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Band magnetism in the Hubbard model
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A self-consistent moment method is applied to the Hubbard model in order to find out under
what circumstances spontaneous band magnetism may occur. The theory is formulated for a two-
sublattice structure to treat simultaneously para-, ferro-, and antiferromagnetic systems. The start-
ing point is a two-pole ansatz for the one-electron spectral density, the free parameters of which are
fitted by equating exactly calculated spectral moments. All correlation functions appearing in the
moments can be expressed by the spectral density, guaranteeing therewith a closed system of equa-
tions, which can be solved self-consistently for the average particle numbers (n;t ) and (n; t ). A
T=O phase diagram is presented in terms of band occupation n (0 n ~ 2) and Coulomb interac-
tion U. Ferromagnetic solutions appear only if n exceeds a critical occupation n," and U a
minimum value U;„. For antiferromagnetic solutions a critical U does not exist, but a critical band
occupation n, " does. Antiferromagnetism is stable in a restricted region of n around n= 1, which
is broadest for intermediate couplings ( U/8'-=1, 8'being the Bloch bandwidth) and shrinks to the
n=1 axis for strong couplings (U/8' —+~). For smaller n, but n )n," and sufficiently high U

( U ) 8'), ferromagnetism is stable, while for low band occupations the system is paramagnetic ir-
respective of U. The critical temperatures T& and T~ are strongly U and n dependent. For fixed n,

Tc increases with U, but saturates for U~~ at finite values (500—800 K), while T& has a max-
imum at an intermediate U value ( U= 8'). First-order as well as second-order transitions are ob-
served. Ferromagnetic order arises mainly because of a shift of f and f quasiparticle subbands. In
antiferromagnets, corresponding f and $ subbands occupy exactly the same energy regions, but
with different state densities. The magnetic behavior of the Hubbard model can be understood as a
direct consequence of the sensitive ( T, n, U) dependence of the quasiparticle density of states, which
is therefore discussed in detail.

I. INTRODUCTION

The so-called Hubbard model, ' which describes a
single s band with local electron-electron repulsion is
commonly used for the study of strongly correlated elec-
trons in a narrow energy band. This model is thought to
be able to reproduce cooperative phenomena like spon-
taneous band magnetism or insulator-metal transitions
("Mott-Hubbard transitions"). In the very recent past
the Hubbard model has furthermore become a weighty
candidate for the theoretical explanation of high-T, su-
perconductivity.

Despite the rather simple strgctrue of the model Ham-
iltonian (Sec. II A) the general solution of the respective
many-body problem is not yet available. Unavoidable ap-
proximations have led to partially contradicting state-
ments. It is therefore fair to say that the true inherent
model properties have not yet been worked out unambi-
guously up to now. In this paper we contribute to a
clarification, where our special interest aims at the ques-
tion of whether or not spontaneous ferro- or antiferro-
band magnetisim may appear in the Hubbard model. In
a previous paper one of us has shown by use of a self-
consistent moment method for the strongly correlated
Hubbard model that under certain conditions, concern-
ing band occupation and lattice structure, ferromagne-
tism is stable against paramagnetism. We are going to
present an extension of this theory to arbitrary correla-

tion strengths including antiferromagnetic structures.
Great eA'ort has been devoted by many authors to the
ground-state properties of the Hubbard model; relatively
few studies, however, refer to finite-temperature proper-
ties, in particular to the transition temperatures (Tc, Ttv)
of the magnetically ordered system. Our study covers
both aspects.

Of great importance for testing unavoidable approxi-
mations are exactly solvable limiting cases. Unfortunate-
ly, only few are available. The one-dimensional Hubbard
model has been solved by Lieb and Wu for T =0 and ar-
bitrary b'and occupation n (0& n &2), and by Beni et al
for finite temperatures in the U~ (x) limit. But these re-
sults provide only very restricted information about the
three-dimensional system, notably because it can exactly
be shown that collective magnetic order is impossible for
T )0 in the one- and two-dimensional Hubbard mod-
el. ' '" For the three-dimensional case Nagaoka' has
presented rigorous (T =0, U~ oo) results for the special
band fillings n =n+ = I/X(N+1) (X is number of lat-
tice sites). sc and bcc lattices have ferromagnetic ground
states for n+ as well as n, the fcc lattice only for n+.
These results, however, have been criticized as meaning-
less in the thermodynamic limit, ' although being in re-
markable agreement with some reliable approximate
theories. ' ' No doubt exists, however, about low band
occupations (n « 1), for which no collective magnetic or-
der is expected. ' If at all, then magnetism becomes like-
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ly in a certain n region around the half-filled band (n = 1).
For the narrow-. band limit, where the hopping integral
may be considered as a small perturbation compared to
the intraatomic Coulomb matrix element, Anderson' has
used second-order perturbation theory to transform the
Hubbard model for exactly half-filled bands into an
effective Heisenberg model. In this special case (n =1)
antiferromagnetism is predicted.

An immense variety of approximate theories has been
proposed in the past, based, e.g. , on mean-field approxi-
mations, ' ' Green's-function techniques, "' ' ' func-
tional integral methods, variational approaches, .

' '

and fourth-order perturbation expansions. ' As al-
ready mentioned, not all results are sound, but practically
all of them predict that collective magnetism is possible
in the three-dimensional Hubbard model. Interesting in-
formation can be drawn from the investigation of finite
systems, performed for chains ' typically up to 12 sites,
for an 8XS square lattice, and for. three-dimensional
clusters, ' e.g., 4X4X4 or 6X6X6. It is, however,
surely fair to question, whether these systems are large
enough to allow conclusions about the model properties
in the thermodynamic limit.

We investigate in this paper the possibility of spontane-
ous ferro- or antiferromagnetisrn within the framework of
the Hubbard model. For this purpose we apply a self-
consistent moment method, which we call the "spectral-
density approach" (SDA). Previous applications 39

have evidenced the SDA to be a powerful tool for solving
menay-body problems. The main advantages are the very
simple concept of the method ' and its nonperturbative
character, which makes it useful in particular for systems
with phase transitions. Restricting our considerations to
lattices which consists of two interpenetrating sublattices
A and 8, we derive with the SDA a closed set of equa-
tions, which is self-consistently solved for the average
particle numbers ( n

&
& and ( n i &. The index a stands

for A and 8, respectively. Spontaneous band magnetism
is indicated by (n t &&(n i & with (n~ &=(nii & for
ferromagnet and (n„&= (n~ & for the antiferromag-
net.

