first of Eqs. (2.12) becomes

T&=8' k&e "(1+cos8)/(v +k& ), (k& =ip) . (3.3)

This substituted into (3.1) gives G for the one-band case.
It represents a perfect magnetic valve in the sense that
G =0 for 0=m. Note that 6 does not depend on p, and
therefore not on ho for given Uo —E~.

In the two-band case, k~ is real. Now electrons with
both values of o. are incident and T in Eq. (3.1) must be
replaced by T &+ T &. Here T

&
is given by Eqs.

(2.12)—(2.14) and Tz& is given by the same expression
with k& and k& interchanged. (Note that now a "&b'.)
The result is now an imperfect magnetic valve with con-
ductance of the form

Tz = T, = Im(a +ib cos8), T+ = bsin8, —

with a = AC, b =BC, and

(2.12)
(kt —ki) (~ ktki)—
(ki+ki) (K2+k Ikey }

The mean surface conductance is now

(3.5)
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(4.3)

evaluated in the limit of lae imit of large ird. Using (4.2) we thus

(&f course, we knew th t .

quality T T
ish because of themust v

»d the fact that the ar
sions much cancel b s

e particle transmis-
y symm«ry in case V =0 )

e surviving component o who
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—=s./2d = ( Uo EF )I—i~d

J=5„ I sin6=( Uo EF )b"—IS~ d (4.4)

el'(x. +ktki)(k +k )

fbf
1'

m(~ +k
2Kd (3.6)

t }(s. +ki )

for the two-band case.
In a more general treatment of this roblern

romagnetic electrodes f d f ' ave
' i-poes an ' have

us e quantities k and k ar
e wo e ectrodes. One fi dn seasi y,

G=G'fbf ( 1 +PIbPf 'b COSH ) (3.7)

IV. CONSERVATIVE EXCHANG E COUPLING

where I'fb (Pf b ) is given by E . (3.5
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2Kd
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(4.5)
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&
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real and b" replaced by

8' («. ktkt)(k—t
—kt) (kt+kt)

( Ir2+ k 2 )2( Ir2+ k 2 )2

(k t & k, & 0) . (4.6)

With this replacement, Eq. (4.4) gives the coupling
for the two-band case. The proportional factor
(«jk t )b2'e is plotted in Fig. 5.

One impediment to comparing tunneling theory with
experiment is the great sensitivity of the barrier factor
e '". It therefore may be useful to measure the magnet-
ic valve and exchange effects in the same specimen. One
can then relate the two effects, thus eliminating this sensi-
tive factor. If we take the liberty of applying our semi-
infinite —magnet results to a finite system in which the
magnet A has a finite total number of X~ of uncompen-
sated spins, then we may define the effective exchange
field H ~z =J /m ~ of B acting on 3 where m ~ is the mo-
ment of magnet A per unit junction area. Applying the
one-band equations (3.6), (4.4), and (4.5), we find the rela-
tion

T = —6' sinO, T, =a"+b' cosO . (5.1)

The contribution of tunneling to S~„which we term
longitudinal, may be neglected because, if uncompensated
by other effects, it would represent change of the
magnetic-order parameter. However, in reality, spin-
orbit and dipolar processes internal to the magnet cause
the order parameter to relax very rapidly toward equilib-
rium. Moreover, we envision a closed electrical circuit in
which spin-polarized electrons are exchanged through
electrical contacts with paramagnetic conductors.
Indeed, in the simple one-band case the latter mechanism
alone would guarantee the equation Sz, =0 because it is
equivalent to charge neutrality in a one-band ferromag-
net. Effects of this so-called spin injection between ferro-
and paramagnets have been reported recently.

