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Longitudinal Kerr-effect measurements using both s- and p-polarized light are presented as a
function of thickness for bcc Fe films grown epitaxially on Au(100) in ultrahigh vacuum (UHV).
The motivation is to explore the origins of the magnetooptic response at Fe thicknesses comparable
to the depth penetration of light. Special efforts were taken to optically compensate for the
birefringence of the UHV window. The compensated measurements yield the magnitude of the
complex rotation P =(P' +P" )'~', where P' and P" are the real magnetooptic rotation and the el-
lipticity, respectively. The results show linear initial increase of P with thickness (up to the optical
penetration depth) followed by a shallow peak and leveling off to a saturation value of the thick-film
Kerr rotation. A review of the relevant theory includes the Faraday and Kerr contributions to the
magnetooptic response. The Faraday contribution arises from metallic reAection from the substrate
and passage back through the iron overlayer. %'e argue that the Faraday effect dominates the
response in the ultrathin limit, while the Kerr effect controls the thick-film regime.

I. INTRODUCTION

The magnetooptic Kerr effect has recently proved to be
a valuable probe in the study of surface and ultrathin-film
magnetism. Hysteresis curves give detailed information
about the dependence of the magnetic properties on tem-
perature, growth conditions, and film thickness. ' One
issue that has been left unresolved is the interpretation of
Kerr-effect signals as a function of film thickness. A peak
in the Kerr-intensity signal was found at an intermediate
thickness for ultrathin bcc Fe films grown on Au(100).
This type of peaked behavior has also been reported ear-
lier for other systems. ' The motivation for the current
experiments is to investigate the origin of the peak in the
rotation angle as a function of thickness.

The Kerr contribution to the rotation is due to
reAection from the magnetic film. The Faraday contribu-
tion is due to transmission through the magnetic over-
layer, reAection from the substrate interface, and a
second transmission through the magnetic overlayer.
The two contributions can, in principle, be distinguished
by their different incident angle and polarization depen-
dences. The Kerr rotations Px for s- and p-polarized
light are equal in magnitude but opposite in sign, for
small incident angles, and can be expressed as

; while the Faraday rotation PF is indepen-
S P

dent of polarization: PF =Pz. These results are sub-
S P

stantiated in the theoretical review presented in Sec. II.
Also, as the Fe film thickness exceeds the optical penetra-
tion depth, the Faraday contribution would be expected
to vanish. Therefore, magnetooptic measurements as a
function of the thickness of the Fe film should reveal the
relative Faraday and Kerr contributions.

Measurements are presented of the magnetooptic sig-
nal as a function of thickness for epitaxial, lattice-
matched films of Fe grown on the (100) face of a Au sin-

gle crystal in ultrahigh vacuum (UHV). ' Special care
was taken to compensate for the birefringence of the
UHV window. The results show a linear initial increase
of the signal (for thicknesses less than the penetration
depth) followed by a shallow peak and a leveling off to
the saturation value of the thick-film Kerr effect.

In Sec. II the relevant theory is reviewed. Experimen-
tal considerations, including the film-thickness monitor-
ing using Auger spectroscopy and the optical compensa-
tion procedures, are presented in Sec. III. Section III
also includes a description of the compensation process
using the Poincare-sphere representation of the light po-
larization. The results and discussion appear in Sec. IV,
and a brief summary appears in Sec. V.

II. THEORETICAL CONSIDERATIONS

The following review provides guidelines for under-
standing studies of the magnetooptic signal as a function
of film thickness. The presentation is based primarily on
Refs. 6—10.