Band magnetism is very often discussed in terms of the
so-called Stoner model, which is just the mean-field ap-
proximation of the Hubbard model. We believe, howev-
er, that this approach is quite misleading, at least what
concerns finite-temperature properties of strongly corre-
lated electron systems. This can be demonstrated by the
quasiparticle density of states p (E) (QDOS). For fixed
model parameters (lattice structure, Coulomb interaction
U, Bloch bandwidth W) this fundamental quantity de-
pends very sensitively on temperature T and band occu-
pation n (0 n 2). As an example, the Stoner model
predicts for a ferromagnetic lattice a rigid shifting of the

and 1 spectra of Um. Here m denotes the average
magnetic moment per site. The exchange splitting is,
therefore, temperature dependent, starting at value Un
for T=O, which typically means several eV, and disap-
pearing for T ~ T&. The huge T =0 gap, which has to be
closed for T~T& causes an extremely high Curie tern-
perature T~. This well-known shortcoming of the Stoner
theory is completely due to the wrong QDOS. In the

II. HUBBARD MODEL

A. Model Hamiltonian

Usually band magnetism is theoretically investigated
within the framework of the Hubbard model, ' ' which
is believed to describe in a rather realistic manner the
properties of correlated electrons in a narrow energy
band. Since our study aims simultaneously at ferro- and
antiferromagnetism in the Hubbard model, we decom-
pose the total lattice into m chemically equivalent sublat-
tices (a=1,2, . . . , m), and describe it as a "magnetic"
Bravais lattice (R, ) with an m-atom basis (r ). The posi-
tion vectors of the constituents of the original ("chemi-
cal") lattice are then given by

R, =R;+r (2.1)

where i numbers the X sites of the magnetic Bravais lat-
tice, and a the m basis atoms, each of which belongs to
one of the m sublattices. Fourier transformation between
local space and k space will be done in the Bravais lattice
only. Operators, e.g., are transformed as follows:

o,.=x-'"y ' o„. , (2.2)
k

O„.=X-'"ge '
'O,.

k

(2.3)

k is a wave vector of the first Brillouin zone of the Bra-
vais lattice. This possesses translational symmetry, so
that the thermodynamic average of the operator 0; does
not depend on site R;

(o,.&
—= (o.&vi. . (2.4)

We cannot exclude, however, a sublattice (a) dependence.
Taking into account such a sublattice structure the Hub-

SDA we shall derive that the excitation spectrum is split
for all temperatures into a low- and high-energy part, the
distance of which is only slightly temperature depen-
dence. For T (T~ there appears an additional, nonrigid
spin splitting of both parts, which results in a
temperature-dependent spontaneous magnetization;- This
QDOS structure leads to realistic orders of magnitude for
Tc, where Tc is a function of n and U/W. Similar
disprepancies between the results of the Stoner theory
and SDA exist for antiferromagnetic systems.

We have organized our paper as follows. In Sec. II the
model Hamiltonian is formulated for the two-sublattice
structure, followed by an inspection of the "free" (U =0)
system, which will be used as a starting point for our
self-consistent moment method. To get a first insight into
the physics of the not exactly solvable Hubbard model we
subsequently present results of the Stoner theory in the
form of a T=O phase diagram, and of temperature-
dependent QDOS for ferro- and antiferromagnetic elec-
tron systems. In Sec. III we develop our moment method
(SDA), showing, e.g. , how it can be made self-consistent
by expressing higher correlation functions by the one-
electron spectral density. The results are presented and
discussed in Sec. IV.
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=1 ik.(R,. —R )
TP~~= —g c, &(k)e

k

(2.6)

as well as the Bloch energies E ti(k) contain the kinetic
energy of the band electrons and the inAuence of the
periodic lattice potential. In what follows we consider
exclusively lattices with ABAB structure, i.e., two sublat-
tices A and B penetrating each other in such a way that
all nearest neighbors of an A atom are from sublattice B
and vice versa. The electron hopping shall take place be-
tween nearest (I, i) and next-nearest (h.2) neighbors in the
chemical lattice

bard Hamiltonian reads as

H= g T;J~c; cj& + ,'U—gn; n; . (2.5)
I)J, O' l, o
a, p a

c; (c; ) is the creation (annihilation) operator of an
electron with spin o. in a Wannier state at site R, .
n; =c; c,. is the number operator, and U the intra-
atomic Coulomb matrix element. The hopping integrals
Tapij

holds.
The decisive quantity for our procedure will be the

one-electron spectral density.

s t'(E)= y—sjt.'(E)e '"' '

/, J

SaP(E) I d(t t~)ei jtiE(t —t )'
IJCT

(2.14)

x ([c; (t), c~& (t')]+) .2' (2.15)

By use of the spectral theorem the average occupation
numbers needed in (2.11) are directly determined by the
spectral density

(n )= J dE f (E)S;; (E), (2.16)

f (E)= (e~' "'+1) (2.17)

p ( )=- QS;; (E)=—g ask (E) .
i, a a k

(2.18)

A further important quantity is the quasiparticle density
of states (QDOS)

To ifR; =Rp
t) if R, —Rjp=h)

Tap
t, if R, —Rjp=h,
0 otherwise .

(2.7)

We define

p (E)= QS;; (E)= Qsk (E)1
(2.19)

as the a sublattice QDOS. Because of general sysmmetry
we have to assume

Hopping between nearest neighbors of a chemical lattice
with ABAB structure always means intersublattice hop-
ping,

p„(E)=pit (E) ferromagnet,

p~ (E)=pti (E) antiferromagnet .
(2.20)

ee„(k)=t*(k) .

(2.8)

(2.9)

In the case of the ferromagnet total QDOS p (E) and
sublattice QDOS p (E) are, of course, identical.

—ik b,
egg(k)=E/e(k)=t2 y e '=—E(k), (2.10)

E(k) turns out to be the tight-binding approximation for
the Brooch energies of the magnetic Bravais lattice.

The main goal of our study is to find out whether or
not ferromagnetism and antiferromagnetisrn, respective-
ly, may be possible within the framework of the Hubbard
model. We shall investigate, for which Coulomb interac-
tions U, band occupations n (0 ~ n ~ 2), and lattice struc-
tures the sublattice magnetization

m„=(n„t) —(n„ )i=m (2.11)

becomes unequal zero. We assume that each sublattice
orders ferromagnetically, if at all, but so that

Formally, ~t (k)~ is the tight-binding approximation for
the Bloch energies of the chemical lattice, but with k
from the Brillouin zone of the magnetic lattice. Hopping
between next-nearest neighbors means hopping within a
given sublattice

B. The "free" system

apHo= X Tij ciu~cgp~= X sett(k)cka~ckp~ .
~»J~ O' k, o
a, p a,p

In order to diagonalize Ko,

Ho g rt (k)dkt dk p (p= T-).
k, a,p

(2.21)

(2.22)

We introduce new one-particle construction operators
dk~p~dk~p~

kop Y ApckAo +QBpckBcr

kop ~ Ap kAo ' 7 Bp kBo

(2.23)

(2.24)

They shall obey the usual Fermi anticornmutator rules,

[dkcrp, d k (y p ]+=5kk 5cr~ 5p (2.25)

We first inspect the free ( U =0) system, because it will
be the starting point for our self-consistent moment
method. It is defined by

mA =mB ferromagnet,

m A
= —mB antiferromagnet

(2.12)

(2.13)

[dkcrp dk'cr'p'1+ =o

implying therewith for the coefFicients y A, yBp,

(2.26)
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ly A, I
+ lya, I' —1 y A+y A —+ya+ya —=0 . (2.27)

The commutator of dk with Ho can be calculated in a
twofold manner, namely by use of (2.22),

g (elr' ')

1.0-

[dkcrpr Ho] t—)p(k)(y ApCk Air +1 BpCkBir )

as well as with (2.21)

[dk~prHo] —=y Ap[E(k)ckA~+t(k)cka~]

(2.28)

4--

0.5-

I I

1

E(e)/)

+yap[E(k)c„a +t*(k)ck„] . (2.29)

The last two equations provoke the following homogene-
ous system of equations:

y„[E(k)—q (k)]+ya t'(k)=0,

yA t(k)+yap[E(k) —q (k)]=0,
the secular equation of which is solved by,

gp(k)=e(k)+pit(k)l (p=+) .