Thus the tunneling contribution to the component S~„,
which we term transuerse, describes the principal dynami-
cal consequence of dissipative exchange. In the case
V=—Vz —V~ &0, electrons Aow from A to 8. In the
one-band case we substitute J&„ for J, and —,'AT for

eT in E—q. (3.1), to find

Is, =Sz—=(e«b'/16' d)( V~ —V„)sin&, (5.2)

where b' is given by Eq. (3.2).
To complete the discussion, we ought to consider also

the opposite case Vz & Vz in which the electron Bow is
reversed. It is easier, instead, to look at the tunneling
contribution to Sz keeping Vz & Vz. According to our
argument above, the longitudinal component S&,. is less
interesting. For the transverse effect we need only

T =T cosO+T, sinO=a" sinO,

S w,
=D ( Vti

—Va )S w X ( S w X Sii ), (5.4)

where, h designates unit vector, and from Eqs. (3.2) and
(5.2),

with the last equality due to Eq. (5.1). Since we have
a "=6' in the one-band case, S„=—Sz„ follows from
Eqs. (5.1) and (5.3).

For the one-band case, we may rewrite the transverse
exchange effects in the coordinate-free form

fi( Uo E~) (k t
—«p—)

PR +„e~ kt«( +P«)d
(4.7)

3/ 2 2Kd

D=
2~2d(K2+k2 )2

(5.5)

where p is the Bohr magneton and R o
' is Go times the

junction area. The factor e " is absent from this rela-
tion and only algebraic dependences on ~ and d remain.
For the two-band case the corresponding relation is

III'( Uo EF ) («. —k t k t
—)(k t

—k t )

PR,X,e' d(«'+k, k, )'(k, +k, )

V. DISSIPATIVE EXCHANGE COUPLING

In the presence of voltage V&0, the tunneling contri-
butions to Sz and Sz, will no longer vanish. According
to Eq. (2.12), the relevant single-wave spin-transmission
coefBcients are

Interchanging the subscripts A ~B in Eq. (5.4) gives Ss, .
Now consider the two-band case in which one must

combine k& and k
&

incident waves. To calculate S~„ for
Vii & V„, we must write T„—T„(kt~k t ) in place of T,
with the minus sign due to 180 rotation of xyz axes about
y. We find Eq. (5.4) again but now with D replaced by

eir3(ir4 —k2k& )(k2 —k2 ) -2Kd (5.6)
2~2d(~2+k2 )2(~2+k2 )2

For Vz & Vz, Sz, and Sz, have the directions indicated
in the planar Fig. 6. A heuristic explanation of these pre-
cession directions follows. Since S~-polarized electrons
impinge on magnet 8, surely Sz must relax toward Sz
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eft'ective masses. For Fe and Ni, these bands represent
simple approximate equivalents of certain low-mass sub-
bands found in first-principles band calculations and in
Fermi surfaces independently determined by deHaas-
vanAlphen studies. The respective Fermi vectors in Fe
are k& =1.09A ', k& =0.42 A '. (According to
Stearns, k& varies little with atomic number; thus we can
roughly approximate the energy barrier Up —EF for an
insulator abutting Fe, Co, Ni, or their alloys by = 5 eV
times the abscissa « /k t in Figs. 3, 4, 5, and 7.) We as-
sume d =8 A and 2m=1. 0 A ', the latter indicated by
the dependence of ferromagnetic-resonance spectra on C
thickness, ' implying Up —EI; —1.0 eV in C. Then Eq.
(4.8) reduces to

H„~(Oe)Ro(Q)N~ = —1X10' Oe0, (6.4)

( V~ —V~ )e«d(~+p)kt
(b ~)y/coo=

2( Uo E~)(k t
—«p)— (6.5)

for the one-band case. For the two-band case, Eqs. (4.4),
(4.6), (5.4), and (5.6) give

~
V~e(~ +khaki)d

(6.6)

These expressions have the following significance. To ob-

where Rp is equal to the total mean resistance of the
junction an Ohms. One might consider H~~ =- —100 Oe
and Rp = 1 m 0 to be convenient magnitudes experimen-
tally. One can adjust d to achieve this value of H~~,
principally through the sensitive factor e " in Eq. (4.6).
Then, Eq. (6.4) would require magnetic film A to have di-
mensions of the order %~ =10 X10 X10 in units of in-
teratomic distance in order to attain Rp=-1 mQ. For Fe

0
films of thickness about 20 A, this means that a junction
area of about (20 pm) would be needed for the resistance
measurements.

