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Magnetovolume instabilities and ferromagnetism versus antiferromagnetism
in bulk fcc iron and manganese
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Total-energy band calculations, including an antiferromagnetic extension of the fixed-spin-
moment procedure, are used to study magnetovolume effects in bulk fcc iron and maganese. By
constraining these systems to have a fixed tota1 magnetic moment in a single-atom fcc unit cell, we
find magnetovolume instabilities in the form of first-order transitions from nonmagnetic to fer-
romagnetic behavior. Constraining the moments to have fixed values in a CuAu unit ce11 of two
atoms to allow for antiferromagnetic (and field-induced ferrimagnetic) order alters these instabilities
and yields second-order transitions from nonmagnetic to antiferromagnetic behavior at volumes
coincident with the equilibrium volumes for both metals.

I. INTRODUCTION

Although iron, under normal conditions, has a fer-
romagnetic ground state and the bcc crystal structure,
there has long been considerable interest in the fcc (y)
form which exists at high temperature and which can be
stabilized by precipitation in a copper matrix. This in-
terest'has been recently intensified by the successful sta-
bilization of thin epitaxial layers of fcc iron on fcc
copper ' substrates, and by new work on Invar alloys
which contain iron in a fcc environment. Since experi-
mental evidence for both antiferromagnetic and fer-
romagnetic order is found in these epitaxially stabilized
structures, a study of the volume ranges of stability of the
different forms of magnetic order is interesting. There is
a similar interest in manganese which has complicated
crystal structures but also exists in both the fcc and bcc
form at high temperatures. The simpler forms of man-
ganese are of current interest because they may be stabi-
lized by epitaxial growth on cubic substrates. In this
case, the form of magnetic order (or lack thereof) is also
of interest.

A number of band-theoretical treatments have demon-
strated that fcc iron can be antiferromagnetic in certain
volume ranges. Kubler used a total-energy augmented-
spherical-wave (ASW) method to show that this system
can be nonmagnetic, ferromagnetic, or antiferromagnetic.
Although fcc iron was initially found to have an antifer-
romagnetic ground state, subsequent work showed the
antiferromagnetic and nonmagnetic solutions to have al-
most identical total energies at equilibrium. Later work
by Wang, Klein, and Krakauer, based on a full-potential
linearized augmented-plane-wave method, yielded similar
results, and, in addition, found evidence for a low-spin
ferromagnetic solution. Using a disordered-local-
moment model, Pinski et al. also find a transition from
zero to finite local moments with antiferromagnetic in-
teractions as volume is increased.

Using total-energy band calculations, Kubler also
found evidence for antiferromagnetism in fcc (and bcc' )

manganese. More recently, Fry et al. " used Stoner
theory and q-dependent susceptibility to predict an anti-
ferromagnetic state for fcc manganese. Recent ASW re-
sults' based on a fixed-spin-moment (FSM) method'
map the volume range of existence for the nonmagnetic,
and the low-spin and high-spin ferromagnetic states for
fcc iron. With increasing volume, the system was shown
to undergo two successive first-order transitions, first
from nonmagnetic to low-spin, and then to high-spin be-
havior, demonstrating that the system undergoes a series
of magnetovolume instabilities. This latter result, which
does not consider antiferromagnetic ordering, has also
been obtained by Krasko' using a Stoner analysis, and
has been used by Marcus and Moruzzi' to demonstrate
that band-theory results are equivalent to a generalized
Stoner' analysis in which the Stoner parameter is a func-
tion of magnetic moment and volume.

Band-theoretical evidence for magnetovolume instabili-
ties in both bcc and fcc manganese is implicit in our ear-
lier total-energy work' and in the results of Brener
et al. ' Neither of these studies considered antiferro-
magnetic order. The present work extends our earlier
calculations of fcc iron to include both antiferromagnetic
and ferrimagnetic order, and considers ferromagnetic, an-
tiferromagnetic, and ferrimagnetic order for fcc man-
ganese. In the present calculations, we remove the con-
straint that the systems can only have. ferromagnetic or-
der by considering a two-atom CuAu unit cell, thereby
permitting one form of antiferromagnetic and ferrimag-
netic order to develop. We use ASW spin-polarized band
calculations' with the local density approximation and
an extension of the FSM method to study magnetovo-
lume effects in fcc iron and manganese over an extended
volume range. Our results demonstrate that the removal
of simplifying constraints used to facilitate band calcula-
tions can lead to the removal of magnetovolume instabi'. i-
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ties. That is, the constraints implicit in the model used in
the calculations preselect particular solutions. With the
removal of ferromagnetic constraint, we now find, in
agreement with Kubler ' and with Wang et al. , that
both systems have a tendency for antiferromagnetic rath-
er than ferromagnetic order. In addition, we show that
the onset of magnetic behavior coincides with the equilib-
rium volume and that antiferromagnetism is favored over
a considerable range of volume expansion.