(2.30)

(2.31)

Equations (2.27), (2.30), and (2.31) determine the
coeScients y z ~, and therewith the transformation
(2.23) and (2.24):

dk.,=(
2 )'"IckA. +p[t «)/lt (k) l]cka. I,

dk =(—,
')' Ick„+p[t*(k)/It (k)l]cka } . (2.33)

0 0, 1 Q2 Q3 Q4 Q5 06 Q7 QB Q9 1

The reversion reads

c„,.=(-,')'"(d„. +d,. ),
cka =(—,

' )'~ (dk ~ —dk ) It (k) I /t(k) .

(2.34)

.(2.35)

(E)= "d(t —t')e"" "-"
ko.p 277

X([dk (t),dk p(t')]+),

Dg,
—P(E) J' +

d(t ti) tlaE(t —t')

oo 2'
X([dk p(t), dk p(t')]+) .

(2.36)

(2.37)

By use of these d operators we can define two new one-
particle spectral densities

Sooner model
FIG. 1. T =0 phase diagram of the Stoner model in terms of

Coulomb interaction U and band occupation n. Solid lines are
the phase boundaries between paramagnetism (PM), fer-
romagnetism (FM), and antiferromagnetism (AFM). Ferromag-
netic (antiferromagnetic) solutions exist above the dashed-
dotted (dotted) line. The phase diagram is symmetric to the
n =1 axis. The 1~n ~2 region is, therefore, attainable by
reAection on the n =1 axis. The inset shows the Bloch density
of states po of the free (U =0) system as function of energy. The
bandwidth 8'is 3 eV.

of this paper.
For the free system (U =0) the functions A and D are

especially simple. Because of
The connection with the "original" spectral densities
Ska(E), defined in (2.14), follows directly with (2.34) and
(2.35),

—i/Aq (k)t
dk p(t)=d„pe

we find with (2.25)

(2.42)

S„" (E)= —,
' g [A„p(E)+Dkp' p'(E)],

P

Sk (E)= ,' g [ A„p(E)—D—kp' p'(E)],

S,".'(E)=-,'[It (k) I/t'(k)]

X gp[Ak (E)—D(kp p)(E)],
P

Sk."(E)=-,'[It(k) I/t (k)]

X gp[Ak (E)+D(kp p)(E)] .

(2.38)

(2.39)

(2.40)

(2.41)

A'„' (E)=A'5(E —gp(k)),
(0)D(P, —P) (E) 0 (2.43)

The upper index 0 shall indicate the U =0 case. For the
interacting system (U&0) (2.42) is no longer valid. A
and D then become very much more complicated.

With (2.42) in (2.38) and (2.39), respectively, we can
formulate the so-called Bloch density of states (BDOS)
pp(E),

p' '(E)=p' '(E)

We shall use these relations several times at a later stage
p, (E)= ++5—(E —q, (k)) .

k p

(2.44)
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The k summation runs over the first Brillouin zone of the
magnetic Bravais lattice.

The actual evaluation of our theory, which we are go-
ing to present, will be performed with

.(k)+ U& n„.) —E.,(k)
y p(k)= E „(k)—E ~(k)

=1—y (k), (2.54)

E(k) =
—,'[ cos(k a)+ cos(k a)+.cos(k, a)]

(a is the Bravais-lattice constant), and

(2 45) turn out to be spin independent for the ferromagnet,

(FM)(k ) (2.55)

t(k)= 2E(k) . (2.46) but depend on spin in antiferromagnetic systems

The resulting BDOS is plotted as the inset in Fig. 1. The
total bandwidth 8'is 3 eV. (AFM)(k )

[U'm'+4~t (k) ~'](" (2.56)

C. Stoner model

In order to get a first insight into the physics of the not
exactly solvable Hubbard model, let us have a short look
at the simplest approximation, which uses a mean-field
diagonalization of the Coulomb interaction term (Stoner
model),

aPHs g Tj~c;~~cjtt
t, J, CT

—g Eat)~(k)CkaoCkpcr
ko.

T,,t.' = T,,t'+ U& n. .)S,,S.,

(2.47)

(2.48)

This model Hamiltonian has the same structure as Ho in
(2.21). We can, therefore, diagonalize Hz strictly along
the line, sketched for Ho in Sec. II B. After simple ma-
nipulations one finds the following sublattice QDOS:

p'„'(E) =—g g y ~(k)5(E —E ~(k) } .1

N
(2.49)

+p[ —,'U (&n~ ) —
&nt) )) +~t(k)~ ]'~

(2.50)

are spin dependent for the ferromagnet ( & n „)
E'"„'(k)=g~(k)+ U& n ), (2.51)

but spin independent in the case of an antiferromagnet

E' " '(k)=e(k)+ 'Un+p[ —'U m—+ ~t(k)~ ]'

(2.52)

Here we have introduced the average particle number per
site.

&n (2.53)

which in any case is independent of sublattice index n.
The spectral weights in (2.49), however,

pt) '(E) follows from p'„'(E) according to (2.20). The
quasiparticle energies E ~(k)

E „(k)=s(k)+—,'U(&n„)+&nt) ))

exists for all parameter constellations. However, under
certain conditions, concerning U, n, and T, additional
ferro- and antiferromagnetic solutions appear. At T =0
the internal energy Fo has to decide which solution is
stable,

Eo=&Hs)= g E p(k)f (E ~(k)) .
k,p, o.

(2.59)

The corresponding T =0 phase diagram of the Stoner
model is plotted in Fig. 1. For small band occupations n
and not too high Coulomb interaction U only paramagne-
tism exists. For a fixed band filling n we find a critical
U," (n), above which a ferromagnetic solution becomes
possible and a critical U, " (n) for the antiferromagnetic
counterpart. With increasing n towards the half-filled
band (n~1), the critical U becomes smaller, where,
however, U," (n) approaches a finite minimum value
U;„. For U (U;„=U," (n = 1), ferromagnetic solu-
tions do not exist irrespective of n. Antiferromagnetism,
however, appears in the half-filled band (n = 1) even for
U =0+.

In wide regions of the (U, n) plane three mathematical
solutions are simultaneously possible. Antiferromagne-
tism (AFM) and ferromagnetism (FM) are always stable
against paramagnetism (PM). AFM dominates in a nar-
row tube around the n =1 axis.

Much can be learned from the quasiparticle density of
states, which is plotted in Fig. 2 for a typical ferromag-
netic situation. We recognize the well-known Stoner pic-
ture for band ferromagnetism, i.e., the exchange splitting
into two spin-polarized subbands. They are nondeformed
but rigidly shifted against one another by an energy
amount of Um. The splitting is therefore temperature
dependent, disappearing above Tc. The example in Fig.
2 shows a T=O exchange shift of Um = Un =2.8 eV.
Such a shift has to be removed at Tc. This is the reason
for the unrealistic Curie temperature, predicted by the

(z is a sign factor, z
&
= 1, z t

= —1).
The Stoner QDOS p' ~(k) is decisively influenced by

the average particle number & n ) and therewith by
temperature T and band occupation n (0 ~ n ~ 2).
& n ) must be determined self-consistently via

&n )= f dEf (E)p' ' (E) . (2.57)

It turns out that the paramagnetic solution (PM),

(2.58)
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0.5--

0.5-.