A. Index of refraction in the presence
of the magnetization

One can define a dielectric constant eo in the absence of
a magnetic field,

D=eoE,
where D is the displacement and E the electric field vec-
tor. The quantity eo is a scalar for an isotropic medium
and is complex for an absorbing medium. In the presence
of a magnetic field H, a dielectric tensor e is introduced.
Its elements satisfy Onsager's relations;

~; ( H) =E;(H) . —
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By expanding e up to linear terms in H one finds the fol-
lowing expressions:

0 12 ~13

6 =E()+P, F= E12 0 &23

0

where eo is a scalar as in Eq. (1) and e contains three in-
dependent components (it is an antisymmetric tensor).
As such, it can be expressed by an axial vector g. From
symmetry of the isotropic medium, g is parallel to H. By
using the notion of an antisymmetric unit tensor e;-k we
have

MEDI UM

VACUUM

ij g ijk gk
k

(3)

The connection between the components of the dielectric
tensor e and the axial vector g is

flR

FIG. 1. Diagram of the coordinate system and geometrical
terms used in the theoretical development.

g3 =&12~ g1 =~23

When the magnetic field H (or M for a magnetized fer-
romagnet) is in the z direction, axial symmetry about H
causes e to assume the form

c1 0

60 0, g3 =g =&1,
0 0 eo

(4)

On the other hand D is related to E by the dielectric ten-
sor

D;=pe; E
J

where e expresses the properties of the medium in the
presence of H. In a magnetic Geld the medium becomes
anisotropic. In any anisotropic medium Din, where n is
the refraction-index vector. We choose a coordinate sys-
tem x 'y'z' in the medium with z'~~n and y' in the plane of
incidence (the yz plane), as shown in Fig. 1. In this coor-
dinate system Eq. (5) becomes

=1 =1

From Eqs. (2), (3), and (6) we have

D=eoE+EXg,
where g, „e;,„E,gk has been used to express the vector
product EXg. To first order in the magnetic field, Eq. (8)
can be inverted to give

E=—D ——DXg1 1
(9)

~o
2

where e,2 is now denoted by e, . In the coordinate system
with H~~z, g, =g2=0 and g =g3=e, . If e in Eq. (4) is
known, one can find it easily in any other coordinate sys-
tern. What is interesting about this approach is that
there is a single vector g which describes the anisotropy
of an isotropic medium in a magnetic field.

From Maxwell's equations,

D=n E—(E n)n .

gz' 1
X

Ep n

1 D.=O.
0

A nonvanishing D gives, to terms linear in the magnetic
6eld, two solutions for the index of refraction,

n+ =no+ (g no),
no

where no =so and g, .=(l/no)(g no).

B. Faraday e8'ect

Conventionally, the Faraday effect is calculated for
normal incidence; here we consider the general -case of
oblique incidence. A linearly polarized beam incident at
angle 01 from the normal to the surface is split into two
circularly polarized beams, clockwise and counterclock-
wise. A different index of refraction [Eq. (11)] applies to
each beam, resulting in the refraction of the two beams to
slightly different angles in the medium. The components
n and n of these refracted beams are the same as for the
incident beam. There will, however, be two different n,
which can be calculated from Eq. (11), denoted n+, and
n, . Correspondingly one obtains a modified Snell's law

(n+ ), = (no —sin 0')'~

X 1+ [g sino'+g, (no sin 9')' ]

(12)

While Dln, it follows from Eq. (9) that E is not perpen-
dicular to n (E has a component in the z' direction).
Comparing the components of E in the x' and y' direc-
tions in Eqs. (7) and (9) gives

1 -1 gz'
D + D .=0,

n2 E E2 y
o

(1O)
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When g=0 (no magnetic field), (n+ ), =np, and Eq.
(12) turns into the usual Snell's law. To first order in the
magnetic field, one can neglect the difference in these
directions and replace both by n0, the direction of the re-
fracted beam in zero magnetic field [see Eq. (11)]. The
complex Faraday rotation per unit length in the n0 direc-
tion is

e —10

c (eo —sin OI )'~ b—sinOI

&o sin OI+(&o sin OI ) sinOI tanOI
(16)

The Kerr rotations P» and ellipticities P» are expressed
as

PF=QF+iPF'= (n+ n—),
2c

(13) p, = —0» +1k» p, =0», +id», (17)

—co sinO'
PF 2c

Im
n0

(14)

Note that if the beam passes through the magnetic film, is
reflected, and then passes through the film again, the
Faraday rotation is doubled.