An additional prediction for Fe-C-Fe junctions is the
valve-effect polarization PFec PFe ~ Fec
relations (6.1)—(6.3). One thus predicts a remarkably
small valve coefticient C„,C„,=0.017. Moreover, the
tunneling-exchange coupling predicted by Eqs. (4.4) and
(4.6) is negative.

The transverse relaxation term given by Eq. (5.4)
resembles Landau-Lifshitz damping. To illustrate its pos-
sible implications, we assume that it is correct even when
the thickness of magnet 3 (and therefore S~ ) is finite
rather than infinite as in the derivation. We further as-
sume that S~ is static (for example, because of large an-
isotropy energy), so that the effect of spin-polarized tun-
neling on S„ is a direct relaxation toward (or away) from
+S~ (the sign accords with that of J}given by Eq. (5.2).
Moreover we assume that tunneling-exchange coupling
dominates the dynamics of S~ so that Eq. (4.4) describes
precession of S~ about +Sz at small-amplitude frequen-

cy coo= ~S„ /S„sin8~. It follows that the voltage-
induced relative linewidth for small-amplitude precession
is (bee)v/coo=S„„/S„. Considering Eqs. (3.2), (4.4),
(4.5), and (5.2), we find

@= [(b,co ) vS„/ci)o ] i GJ
~
/D (6.7)

in which dependence of the factor GJ/D on the expres-
sion e will cancel.

Consider the one-band case. For 0=m, G =0 from
Eqs. (3.1) and (3.3) and our formula gives 4=0, meaning
that more physics would be needed to estimate the power
for this case. For 0=0, we substitute Eqs. (3.1), (3.3),
(4.4), (4.5), and (5.5) into (6.7) to find

(b,co) qn„4( Uo E~)(k t
—I~—p )

COp dKk t (K+p )
(6.8)

where n ~ is the number of ferromagnetic spins per unit
junction area and where k

~
& scp to ensure equilibrium at

8=0.
For the two-band case, Eqs. (3.4), (3.6), (4.4), (4.6), and

(5.6) similarly give

( he@) i,n „2(Uo —EF )( k t +k i )( I+Pfb )

COp
(6.9)

where +Pfj, corresponds to 0=0,m and Pfb is given in
Eq. (3.5). Assuming ten atomic layers of Fe (n „=5 X 10
pm } and a carbon barrier, our parameters reduce Eq.
(6.9) to @=10 ' (hei, ) /coo W/pm . Assuming
cop=10" Hz, .a power of 4=1 mW/pm is needed for a
linewidth change amounting to (b,co)v= —10 coo. Bril-
louin scattering with a small focal spot and intermittent
application of voltage might provide a means to observe
voltage-excited magnetic vibration without creating too
great a temperature rise.
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serve voltage-pumped oscillation, one may adjust the bar-
rier thickness so that the natural frequency cop attains a
value in the desired range for ferromagnetic resonance
(FMR} or Brillouin scattering. Then Eq. (6.5) or (6.6)
tells how much change in linewidth is induced by the
voltage. (Note that the exponential barrier factor has
cancelled. ) If the intrinsic (caused by effects other than
tunneling) linewidth (bco)o is homogeneous (e.g., spin-
lattice relaxation), then satisfying the condition
(b,co}0+(b,co)i,(0 will be sufficient to provide exponen-
tially growing oscillations in magnet A. For Fe-C-Fe
junctions ~(bc@)v/coo~ =-4 V(volt) and the necessary volt-
age will be some millivolts for narrow resonance lines.

Excessive temperature rise due to power dissipation
@= V G (per unit junction area) could limit the possibili-
ty of observing voltage-pumped precession. A useful ex-
pression for @ follows from the relations

~
J

~=
~ S„»/sino~ =cog'„due to Eq. (4.4), and

IS „I

=
I
VD sine

l

=(a~) IS„ I

=
1
(a~) i,S„sine I

due to Eq. (5.4). They allow @ to be written the form
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