T= 9500K m = 0.285

E(ev)

be extremely unrealistic, so that again the whole tempera-
ture behavior of the band antiferromagnet, as predicted
by the Stoner model, must be questioned.

In many one-electron band-structure calculations
based on density-functional theory, ferro- or antifer-
romagnetism is implemented by an ansatz, which corre-
sponds more or less to the Stoner concept. As we shall
explain in detail in connection with our own propsal for
the T dependence of the QDOS, we consider the Stoner
ansatz as rather misleading.

1.0-. III. SELF-CONSISTENT MOMENT METHOD

FIG. 2. Spin-dependent quasiparticle density of states p~ ~ of
the ferromagnetic Stoner model as function of energy for three
different temperatures. Chosen parameters are indicated. The
bars on the E axis mark the chemical potential p =p{T, n).

(eY ')
AI

2--

(eY ')

Sfoner model
It
lI
l ~T=9eoOK
I I

i I m=O27
( J

""$ T= 10390K

II' I

0 'l1
I

I

I j
I r
I /

i

I ~

II
il
II
&I

Te = 10ZZOK

U =4eV
V =3eV
n =07

E(eV)

FICx. 3. The same as in Fig. 2, but for the sublattice QDOS
p „t t of the antiferromagnetic Stoner model.

Stoner model (T, =9650 K). It is often claimed that the
Stoner model reproduces the ground-state properties
rather well. It is, however, completely overcharged to
describe the correct temperature dependence of band fer-
romagnetism.

In Fig. 3 we have plotted the sublattice QDOS pz (E)
for an antiferromagnetic system, using almost the same
parameters as in Fig. 2. Below T~ both spin spectra are
split into two subbands, where corresponding 1 and
subbands occupy exactly the same energy region but with
different densities of states. This prevents the sublattice
magnetization from being saturated even at T =0, a typi-
cal feature of each antiferromagnet. In the ferromagnetic
case (Fig. 2) saturation is reached as soon as the lower
edge of the 1 subband lies above the Fermi energy. With
increasing temperature the density of states of the low-
energy J, subband grows up at cost of the 1 subband lead-
ing therewith to a continuous decrease of the sublattice
magnetization. Simultaneously the gap becomes smaller,
disappearing for T ~ T~. We see that the mechanism,
which leads to a decrease of magnetization with increas-
ing temperature, is different in ferromagnets and antifer-
romagnets. In ferromagnetic systems it is due to an in-
creasing overlap of 1 and J, subbands. In antiferromag-
nets it follows from a proper change of the QDOS.

Like T& in Fig. 2 the Neel temperature T~ turns out to

A. Spectral-density approach

n, m

X5(E —(E„E)). —(3.1)

:- is the grand canonical partition function. IE ) is an
N-particle eigenstate, an IE„) an (N + 1) particle eigen-
state of the Harniltonian H. E„,E are the correspond-
ing eigenenergies. The spectral density thus represents a
linear combination of positively weighted 5 functions, the
arguments of which contain just the excitation energies
which must be brought up for adding an additional
(k,p, o} electron to the N-particle system. It is easy to
show that in the zero-band width limit (W~O) the spec-
tral density consists of two 6 peaks, positioned at
E E = Tp and E„—E = Tp + U, respectively. In the
8'~0 case the electrons are strictly localized. To add a
further electron to the system therefore requires the ener-

gy Tp, if we place it on an empty site, and the energy
Tp + U if there is already another electron with opposite

As already mentioned in Sec. II A the decisive quantity
of our procedure is the one-electron spectral density
Sip(E), defined in Eq. (2.14), from which we can derive
all information we are interested in. The goal is therefore
to find a physically reasonable approach to this funda-
mental function. Our spectral-density approach (SDA)
consists of two steps. ' First we try to find out the very
general structure of the spectral density, guided by some
arguments from exactly known limiting cases, series ex-
pansions, spectral decompositions, or by other plausible
physical hints. These considerations should result in a
mathematical ansatz for the spectral density, which shall
contain some free parameters. In the second step we then
fit these free parameters by equating a sufficient number
of so-called spectral moments, which can exactly be cal-
culated independently of the required spectral density.
This method has succesfully been applied in several pa-
pers to different models. '

The crucial point is the choice of a physically reason-
able ansatz for the spectral density, the further procedure
then does not need any other approximation.

The natural starting point is the spectral density
Ak ~(E), defined in (2.36) because it is built up by the
operators dk and dk, which diagonalize the free part
Ho of the model Hamiltonian (2.22). The spectral
decomposition of this fundamental function reads as,
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spin present. For finite bandwidth (&&0) we have to
take into consideration the itineracy of the band elec-
trons. As soon as we bring an additional (k,p, o ) electron
into the system, the hopping of the already present elec-
trons may lead to a change in the number of doubly occu-
pied sites as a response to the arrival of the (N+ 1) elec-
tron. As a consequence of such electron correlations, we
have, therefore, to expect satellite peaks in the spectral
density close to the energies Ez+'=To+(d+1)U and
Ez '= To —d U(d = 1,2, . . . ). Furthermore, lifetime
eff'ects will smear out the peaks in the spectral density.
The probability for the appearance of satellite peaks is
surely greater the more likely the electron hopping, and
smaller the larger the Coulomb matrix element U. It has
been shown by Harris and Lange that the weights of the
peaks at E'1+', which are located next to the main peaks

I

2

Ai, (E)=A' g a) (k)6(E —E, ~(k)) . (3.2)

The spectral weights a,. ~(k) and the quasiparticle ener-
gies Ej z(k) are for the moment unknown parameters,
which will be determined by equating exactly calculated
spectral moments. We consider the E (k) to be real
quantities, neglecting therewith damping eff'ects.

The spectral decomposition of the "mixed" spectra1
density DI~' ~'(E), defined in (2.37) reads as

at To and To+ U, scale with (W/U) . The weights of the
peaks at E& &', are proportional to even higher powers of
8'/U. We therefore believe that the following ansatz is
physically reasonable, at least for not too weak electron
correlations:

Dike' i'(E) =—g e "I(E„idk iE ) (E idk iE„)5(E (E„E—))—
n, m

+(E„id k iE„)(E„idk iE, )5(E (E„E—„))I .— (3.3)

~E„) is now an (N+2)-particle eigenstate of the model Hamiltonian. The other symbols have exactly the same mean-
ing as in (3.1). First we have to conclude from (3.3) that there is no real p dependence,

D„'+ -'(E)=D„'-. +I(E)=D„.(E) . (3.4)

Furthermore, by the same philosophy which led to the ansatz (3.2), we are now obliged to accept the following four-
pole ansatz for the mixed spectral density:

2

Di, (E)=Pi g g P) ~(k)5(E —E, (k)) .
j=l p= -+

The quasiparticle energies are the same as in (3.2).