C. Kerr effect

The formulas for the Kerr effect were derived in much
detail by Metzger et al. , where expressions to second or-
der in the magnetization are given. Although the results
summarized here will be to first order only, we note that
including the second-order effects becomes important in
the case of antiferromagnetism. To begin, we consider a
general direction of the magnetic field (or magnetization),
given by the cosines a, b, and c of the field in the x, y, and
z directions, respectively. The two polarizations of the
incident light are considered separately. The expressions
from Ref. 6 will be rewritten here in a more commonly
used notation. The constants Ao, Q, pp, yo used in Ref.
6 are connected to the constants used here by

fi p
= n p

=+Ep, '

lfipQ =Ei =g

&pPp =sinOI,
—

( 1 p2)1/2

For p polarization (the electric field of the incident light
is polarized in the plane of incidence), the complex Kerr
rotation p is expressed as

Pp
g

C0 1

c(eo—sin Oi)' +b sinOI

eo —sin OI —(ep —sin OI)' sinOi tanOr
(15)

where OI is the angle of incidence, as shown in Fig. 1.
The corresponding expression for s polarization (the elec-
tric field is polarized normal to the plane of incidence), is

where pF is the rotation and pF' the ellipticity of the
Faraday effect (for pF' small ).

Inserting the values of Eq. (11) for n+ and n into Eq.
(13), for H in the plane of incidence of the light and in the
plane of the surface (H ~~y), gives

le l CO

pF = g n0= g sinO'
2cn0 2n0c

or in the notation of Ref. 8, the Faraday rotation pF is

Thus for the Kerr rotation we have from Eqs. (17)

'4 Re(pp ) 4» Re(p ) . (18)

PP Ps
1E'0 C0

It follows from Eqs. (18) and (19) that P» and P» are of
P S

opposite sign but equal magnitude,

(20)

While the Kerr rotation changes sign with change of po-
larization [Eq. (20)], the Faraday rotation [Eq. (14)] is po-
larization independent. This property can, in principle,
be used to distinguish Kerr from Faraday rotations.

III. EXPERIMENTAL CONSIDERATIONS

A. Apparatus

The Kerr-effect apparatus, shown in Fig. 2, is similar
to that described previously. ' Polarized light from a
He-Ne laser (Ap=6328 A) passes through a UHV win-

dow, is reAected from the sample back through the win-
dow, compensating optics, and an analyzing polarizer to
a photodiode detector used to measure the intensity. An
in-vacuum electromagnet is used to magnetize the sample
in the plane of the film and in the scattering plane of the
light. Hysteresis curves are obtained by measuring the
photodiode intensity, with the analyzing polarizer set a
few degrees (5=2.35 ) away from extinction, as a func-
tion of the applied field. The Kerr intensity IK„, is
defined as the change in the reflected light intensity
transmitted through an analyzing polarizer for opposite
magnetizations of the sample, normalized to the total in-
tensity detected.

Fe is deposited from a resistively heated evaporation
source that consists of tungsten wire wrapped around an
alumina crucible containing the Fe. The Au(100) sample
was mechanically and electropolished before being insert-
ed into vacuum, and then Ar-ion bombarded and an-
nealed in situ. Auger electron spectroscopy using a

For an absorbing material, which must be the case for
there to be a Kerr rotation, both e0 and e, are complex.
(For a nonabsorbing material, eo is real and e, is purely
imaginary. )

Let us consider in more detail the longitudinal Kerr
effect, in which H lies in the plane of incidence and is
parallel to the y axis (b = 1, c =0). For small OI (angle of
incidence) pF and p, become
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FIG. 2. Schematic drawing of the apparatus. An in-vacuum
electromagnet is used to magnetize the sample. Incident laser
light is s or p. po1arized and passes through a window into vacu-
um. The rejected light returns through the window, through
two Soleil-Babinet compensators, and through an analyzing po-
larizer to a photodiode detector.

double-pass cylindrical-mirror analyzer confirmed the
cleanliness of the Au surface and was used to determine
the growth rate, as described in Sec. III B.