II. FSM ANTIFERROMAGNETISM

The FSM method is a procedure for doing total-energy
spin-polarized band calculations at a given volume for a
system constrained to have a fixed magnetic moment M.
The basic calculated quantity is the total energy E, which
varies with M. The moment may be considered to be
constrained to have the fixed value by an effective exter-
nally applied magnetic field given by H =dE/dM. For
the given volume, stable solutions are represented by M
values corresponding to points where 0=dE/dM=O
and d2E/dM2) O

The idea of the FSM method, namely of imposing addi-
tional constraints on the band calculation to select partic-
ular types of solutions, can be readily extended to other
magnetic states, including antiferromagnetic and ferri-
magnetic states. In Fig. 1 we show total energy versus
magnetic moment curves obtained with three different
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FIG-. 1. Calculated total energies vs fixed moment for fcc
iron for res=2. 68 a.u. The nonmagnetic, low-spin, and high-
spin solutions are labeled on the curve corresponding to a fer-
romagnetic constraint. The curve labeled AFl corresponds to a
FSM calculation in which two inequivalent iron atoms are ar-
ranged on a CuAu lattice to allow for antiferromagnetism. For
these two cases, the total moment is constrained to have the in-
dicated value. The curve labeled AF& also corresponds to a
CuAu calculation, but here, the individual local moments are
constrained to be equal and opposite. In this case, the total mo-
ment is zero and the local moments have the indicated values.

types of constraint for fcc iron at a volume V correspond-
ing to a, Wigner-Seitz radius, res =2.68 a.u. , where
V=(4m. /3)rws. The curve labeled nonmagnetic (NM),
low spin (LS), and high spin (HS) corresponds to the con-
strained ferromagnetic case in which the moment of
every atom in the system must have the same magnitude
and direction. The NM, I.S, and HS zero-field solutions,
corresponding to the three local minima, imply a coex-
istence of three different solutions at this volume.

The curve labeled AF& corresponds to a two atom per
unit cell calculation in the CuAu structure with the tota1
moment constrained to have a given value and the two lo-
cal~oments free to adjust so as to minimize the total en-
ergy. This structure corresponds to type-I antifer-
romagnetism (AF) in which (001) planes have alternating
local moments. Here, the algebraic sum of the individual
local moments is required to be M. At M=O, the two lo-
cal moments are equal and opposite, i.e., the solution at
M=O which minimizes the total energy yields local mo-
ments of plus and minus 1.6pz. The solutions at any
finite total moment actually correspond to ferrimagnetic
solutions in which the local moments are unequal, but
sum to the constrained total moment. The curve labeled
AF2 corresponds to a different constraint on the two-
atom cell. In this case, the two atoms are constrained to
have equal but opposite local moments with zero total mo-
ment. That is, the local moments are not free to adjust,
but have the prescribed values given in the figure.

The three calculations represented in Fig. 1 have a cer-
tain amount of overlap. First, note that at M=O the AF2
results coincide with the NM solution found with the fer-
romagnetic constraint. Since the local moments are zero
for both constraints, this coincidence in the total energy
is expected. Next, note that the minimum for the AF2
curve occurs at the same energy as the minimum for the
AF, curve. The energy coincidence of these two solu-
tions implies identical states. In the AF, case, we con-
strain the total moment and find an energy minimum for
M=O with equal and opposite local moments of 1.6pz.
In the AF2 case, we constrain the local moments to be
equal and opposite (M=O) and find an energy minimum
for local moments equal to 1.6p~. Thus the AF, and AF2
calculations may be viewed as two different strategies for
obtaining the same information. In both cases, we find an
energy minimum for an antiferromagnetic state with lo-
cal moments of 1.6p~. Finally, note that the AF2 curve
crosses the curve for the ferromagnetic constraint at
M =2.3pz. Thus, at I ws =2.68 a.u. , the interatomic ex-
change (J in the Heisenberg model) is antiferromagnetic
for magnetic moments ~ 2.3pz and ferromagnetic for
magnetic moments ~ 2.3p&.