(3.5)

B. Spectral moments

The spectral moments have to be calculated with the model Hamiltonian (2.5). We, therefore, discuss first the mo-
ments of the spectral density S;~ (E), introduced in (2.15). The crucial point is that there are two equivalent expres-
sions for the moments,

M(n)( p) y
'

i j M(n)

1,j
The one reveals the connection with the spectral density,

M„".(a, P) = f dE E"Sg(E), n =0, 1,2, . . . .

while the other allows the determination of the moments independently of the spectral density,

M~'"'(a, P)=([[,. . . , [[c;,H],H], . . . , H], [H, . . . , [H;[H, ct& ] ],. . . , ] ]+) .

(3.6)

(3.7)

(3.8)
r-fold commutator ( n —r)-fold commutator

[,] denotes the commutator, [,]+ the anticommutator, and (. . . ) the thermodynamic average, r is an integer between
0 and n. Tedious but straightforward calculations yield for the first four moments,

M„".'(a, p) =n.,
M~)~(a, P) =s p(k)+o pU(n ),
MI, '(a, P) = g e ~(k)E~&(k)+ UE &(k)((n ) + (n& ) )+ U 6 &(n ),

r

MI, '(a, P)= ps (k)ebs(k)cs&(k)+ U g c, ~(k) e(r13)k((n )+(n& )+(n~ ) )

r, 6 r

+U [e &(k)((n )+(n& )+(n )(n& ))+Bk~ ]+U fi &(n ) .

(3.9)

(3.10)

(3.11)

(3.12)
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Here we have introduced the band correction

Bi,P =BgP (.k)+o pBs (3.13)

Of decisive importance concerning the possibility of spontaneous magnetic order is the spin-dependent band shift 8&. ,

Bs. =—g TP(c; c (2n; —1)) .=1
&~J~f

(3.14)

We demonstrate in the next section how Bg ma. y be expressed by the one-electron spectral density Skp(E), although it
consists of higher correlation functions.

The second term in the band correction turns out to be of minor importance

1 p
—E'k (R.—R. )

B~P. (k)= —+T,,Pe ' '((n; n p ) —(n )(np ) —(ctp c p c; c; ) —(ctp ct c p c; )) .
l,J

(3.15)

The first two terms represent the density correlation between two sites, which obviously disappears in a mean-field ap-
proach. The third term characterize double hopping from site to site, vanishing in the strong-coupling regime
( U)) W, n 1), when double occupancies of lattice sites become rather unlikely. The last term in (3.15) expresses spin
exchange between electrons on different sites, where spin exchange as well as double hopping are unaffected by a spin
reversal (o —o). They are, therefore, not that important with respect to the possibility of ferro- or antiferromagne-
tism. From these reasons we simplify the third spectral moment by

BgP. (k) =0 . (3.16)

For the spectral densities Ak „(E) and Dk (E), which contain the unknown parameters, we need the moments in
special combinations. First we recognize that

p [t*(k)/I t (k)
I
]Mk".'( A, B)=p [t (k)/I r (k) l]Mk".'(B, a ) . (3.17)

Using this and Eqs. (2.32) and (2.33) in (2.36) and (2.37) we find the following connections of Ak (E) and Dk (E) with
S P(E):

A, B
~ .,(E)=—,

' y S;(E)+p[r*(k)/lt(k)l]Sg.'(E), (3.18)

D„(E)= ,' [S„""(E)—S—„(E)] . (3.19)

For the determination of the four free parameters in the spectral density Az (E), we need the following moment com-
bination:

A, B

HAMI, ~'~ =
—,
' g Mk~'(a, a)+p [t*(k)/~t(k)l]Mki"'( A, B), (3.20)

while the mixed spectral density is fixed by

m „'".' =-,' [M'„".'( ~, a) —M„'".'(B,B)] . (3.21)

In order to get a closed system of equations we have finally to express the spin-dependent band shift 8&. by the spectral
densities A k ~(E) and Dk (E). Surprisingly, this is possible, although Bs is built up by highe. r correlation functions.

C. Spin-dependent band shift

According to Eq. (3.14) the band shift Bs is mainly deter. mined by the correlation function

c c. n& ciacrcj yo nia —u &

which we evaluate by the following procedure. First we calculate with (2.5) the commutator

[H, c, ] = g Tr, c +Un, c,t
1?2) P

Multiplying this expression from the right by c & and then averaging yields

U&n, c, c p &=&[0 c, ] cjp &
—g T', (c, c p ) .

m, y

(3.22)

(3.23)



6970 W. NOLTING AND W. BORGIEF. 39

We now define a "higher" spectral density

S,,~ (r, ') =
& [c,z (r), [H,ct„] (t')]+ & (3.24)

and use the general spectral theorem to get

&[H,c;„]c &
&= —f dE f (E) J d(t —t')e'~" " "S,"~ (r —t') .

pS, ~ can be expressed in terms of the one-electron spectral density S; ~

S,,'.(r r') =— —
,—&[c,, (r), c,'. .(r')]+ &--4 Bt' 2~

—i/AE'(t —t')SPa (Ei)
2~4 jl CT

Combining (3.25) and (3.26) leads to

& [H, ct ]c,p &
= —I dE f (E)ESJ~ (E) .

(3.25)

(3.26)

(3.27)

Applying once more the spectral theorem, but now to the one-electron spectral density, we get

&c ~ c &
&=—J dE f (E)S~~ (E) . (3.28)

We insert (3.27) and (3.28) into (3.23)

& n; c; c,ii &
=— g e ' ' I dE f (E)[E6 —e (k)]Sf~ (E) .

k, y

For the band shift (3.29) we need,

g T;,~& n, c," c,& &
= —g e &(k) f dE f (E)[E5~ —

E~ (k)]Sf' (E)

(3.29)

(3.30)

—g T;,~&c; c p
&= go, ii(k) I dE f (E)S~q (E) . (3.31)

If we replace the spectral densities Sk~(E) by Ak (E) and Dk (E) with the aid of Eqs. (2.38)—(2.41) and (3.4), ex-
ploiting also the ansatz (3.2) and (3.5), then we finally get with (3.30) and (3.31) in (3.13) the spin-dependent band shift,

B =
—,'[Q +. (&n &

—&n &)B ],
Q =—g pa „(k)f (E )il (k)=1

k p, j
1 1

(&.„.& —&, .&) ~

(3.32)

(3.33)

x g g Pj p(k)f (E) ~ ) E(k) —(E, ~(k) —E(k) —1 +—t (k) ' . (3.34)

This completes our general theory, because now we have a closed system of equations, which can be solved self-
consistently for the particle numbers & n t &, & n

We mention in passing that (3.29) together with (3.31) allows the determination of the internal energy Eo =
& H &,

E, =&H&= ' y f+ dEf (E)[E6 ~+a ~(k)]ST (E) .
2A k

(3.35)

We need this expression for testing the relative stability
of different magnetic solutions.