Fe is known to grow in the bcc structure on Au(100)
with the same 2.88-A lattice spacing as bcc Fe. This is
because the 4.08-A lattice constant of fcc Au yields a
(100) primitive-lattice square-net spacing of 4.08/&2
=2.88 A, which coincides with that of the Fe. In these
experiments the substrate temperature was held -200 C
during deposition and measurement, since such elevated-
temperature growth has been found to give a well-
ordered surface. The elevated-growth temperature pro-
motes segregation of the Au to the iron surface, as has
been shown previously. '

B. Film-thickness monitoring

The thickness of the Fe film is determined" using ex-
perimental and calculated peak-to-peak Auger intensities
as a function of deposition time, as shown in Fig. 3. The
evaporator provides a constant deposition rate, so that
deposition time converts to thickness. The thickness
scale has been fixed using a stylus profilometer (a Tencor
Instruments Alpha-step 200): First, the evaporation rate
was calibrated using Auger intensities, then a thick film
of Fe was grown on a flat sapphire substrate, during
which time periodic checks were made to confirm that
the evaporation rate remained constant. The thick (830-
A) Fe film was then measured with the profilometer.

The model growth-curve calculations assume layer-by-
layer growth and use the profilometer coverage calibra-
tion. The standard summation and attenuation expres-
sions for Auger intensities are used, with an appropriate

0.0 '

0 10

Fe (Iayers)

20

FIG. 3. Measured peak-to-peak Auger intensities for the Au
69-eV (circles) and the Fe 703-eV (triangles) transitions as the
Fe deposition proceeds. The Fe intensities are doubled for clar-
ity. The calculated curves assume ideal layer-by-layer growth
with a monolayer-range film of Au segregated to the surface of
the Fe.

electronic mean free path A, , and with additional terms
for the Au segregated to the surface. The best fits, shown
in Fig. 3, use X values of 5.16 A for the Au 69-eV Auger
electrons and 7.18 A for the Fe 703-eV Auger electrons.
The first value is in the center of the range specified by
the "universal" curve used by electron spectroscopists. '

The second value is at the low end of the "universal"
curve range, but it is quite sensitive to another parameter
of the fit, namely, the Auger sensitivity for pure Fe rela-
tive to that for Au. We estimate an overall uncertainty in
this thickness determination of 9%.

The present monitoring procedure represents an im-
provement over the previously used method of empirical-
ly drawing linear segments through the measured growth
curves, with the kinks that occur at the intersection of
the segments being taken to represent the deposition of
successive monolayers. This previous method is subject
to systematic errors of interpretation if kinks occur at
other than monolayer intervals, as has been reported pre-
viously' ' and as also occurs here in the Fe/Au system.

This same Auger fitting procedure was used previously
for the system fcc Fe on Cu(100), where the coverage
calibration was taken from Auger kinks. We cross
checked the evaporator calibration to provide additional
referencing by mounting Cu(100) and Au(100) samples
together in the UHV system. The coverage cross calibra-
tion agreed to within 9%. The precision within a run, of
course, is much better because it involves a time measure-
ment, and is only limited by the stability of the evapora-
tor to deliver a constant deposition rate.
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C. Optical compensation procedure

For ultrathin films the magneto-optic rotation and el-
lipticity are extremely small. Thus it is easier to measure
the magnitude of the magneto-optic signal P, given by

(y~ 2+ y~~2)1/2

than to measure Pz and Pz individually. For this pur-
pose we use an optical compensation procedure based on
two Soleil-Babinet compensators. The procedure also re-
moves the UHV window birefringence. In what follows
we describe the approach.

There is an unwanted birefringence affecting the polar-
ization of the rejected light beam. It arises principally
from the UHV window, which becomes birefringent
when the bolts on the window Aange are tightened and a
vacuum is created in the chamber. There is also a contri-
bution from the metallic reAection itself: The light in-
cident on the sample is slightly elliptica11y polarized due
to its passage through the window into vacuum; when
light that is not purely s or p po1arized reAects from a
metal (even a nonmagnetic one), the reAected beam is po-
larized differently than the incident beam. A standard
approach to correct for these unwanted alterations in the
po1arization of the rejected light is to use compensating
optics. In the present study we used Soleil-Babinet com-
pensators, as shown in Fig. 2. 'Ihe Soleil-Babinet com-
pensator consists of two quartz wedges pieced together to
form a parallel plate. The optica1 axes of the wedges are
orthogonal to each other and to the light path. There are
two degrees of freedom that can be mechanically adjust-
ed. First, the plate can be rotated to align the orthogonal
optical axes as desired. Second, a micrometer adjustment
can translate one wedge with respect to the other to pro-
vide unequal path lengths through the two wedges, and,
thus, retard one orthogonal, linear polarization com-
ponent with respect to the other.