Having shown that AF, and AF2 yield the same basic
information, we now discuss the AF& calculations for
finite total moments. Operationally, we perform FSM
calculations as a function of volume for a CuAu unit cell
with two inequivalent atoms. As shown in Fig. I, we first
find the antiferromagnetic solution at M=0 given by the
AF, curve. As a function of increasing moment, we fol-
low this antiferromagnetic branch with field-induced
inequivalent local moments, to approximately M
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respectively. For a given volume, the magnitude of the
up-spin local moment increases with increasing total mo-
ment. The magnitude of the down-spin local moment de-
creases to keep the sum equal to the fixed (imposed) total
moment. The diagonal line corresponds to the ferromag-
netic constraint with equal and parallel local moments.
For iron, instabilities like that at M =1.lpga discussed
above for res=2. 68 a.u. lead to a blank region where
self-consistency is dificult to achieve. The curious curva-
ture starting at res=2. 64 a.u. appears to be a conse-
quence of the proximity of LS solutions apparent in Fig.
2. Manganese, which does not exhibit a LS state, also
shows no sign of instabilities and has a more regular local
moment behavior.

III. DISCUSSION

MOMENT (p /atom)

FIG. 4. Field-induced local moments for fcc iron in the
infinite anisotropy limit as a function of fixed total moment for
selected Wigner-Seitz radii. The diagonal line with a slope of
unity corresponds to local moments for a ferromagnetic con-
straint (equal local moments).
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FIG. 5. Field-induced local moments for fcc manganese in

the infinite anisotropy limit as a function of fixed total moment
for selected Wigner-Seitz radii. The diagonal line with a slope
of unity corresponds to local moments for a ferromagnetic con-
straint (equal local moments).

The results described in this work differ in detail from
previous results. We note that previous work did not
specifically report the singular nature of the onset of anti-
ferromagnetic behavior, nor the coincidence of the onset
with the equilibrium zero-pressure points. In addition,
we have extended the range to larger volumes, and have
explored the ferrimagnetic behavior of fcc iron and man-
ganese as the two-atom unit cell acquires a finite moment.
The present calculations failed to reveal stable, zero-field
ferrimagnetic solutions, but there are indications that
such behavior is impending in fcc iron and may occur in
other systems.

Bulk fcc iron calculations excluding antiferromagnetic
behavior yield NM, LS, and HS solutions. With increas-
ing volume, the system undergoes two successive first-
order transitions (from NM to LS to HS). For man-

ganese, we find a single first-order transition in the vicini-

ty of rws=2. 85 a.u. These first-order transitions corre-
spond to magnetovolume instabilities. The antiferromag-
netic solutions tend to remove these instabilities and al-
low both systems to develop magnetic properties more
gently. For iron, the antiferromagnetic solution is pre-
ferred (has the lowest energy) throughout the narrow
volume range of existence for the LS state. At res -2.71
a.u. the system still undergoes a first-order transition
from antiferromagnetic to ferromagnetic (HS) behavior.
This transition represents a remaining magnetovolume
instability that may change with the use of different con-
straints (e.g., other types of antiferromagnetic order or
noncollinear local moments).

Our results for fcc iron differ from those of Wang
et a/. in the position of the antiferromagnetic transition
(we find the transition at a larger volume), in the initial
form of the M( V) curve (our curve rises with infinite
slope at the transition), and in the range of existence for
the LS state (we find a much more restricted range con-
tained entirely within the high-spin regime). Our results
for fcc manganese differ from those of Brener et al. ' by
displaying the antiferromagnetic solution along with total
energies for both ferromagnetic and antiferromagnetic
states.

Since the position of the transition from nonmagnetic
to antiferromagnetic behavior for both fcc iron and man-
ganese coincides with the equilibrium, or zero-pressure
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Wigner-Seitz radii, the two solutions are degenerate at
this volume. However, our results imply antiferromag-
netic order with increasing local moments for systems
which are epitaxially "clamped" at volumes larger than
equilibrium. At volumes less than equilibrium, zero local
moments are expected. We note that, as in the case of
the onset of ferromagnetic order, the onset of antiferro-
magnetic order is singular, i.e., dM/d Vis infinite (here M
is the sublattice magnetization). This is a direct conse-
quence of the change in sign of the curvature of the ener-

gy versus moment curves at M=0 as a function of chang-
ing volume in going through the transition.

The curvature of the binding curve (total energy versus
volume) at equilibrium is a direct measure of the bulk

modulus. Since the systems studied here have second-
order transitions from nonmagnetic to antiferromagnetic
behavior coincident with the equilibrium volumes, the
curvature at equilibrium is, in fact, discontinuous.
Theoretical determination of the bulk modulus, therefore,
depends upon whether the nonmagnetic or antiferromag-
netic curvature is used. For fcc manganese, the curva-
ture derived from the nonmagnetic branch, which ex-
tends both above and below the equilibrium volume,
yields a bulk modulus of approximately 3000 kbar. The
curvature for the antiferromagnetic branch, which only
extends above the equilibrium volume, yields approxi-
mately 1100 kbar. This latter value is in good agreement
with experiment. '
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