&n, &=&ns &=&n

&s', =&s.=&s;

(3.36)

(3.37)

D. Ferromagnetic solutions

The ferromagnet is characterized by two completely
equivalent sublattices 3 and B. So we can assume

According to (3.21) all moments m~z"' vanish identically.
That means for the mixed spectral density Dk (E) in the
case of the ferromagnet,
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Dk (E)=0 pj p
——0 . (3.38) (& „&-& „&)=—.(&,.&

—
& .&) .

&(1—&n &)b (3.39)

The four unknown quantities a, 2 ~,E, 2 ~ in the an-
satz (3.7) for the spectral density Ak ~(E) are determined
by equating the first four p moments (3.20),

pz"'~= I dE E"Ai, ~(E) . (3.40)

If we write for the quasiparticle energies E

E (k) =H (k)+( —1)JK (k),
then it follows from (3.40) and (3.20) and (3.9)—(3.12)

The band shift (3.32) which regulates the appearance of
ferromagnetism simplifies with (3.38) to

p(k)f (E, p )rIp(k)
1

k p, j

X —[E. ..(k) —il, (k) ]—1
2

H (k)= —,'[U+rI (k)+b~(k)],

K (k)= —,'I[U(1 —n) —rj (k)+b (k)]

+U n(2 —n)J'

Here we have defined,

Q+ —,'m il (k)
b (k)=

n (1 n /—2)

(3.51)

(3.52)

(3.53)

The quantity Q is the antiferromagnetic version of (3.33),

Q =—g g,a. (k)f (E )g~(k)
k j,p

The p moments (3.20) are now spin independent, a prop-
erty which is directly referred to the quasiparticle ener-
gies E and spectral weights a p

E (k) =Hq(k)+ ( —1 )JK~(k), (3.50)

H (k)= —,'[U+il (k)+b ],
K ~(k)= —,

' I[U imp(—k)+b ]

(3.42)
X —[E~~(k) —il (k)]—1

2 (3.54)

+4U& n & [il~(k) —b ]] '

The spectral weights turn out to be

E2 ~(k) —il~(k) —U& n

E2 ~(k) —E, ~(k)

(3.43) The spectral weights o.jp are formally very similar to
(3.44)

E2 (k) —g~(k) —
—,
' Un

E2~(k) —Ei~(k)

=1—az (k) . (3.44} =1—a2~(k) . (3.55)

By use of the quasiparticle density of states

p (E)—=p& (E)

=p~ (E)
1 gga. (k)5(E EJ ~), —

k p, j
(3.45)

we Anally get the average number of o. electrons per site:

&..&= I (3.46)

K. Antiferromagnetic solution

The system of equations (3.39)—(3.46) can be solved self-
consistently for a given set of parameters. Results are
presented in Sec. IV.

(3.56)P = —
—,'z mUqjp(k),

q. (k) =
t U + U[8 +(2+n)e(k) X&p ]—1

Jp

+3E (k)+ ~t(k)i —2s(k)X + V. I,
(3.57)

The spin independence of the quasiparticle energies
E (k} makes clear that both spin spectra occupy exactly
the same energy region. Antiferromagnetic moment or-
der must therefore be a density-of-states eFect. Contrary
to the ferromagnet the mixed spectral density Dk (E) is
now unequal zero and of decisive importance for a spon-
taneous moment ordering. %'e determine the still un-
known coefficients p in the ansatz (3.5) by equating the
first four moments m k"' (3.21). After straightforward ma-
nipulations one gets

( A, cr ) =" (8, rr ) . —

That means, e.g. ,

(3.47)

The two sublattices A and 8 of the antiferromagnet are
not equivalent, obeying, however, the obvious spin sym-
metry

X =2(H++H ) E—
&(j,p&8'.„= g (E E' ), —
ti' p''}

Vip =2H+H +2( —1)J 'K H +H —K

(3.58)

(3.59)

(3.60)
&n„.&=&na .& as";.=-as; —.

Let us define the sublattice magnetization m as

(3.48)
The quantity B is the antiferromagnetic version of (3.34).

The sublattice density of states p„(E) consists of two
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parts, one is spin dependent, the other is not

p„(E)= g g [a, (k) —z mUq (k)]5(E —E. (k))
1

2N

(3.61)

The average number of o electrons per site in the sublat-
tice 3 is then given by

gg f (E,, )[,,(k) — Uq (k)] .
1

k j,p

(3.62)

The total number n per site is, therefore, mainly deter-
mined by the spectral weights n

n = g (n )=—gg~, (k)f (E, (k)), (3.63)
k j,p

while the sublattice magnetization m is predominantly
influenced by the coefFicients of the "mixed" spectral den-
sity Dk (E),

g, (eV 'J

1.0'

05.

9"
8"

7 ~ ~

6"

5»

4

0 1

E(eVJ

m = —mU —ggq (k)f (E)~(k)) .1

k j,p
(3.64)

0 0. & 02 03 0.4 0.5 0.6 0.7 0.8 0.9
Equations (3.50)—(3.64) represent a closed system, which
can be solved self-consistently. We discuss the results in
the next section.

IV. DISCUSSION OF THE RESULTS

FIG. 4. As in Fig. 1, the T=O phase diagram in terms of
Coulomb interation U and band occupation n, but now as it re-
sults from our spectral-density approach (SDA) to the Hubbard
model.

A. Magnetic phase diagram

We have evaluated our theory for a Bloch density of
states po(E) as defined in (2.44) —(2.46). po(E) is plotted
as the insert in Figs. 1 and 4. Figure 4 shows the magnet-
ic phase diagram for T=O in terms of the Coulomb in-
teraction U and the band occupation n. We restrict the
representation to 0 ~ n ~ 1. The region 1 n 2 follows
directly by reAection on the n = 1 axis because of
particle-hole symmetry.

We recognize a minimum band occupation no-0. 44,
below which magnetic order is impossible. For n no
ferromagnetic solutions appear, provided U exceeds a
critical value U, (n). For 0.5 n~~ 1 this critical value
is almost constant, slightly greater than the Bloch band
width 8'. For U & 8' the system cannot order ferromag-
netically irrespective of the band occupation n. Antifer-
romagnetism becomes possible for n ~0.77, where again
U has to exceed a critical value U, " (n), which, howev-
er, decreases continuously down to zero for n~1. In
certain (n, U) regions our theory has more than one
mathematical solution; the paramagnetic one, e.g., exists
for all n At T =.0 the internal energy E = (H ), calcu-
lated with (3.35) decides, which solution is stable. In a
narrow n region around the half-filled band (n =1) anti-
ferromagnetism dominates where this region is broadest
for U = 8, obviously the most convenient parameter con-
stellation for an antiferromagnetic moment ordering.
For larger U the phase line between antiferro- and fer-
romagnetism approaches more and more the n =1 axis.

The same holds for smaller U for the phase line between
antiferro- and paramagnetism, which runs into n = 1 for
U —+0+. Very recently Zhao et al. have calculated a
magnetic phase diagram by use of a perturbational
method, which in the strong-correlation regime
(W/U((1) is qualitatively very similar to our result.
They confirm, e.g. , the existence of a critical band occu-
pation no, below which collective magnetic order is im-
possible. On the other hand, in the Stoner model a criti-
cal n value does not appear (Fig. 1). In the weak-
correlation regime (U(( W), however, there is a certain
resemblance of our phase diagram in Fig. 4 to the Stoner
result in Fig. 1. Generally the Stoner model overesti-
mates the possiblility of spontaneous magnetization.