Operationally, the way the compensation is achieved is
to cross the analyzer and the incident laser-beam polar-
ization. The detector does not indicate the expected ex-
tinction because the window and the magnetized sample
alter the polarization. The first compensator is then in-
troduced and its two degrees of freedom are adjusted un-
til extinction is achieved. This means that the light that
emerges from the compensator has the same (s or p) po-
larization as the incident light.

Ordinarily this might be the only compensation adjust-
ment made. The polarizer could then be adjusted to its
desired setting and the experiment could proceed. In the
present experiments, however, a second compensator is
introduced, as shown in Fig. 2. One of its optical axes is
aligned parallel to the polarization direction of the laser
source. This second compensator thus has no effect on
the polarization associated with the original (+) magnet-
ized state because the light exiting the first compensator
is linearly polarized along one of the optical axes of the
second compensator. It does, however, affect the polar-
ization from the opposite magnetization state. A value
for the second compensator retardation is chosen, the
analyzer is set to the standard angle 6 from extinction,
and IK„, is measured. This is repeated for different re-

tardations until a maximal IK„, is achieved, as plotted in
Fig. 4. A similar compensation scheme was used in Ref.
15. Figure 5 summarizes the compensation scheme. In-
cluded in the figure is a convenient Poincare-sphere rep-
resentation of the polarization adjustments, as described
below. The compensation procedure is quite laborious
because the adjustments were made independently for
each film thickness and laser polarization. Use of the
procedure is warranted, however, because it gives quanti-
tatively reproducible IK„, measurements, independent of
the window effect, while simpler compensation methods
do not.

O. I

0.0

-0.1
0.0

I

0.5

Retardation (wavelengths)
1.0

FIG. 4. Kerr intensity IK„, is plotted as a function of the re-
tardation setting of the second compensator. The film thickness
is comparable to an optical penetration depth. As the retarda-
tion varies through a full wave, IK„, oscillates sinusoidally.
This shows that improper compensation of birefringence can re-
sult in a Kerr intensity of either sign and of any magnitude less
than the peak value. The peak IK„„values are plotted in Fig. 6.

D. Poincare-sphere representation

The Poincare-sphere representation' of polarized light
provides an instructive way to understand the function of
the two compensators. The Poincare-sphere is of unit ra-
dius and its surface uniquely represents all possible states
of polarization. Linear polarizations occur along the
equator with longitudes corresponding to twice the angle
of rotation of the light, e.g. , vertical or s polarization is
180 away from horizontal or p polarization. Left and
right circular polarizations occupy the north and south
poles, respectively. Elliptic polarizations occur above
and below the equator with the latitudes corresponding
to twice the angle 0, where tanQ =6/a and a and b are
the major and minor axes of the ellipse. The two in-
dependent degrees of freedom of the Soleil-Babinet com-
pensator correspond to simple geometric operations on
the sphere. Setting the optical axes of the compensator
corresponds to defining an axis through the origin and
equator of the sphere. Adjusting the retardation of the
compensator corresponds to a rotation of the sphere
about the selected axis. This is shown schematically on
the right-hand side of Figs. 5(b) —5(d). In Fig. 5(b), P+
and P correspond to polarizations of the rejected light
just before the first compensator for the two opposite
sample magnetization directions. These polarizations are
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The Poincare-sphere analysis of the above compensa-
tion procedure can also be carried out by a matrix tech-
nique where the action of each compensator is represent-
ed by a 2X2 matrix. ' Details of the matrix analysis of
the two compensators will be given in a separate publica-
tion. Here we summarize the results. The rotation and
retardation of the first compensator are fixed by the light
emerging from the UHV exit window at the + magneti-
zation of the sample (see Fig. 5). This first compensator
is set so as to make the light linearly polarized in the
direction of the original laser light. The function of the
second compensator is to remove a phase which depends
on the window birefringence, the first compensator set-
ting, and the ratio of Px and Px.