A controversial discussion may arise from the observa-
tion that our approach predicts that the antiferromagnet-
ic solution at T=O remains stable along the n =1 line
down to U =0+

~ This contradicts some previous
works based on Gutzwiller's variational approach,
which point to a critical U, &0 for the antiferromagnet,
too. Our spectral-density approach uses, in principle,
only one assumption, which concerns the general struc-
ture of the one-electron spectral density. This is just the
two-pole ansatz (3.2). Further evaluation is rigorous.
Equation (3.2) is surely justified for large U, say U ) W.
We consider it, however, plausible for moderate and even
for small U, too, at least as long as we are not interested
special life-time effects. We have, of course, to admit that
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our ansatz cannot be justified in the weak-coupling re-
gime so convincingly as for U & 8'. For weak correlation
(U « W) the Hartree-Fock approach (Stoner model),
however, should be reasonable. The resemblance of the
phase diagram in Fig. 4 with that in Fig. 1 in the weak-
coupling regime therefore strongly supports the assump-
tion that the SDA works well in the entire (U, n) region.

On the other hand, the various theories, which start
from an extension of Gutzwiller's variational method to
the antiferromagnetic state, come to partially contradict-
ing statements about the U&(8' regime, because they
use different additional approximations. In Refs. 46—48
a critical U, is found, below which antiferromagnetism
becomes unstable against paramagnetism, while the
Gutzwiller-type variational approach of Kakehashi and
Fulde is in complete agreement with our conclusions in
Fig. 4 (see also Fig. 1 in Ref. 31). The approximations
used by Florencio and Chao in Ref. 48, e.g. , are so res-
trictive that the authors themselves point out that the
real criterion for antiferromagnetism should be less
stringent than what is predicted by their own theory.

B. Spontaneous magnetization

The self-consistently calculated sublattice magnetiza-
tion m, which in the case of a ferromagnet (FM) is, of
course, identical to the total magnetization, shows a
strong T and n dependence. Both are direct conse-
quences of the respective behavior of the quasiparticle
density of states (QDOS) discussed in detail in Sec. IV D.
In Fig. 5 we have plotted the n dependence of the T=0
magnetization for a ferromagnet, and in Fig. 6 for an an-
tiferromagnet (AFM). As can already be read off from
the phase diagram in Fig. 4, there exists a minimum band

- 7.0

Iv'=3eV

100

U/ev

0.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n

FIG. 5. Magnetization m =m(T=O} of the ferromagnetic
Hubbard model as function of band occupation n for various
values of the Coulomb interaction U ( W =3 eV). Dashed-
dotted line indicates ferromagnetic saturation (m =n). The
dashed line belongs to the ever existing second solution, which
is always less stable than the other one, therefore plotted here as
an example only for U =4 eV.

AFM

-0.5

0.75 0.80 0.85 0.90 0.95
—— 0.0
1.0

occupation no( U), below which collective magnetism
cannot appear. In both cases, FM as well as AFM, no
shifts with increasing U to lower values. In the strong-
coupling limit (U~ao) (Ref. 7) we find no(FM)=0. 44,
no(AFM) =0 77 The. m.agnetization m ( T =0) of the FM
(Fig. 5) increases very steeply with n, running into the
saturation (m =n) for n ~ n, (U) &1, where n, (U) shifts
to lower values for increasing U. This is different in the
case of an AFM. It is a typical feature of antiferromag-
netic systems that the sublattice magnetization does nev-
er reach the saturation. The deviation from saturation
for a given n is greater the weaker the Coulomb interac-
tion U. The deviation is reasoned by the fact that the
sublattice QDOS of an AFM occupies for both spin
directions, o = $ and o = 1, exactly the same energy re-
gion (see Figs. 14 and 15). Filling the subbands with
charge carriers up to the common Fermi edge yields al-
ways a finite number of particles with minority spin, re-
sulting in I &n On the . other hand, m&0 is due to
p t+p t. For the FM it may happen under certain con-
ditions that the 1 states are all shifted above the Fermi
edge, so that m =n holds.

It should finally be mentioned that for FM a second
solution exists, which sets in at a higher no value and
never does reach the saturation. It is plotted in Fig. 4 as
an example for U =4 eV. This solution turns out to be
always less stable than the higher-magnetized state. We
therefore omit it in the following. A more detailed dis-
cussion of this second solution is given in Ref. 7. Its ex-
istence seems to be an inherent property of the Hubbard
model. "

The temperature dependence of the magnetization I
of a FM is exhibited in Fig. 7 for several band occupa-
tions n and different couplings U/O'. We observe first-

FIG. 6. Sublattice magnetization m =m(T=0) of the anti-
ferromagnetic Hubbard model as function of band occupation n

for various values of the Coulomb interaction U ( W = 3 eV).
Dashed-dotted straight line indicates the never-reached antifer-
romagnetic saturation (m =n). The lower dashed-dotted curve
separates first-order {above) and second-order (below) phase
transitions.
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FICx. 7. Magnetization m of the ferromagnetic HuHubbard mod-

el as function of temperature T for three diff'erent values of the
coulomb interaction U, and various band occupations n, w ic
are plotted as numbers near the respective m-T curve. First-
order transitions are indicated by broken lines.

s below the dashed-dotted line in Fig. 6.
the case of a discontinuous transition the magnetiza ion
m T) runs first through a more or less pronounced
minimum, after which it increases with increasing T up

h b kdown at T . This phenomenon (heat magne-
tization is c ear y a)

'
learly a QDOS -effect. The sublattice Q

erature thatp (E) is so sensitively dependent on temperature t a
p (E =p) will strikingly change with T, which may lead
t h anomalous m (T) behavior. Similar properties of
the Hubbard model have been mentioned in Re .

C. Critical temperatures

The critical temperatures of a ferromagnetic or antifer-
romagnetic Hubbard system turn out to be strong y
dependent on Coulomb interaction U and band occupa-
tion n. Furthermore, the lattice structure plays a non-
negligible role.

The Curie temperature T& of a FM is plotted as a func-
tion of U in Fig. 9 and that for various values of n. Ac-
cording to the phase diagram in Fig. 4 there exists or
each n a minimum value U;„(n) of the Coulomb interac-
tion at which ferromagnetism sets in. For U & Umin~ c
first increases very steeply with U, changing, however,
later into a rather Aat part. The asymptotic U~~
values for the Curie temperatures of the plotted examples

as well as secon -or erd- d transitions. The closer the carrier
concentration o n =t =1 the more likely the transition wi
be of first order. In all cases m (T) decreases with in-
creasing T.

The temperature behavior of m is especia y in e
'

g
'

ll interestin
FM (Fi . 8). We again observe first- as well as

second-order transitions, where the latter appear or
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FIG. 8. The same as in Fig. 7, but for the sublattice magneti-
zation of the antiferromagnetic Hubbard model.
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occupations n. ro enBroken lines: first-order transitions; solid lines:
second-order transitions. Arrows indicate the U~ ~ va ues o
Tc
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FIR. 11. Quasiparticle density of states of the paramagnetic
Hubbard model at T=O K as function of. energy E for three
different values of the band occupation n. Bars mark the corre-
sponding Fermi edges. Parameters are indicated.
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FIG. 10. Neel temperature T~ of the antiferromagnetic Hub-
bard model as function of Coulomb interaction U for various
band occupations n. Dashed lines: first-order transitions; solid
lines: second-order transitions.