IV. RESULTS AND DISCUSSIQN

A. Ultrathia Faraday regime

(4)

FIG. 5. Schematic of the polarization of the light at different
sites along the optical path. The incident light p polarization is
depicted in (a). The reflected light, shown in (b), has its polar-
ization altered due to the UHV window birefringence and the
magnetooptic interaction. The inAuence of the compensators is
shown in (c) and (d), and, to the right, using Poincare-sphere
representations. The angle 2P is twice the magnitude of the
complex Kerr rotation and 6 is the angle between the analyzer
setting and extinction E. Ellipticities and angles have been ex-
aggerated for clarity: 5 is 2.35' and P is (3 min of are.

inAuenced by the unknown window birefringence. The
corrected values of P+ and P are assumed to be linearly
polarized and, in real space, separated by twice the mag-
nitude of the magnetooptic signal P =(Px. +Px. )'
Thus the function of the compensators is to position both
P+ and P on the equator of the sphere. The point h in
Fig. 5(b) corresponds to horizontal or p polarization. The
sphere can then be rotated about axis A so that P+ coin-
cides with h on the equator, as shown in Fig. 5(c). The
longitudes and latitudes are exaggerated for clarity in the
figure. The point E corresponds to the extinction setting
of the analyzing polarizer, at angle 6 from horizontal
(5»2P ). The second compensator axis is set through
the point where h and P+ coincide, and its retardation is
then adjusted to rotate the Poincare-sphere so that the
P traces out the circle shown in Fig. 5(d), with points l
through 4. Since the value of IK„, is proportional to the
quantity [sin (Az z/2) —sin (Az z/2)], where Apz is

the length of the arc joining P and E on the Poincare
sphere, measuring IK„, as a function of retardation gives
a sine wave with extrema of opposite sign at points 1 and
3, and zeroes at points 2 and 4. This expectation is
confirmed experimentally, as shown in Fig. 4. The
desired value of IK„, is that measured either at point 1 or
3, i.e., at an extremum in Fig. 4.

4~el n, g+if''= ~, d,
~p n, —1

(22)

which is valid for small incidence angle 01 and small
thickness d (Nd/Ao (( I ), where N and n, are the indices
of refraction of iron and of the substrate (Au in our case),
respectively, and Q is the magnetooptic constant for Fe.
Equation (22) was obtained for the small 91 and small-d
limit from the general expression for the Kerr signal in
Ref. S. It represents the linear part of the curve in Fig. 6.

0.08

0.00
0 100

I

200 300
Fe thickness (layers)

FIG. 6. Magnitude of the complex magnetooptic rotation as
0

a function of Fe film thickness, where 1 layer = 1.44 A. The po-
larizations are indicated. The initial linear increase with film
thickness is due to the Faraday contribution. The saturation
value in the thick limit includes only a Kerr contribution. Both
Faraday and Kerr effects contribute in the intermediate region.

The magnitude of the magneto-optic signal P is
shown in Fig. 6 as a function of Fe film thickness for both
s- and p-polarized light. The thickness dependence of P
can be divided into three regions: There is (i) an initial
linear increase of the signal, followed by (ii) a shallow
peak, and (iii) a leveling off to a saturation value of the
thick-film Kerr signal. We interpret the linear region as
arising from a Faraday effect for the following two
reasons: First, P is empirically found to be proportional
to film thickness as in the Faraday effect. The second
reason originates from the expression
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We now come to the second reason why this linear part
should be attributed to the Faraday effect. As is well
known, the Faraday rotation exists in transparent materi-
als with a real magneto-optic constant Q, while the Kerr
rotation does not ' (similarly, for such materials the
Faraday ellipticity is zero, while the Kerr ellipticity does
not vanish). From Eq. (22) it follows that Px is nonzero
(and Px. =0) for transparent materials with real n, and Q.
Thus, the initial linear region of Fig. 6 [see Eq. (22)] can
be regarded formally as arising from a purely Faraday
effect.