(0.5 ~n ~0.8) lie in between 400 and 800 K. They are,
therefore, much more realistic than those of the Stoner
model, which typically amount to some 10 K (Fig. 2}.
For a given U, Tc first increases with n (up to n =0.9),
runs through a maximum, and decreases again for
n ~1.

Contrary to Tc the Neel temperature Tz of an AFM
exhibits a maximum as function of U (see Fig. 10}. This
points to the fact that antiferromagnetism is obviously
favored by intermediate couplings U/8, while fer-
romagnetism is more stable in the strong-coupling limit
U —+ ao. As function of n for fixed U, T& behaves qualita-
tively similar to Tz, starting at a minimum band occupa-
tion no, running through a maximum, and coming down
again for n ~1.

All these results for the critical temperatures Tc and
T~ are in remarkable qualitative agreement with those
presented in Ref. 33, where a perturbational treatment of
the Hubbard model in terms U/8'is used for an approxi-
mate calculation of the susceptibility y.
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U, T, n have been considered as variables.
For all parameter constellations, paramagnetism

(m =0) turns out to be a possible mathematical solution
of the SDA. In Fig. 11' we have plotted the paramagnetic
T =0 QDOS for three different band occupations
n =0.1, 0.5, 0.84, in order to demonstrate its sensitive n
dependence. Note, however, that for n =0.84
paramagnetism is unstable against ferromagnetism (Fig.
4). The whole spectrum is divided into a low-energy and
a high-energy part. Roughly speaking, the low-energy
part results from an electron hopping over empty sites,
while the high-energy part corresponds to an electron
hopping onto sites which are already occupied by an elec-
tron of opposite spin. In the latter case the electron must
bring up the Coulomb interaction energy. This explains
qualitatively why the two subbands are separated by an
energy amount of order U (here U =2 W) and why the
width of the lower subband decreases roughly according
to (1 n /2) with incr—easing n while the upper subband
becomes broader according to n /2. For n —+0 the upper
subband disappears, and the lower subband changes con-
tinuously into the free BDOS po(E).

The mechanism, which creates ferromagnetic order, is
strikingly different from that being resposible for an anti-
ferromagnetic order. Figure 12 shows for two different

D. Quasiparticle density of states
0.5- ~

n =0.6
m=0.326

All the above-presented magnetic properties of the
Hubbard model find a natural explanation by the respec-
tive behavior of the quasiparticle density of states
(QDOS}. This function is decisively influenced by four
quantities, namely the Bloch density of states (BDOS)
po(E), the Coulomb interaction U, the band occupation
n, and the temperature T. For po(E) we have taken the
model function (2.44) plotted as the inset in Fig. 4, while

1.0"

g (eV ')

I
I
I

I I

L

FICx. 12. Quasiparticle densities of states p& and pt for the
ferromagnetic Hubbard model at T=0 K as function of the
band occupation n. Bars mark the corresponding Fermi edges.
Parameters are indicated, in particular the self-consistently cal-
culated magnetization m.
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FM
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particle concentrations the T =0 QDOS of the self-
consistent ferromagnetic solution. One observes a re-
markable n dependence, mainly due to the very impor-
tant band shift Bs. , (3.39), which causes a strong spin
dependence of the quasiparticle energies E~ «(k)
[(3.41)—(3.43)] and of the spectral weights a (k)
[(3.44)]. The consequence is that in the low-energy part
of the spectrum the J subband is substantially narrowed
and also shifted to higher energies compared to the
respective 1 subband. According to (3.46) (nt ) is now
greater than ( n

&
) which means a finite spontaneous

magnetization m. The band narrowing of the lower o
subband roughly scales with (1—(n )). With increas-
ing n the magnetization m grows up (Fig. 5). So the t'

subband becomes broader with increasing n, , reaching the
full width 8'of the Bloch band in the ferromagnetic satu-
ration m =n for n ~ n, On. the other hand, the lower J,

subband shrinks with increasing n, being finally located
completely above the Fermi energy for n )n„ i.e.,
(nt ) =0. The subbands in the high-energy part of the
spectrum which are for n (1 and U =6 eV as in Fig. 12,
of course unoccupied, behave quite opposite. Their
widths scale roughly with (n ). In the ferromagnetic
saturation (( n

&
) =n, ( n t ) =0) the upper 1 subband

disappears, because a propagating f electron cannot meet
a l electron.

The temperature dependence of the ferromagnetic
QDOS comes into play according to our SDA only by
Fermi functions. In Fig. 13 we have plotted for a band
occupation n =0.7 the QDOS for three different temper-
atures, which demonstrate the transition from ferro- to
paramagnetism. It is mainly the lower 1 subband, which
causes the temperature behavior of the magnetization.
The f subband does not change so drastically with T.
For T ) Tc, 't and J spectrum, of course, coincide, but
the upper and lower parts of the spectrum remain
separated by a gap of order U. This is the main reason
for the realistic Tc values in the SDA (Fig. 9). In the
Stoner theory (Fig. 2) the thermal energy has to close a
gap of several eV leading to extremely unrealistic Curie
temperatures. In the SDA only the relative shift and
some kind of deformation of 1 and J, subbands in the

05--
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lower and higher part, respectively, of the excitation
spectrum have to be removed for T~Tc.

According to our general result (3.50) antiferromagnet-
ic order cannot be caused by a spin dependent shift of the
quasiparticle energies as it is the case in the ferromagnet-
ic Hubbard model. In the antiferromagnetic model the
quasiparticle energies are spin independent. They are,
however, connected with spectral weights, which under
certain conditions may be different for 1 and $ electrons.
That means that 1 and $ subbands of the sublattice
QDOS p (E) of the antiferromagnetic Hubbard model
occupy exactly the same energy regions, but with
diA'erent state densities. This can be seen in Fig. 14,
where we haver plotted p~ (E) [p~ (E) is identical to
p~ (E)] for T =0 K and for two different band occupa-
tions. We observe again, as for paramagnetism (Fig. 11)
and for ferromagnetism (Figs. 12 and 13) that the total
excitation spectrum is split into a low- and a high-energy
part, separated by an energy amount (Hubbard gap) of
order U. The sublatticce structure of the antiferromag-
net leads, however, to an additional splitting of both
parts into subbands, which are classified by the quantum

05--

l

E(eV) ="
-0,5

1

0 Q5
E(eY)

10--

g (ev',

U=6eV
V=3eY
n =0,7

FIG. 13. The same as in Fig. 12, but now for two different
temperatures and a fixed band occupation n =0.7.

FIG. 14. Sublattice quasiparticle densities of states p& ~ {solid
line) and p„t (broken line) of the antiferromagnetic Hubbard
model at T=O K as function of energy E. Lower and upper
part belong to two different band occupations n. Arrows on the
E axis mark the corresponding chemical potentials. Parame-
ters, especially the self-consistently calculated sublattice magne-
tization m, are indicated.
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