For a thick film Fig. 6 shows a saturation which corre-
sponds to the "bulk" Kerr-effect value. Such a saturation
appears at thicknesses exceeding the optical penetration
depth (d & 90 layers or 130 A). For intermediate
thicknesses the Faraday and Kerr effects both contribute
and Fig. 6 shows a shallow peak.

The thickness dependence curve of Fig. 6 consists,
therefore, of a Faraday signal (the linear part), a purely
Kerr signal (the saturation part), and a combination of
Faraday and Kerr signals (which lead to the intermediate
part of the curve). We believe that the earlier reported
peaked behavior in the magnetooptic signal as a function
of the film thickness ' ' is also a consequence of an in-
terference between the Faraday and Kerr effects. The
smaller peak in both sets of polarization data in Fig. 6
also originates partly from a weak reAectivity minimum,
as in Refs. 5 and 18. Simulations utilizing the optical
constants for Fe and Au, to be reported elsewhere, ' sup-
port this claim.

B. Polarization effects

Figure 6 gives also the polarization dependence of the
magneto-optic signal. The s and p polarizations give
slightly different signals. As was pointed out in Sec. II
the Faraday rotation is polarization independent, while
for the Kerr rotation s and p polarizations have opposite
signs for small angles [Eq. (19)]. In Fig. 6, however, the
magnitude P of the magneto-optic signal is measured
[Eq. (21)] and must always be positive. The small
difference between the s- and p-polarization signals ob-
servable in Fig. 6 can be attributed to optical alignment
errors, and deviations from the small-angle approxima-
tion. In work to be reported elsewhere we will decom-
pose the rotation and ellipticity components of P and
discuss their polarization dependences with respect to
theoretical expectations.

C. Quantification

Once the magnitude of the Kerr intensity has been
determined, it can be converted into the magnitude of the
complex Kerr rotation. The Kerr intensity is defined to
be the intensity difference for the sample magnetized in
opposite directions, normalized by the total polarized-
light intensity,

I (5)—I (5—2P )IKerr

The expression is only valid for 5 )P . Since
I (5) ee sin (5), IK„, can be expressed as

sin (5)—sin (5—2P ) 4P (5 P—)

sin (5—P ) (5—P )

for small P and 5. Using the above expression to deter-
mine P from the measured IK,„, gives P =2.2 min of
arc for thick Fe. Treves ' measured a Kerr rotation for
green (as opposed to red He-Ne) light of —3.5 min at this
same incident angle. The above expression also shows
why an angle 5 (2.35') is set between the analyzing polar-
izer and extinction. The photodiode intensity difference
for the two opposite magnetizations (the numerator in
the expression) increases with increasing 5. For very
small 5 (5((1') the intensity difFerence is too small to
measure experimentally. If 5 becomes too large (greater
than a few degrees), the noise in the intensity increases
faster with 5 than does the intensity difference and soon
overwhelms it.

An additional method used in this paper for enhancing
the magnetooptic signal is the two-compensator pro-
cedure which measures the magnitude P [Eq. (21)]. The
latter consists of the angle of rotation P' and the elliptici-
ty P". When one of them is small, while the other one is
large, P is still a large signal.

Finally, we would like to point out that the linear part
of Fig. 6 is very sensitive to the refractive index of the
substrate [Eq. (22)]. Correspondingly, the magnetooptic
signal can be enhanced by choosing an appropriate metal-
lic reflector for the substrate. ' The Faraday signal
(linear part in Fig. 6) should crucially depend on this
choice. Strong enhancements in magnetooptic rotation
as a function of wavelength have recently been reported
for Fe-Cu bilayers and compositionally modulated multi-
layers.

V. CONCLUSIONS

The magneto-optic response has been measured for s-
and p-polarized light as a function of thickness for Fe
films grown epitaxially on Au(100). The results show an
initial linear increase in the signal, followed by a broad
and shallow peak, and then saturation to the thick-film
Kerr-effect value. This is in accord with simple expecta-
tion for the Faraday and the Kerr effects. The Faraday
component arises from transmission through the Fe film,
reAection at the Fe-Au interface, and a second transmis-
sion through the Fe film. The Kerr component appears
when the film is sufficiently thick to reAect the incoming
light.
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