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Using a recursive method, we have calculated and compared the number of single-spin-Aip meta-
stable states for one-dimensional (1D) (chain) and 2D (strip) Ising spin glasses and random fer-
romagnets at zero temperature. For the 1D case, an extensive study was made of the distribution of
the metastable states X,(c,m) with regard to their magnetization m per spin and energy c per spin,
and the effect of an applied magnetic field on this distribution was investigated. The distributions of
metastable states in energy and in magnetization for the 2D systems (strips of width up to 6 and
length 10 spins) are qualitatively similar to those of the chains. Our results suggest that the ground
state of the spin glass is extremely sensitive to changes in the magnetic field. The number of low-
energy metastable states depends on the energy above the ground-state energy co as
(1/N)lnN, (c)-(c,—co)' . For d =1, 1/A, is known exactly. For d =2 random ferromagnets, the
low-energy metastable states have different character for wide and narrow strips: In wide strips,
they arise primarily from Gipping two-spin clusters relative to the ground state, while for narrow
strips (open at both ends) they are due to Gipping all spins to the left (or right) of a line. The value
of the exponent 1/k predicted from this picture agrees with the numerical value at each width. For
d =2 spin glasses, our results suggest that 1/A, is greater than 1/2.

I. INTRODUCTION

The dynamical properties of spin glasses and random
ferromagnets are governed by the existence of exponen-
tially large numbers of local energy minima. The number
and distribution of these metastable states have been
studied for the infinite-range Ising spin glass by Tanaka
and Edwards' and Bray and Moore. Bray and Moore
also considered expansions about the infinite-range limit
in powers of the inverse of the coordination number z;
near the most probable energy, their 1/z expansion gives
very good results for both d =1 and 2 despite the small
values of z. Short-range Ising models have been studied
extensively in d = 1 at zero temperature by both
analytical and numerical methods, but only a few results
for two- and three-dimensional Ising spin glasses and ran-
dom ferromagnets ' are available.

We use a recursive method (described in Sec. II) to cal-
culate numerically the logarithm of the number N, (E, m )

of single-spin-Hip metastable states at arbitrary energy c
and magnetization m. In Sec. III the method is applied
to Ising spin glass (SG) and random ferromagnet (RFM)
chains, and the results are compared with known analyti-
cal solutions. Our numerical results agree well with pre-
vious analytical results where the two overlap, and they
provide additional information on the distribution of
metastable states in the energy-magnetization plane. The
effect of an external magnetic field on the metastable

states of the chains is also investigated. The recursive
method is easily generalized to deal with strips of spins
rather than chains, and is applied to the 20 Ising SCx and
RFM in Sec. IV; the results are discussed within the con-
text of the zero-temperature scaling argument of Ettelaie
and Moore.

II. RECURSIVE METHOD FOR CALCULATION
OF THE NUMBER OF METASTABLE STATES

We outline a recursive algorithm which enables the
calculation of the number of metastable states at zero
temperature of an Ising spin glass (or random ferromag-
net) chain. For a chain of length L, the 2X2 matrix
NL(SL, SL, ) gives the number of metastable states of
the chain for the four configurations of the last two spins,
SL and SL 1. The number of metastable states for a
chain of length L+ 1 is:

NL+, (SL+„SL)= g NL (SL,SL, )6(HLSL ), (l)
SL —

1

where

if ~L SL )0
BH S 0 otherwise

+L JL —1,LSL —1+JL L+1SL+, is the local field at
spin SL. At each stage of iteration, the total number of
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rnetastable states is given by the sum of all the elements
of the matrix Nl(SL, SI,). In order to extract the
quantities of interest, the matrix NL (SL,SL, ) is normal-
ized at each step so that the sum of the elements is unity.
This normalization factor is then averaged over all steps
to give the number of metastable states. If a, is the nor-
malization constant at each step i, the logarithm of the
number of metastable states per spin, averaged over the
bond distribution, is

N—lnN, = lim —g lna; .
N ' x- N,

(2)

The above algorithm can be generalized to give the
number N, (s, m) of metastable states with energy per
spin c and magnetization per spin m by introduction of
the weight factor exp(PE+13,M); we describe the gen-
eralization for the energy E—the magnetization M is
treated in the same manner. The recursion formula be-
comes

NL +,(SL +„Sl., /3)

g NL (SL,S,;13)B(HLSI )e
SL —1

(3)

The normalization of the matrices after each iteration is
given by

NL +1
NL+ i a

(5a)

DL+, = DL +1 b
2NI. +

a
(5b)

where a and b are the sums of the elements of NL+, and

DL + &, respectively.
In general, the number of metastable states for a given

value of P and given length L of the chain is a sum over
all energies

where EL = —,'HLSL. Taking the derivative with respect
to P gives

Dl + )
= g (DL+ EL NL )B(HLSI )e

PE

SL —1

where the derivative matrix is defined by

8
Dr (SL,SL „p)—: NI (SL,SI „p) .

from which

—lnN, (s)=lna P—b/a .1
(8c)

The number of metastable states at energy c can be calcu-
lated by appropriate averaging of the normalization fac-
tor at each step. In practice, the first 2000 or so values
must be excluded from the averaging, since the initial
values of the elements of the matrix XL are chosen arbi-

trarily; the recursion relation is iterated at least a further
10 times to give the averaged quantities.

III. RESULTS FAR ISING SG AND RFM CHAINS

-0.50

—O. 55

—O. 60

Each metastable stite is characterized by its energy c
per spin and its magnetization m per spin. For each
choice of weighting parameters (P,P&) our algorithm
yields the number of metastable states N, (E, m ) with en-

ergy and magnetization (s, m ). A plot of these metasta-
ble states in the m -c, plane indicates the allowed values of
c. and m for the metastable states. Figure 1 shows the dis-
tribution of rnetastable states in the m-c. plane for the SG
with bonds chosen from a Gaussian distribution. There
are no metastable states with magnetization

~
m

~
above

some rnaximurn value m, „, and none with energies
below the ground-state energy co or above the maximum
energy c. ,„. For states with nonzero magnetization, the
range of allowed energies is more constrained. The nu-
merical results (a chain of length 10 sites was used) for
the five quantities so, s,„, m, „, s ~ (the energy at
which the density of metastable states is a maximum) and
the number of metastable states at the energy c.

were c.o= —0.7984, c,„=—0.5766, m, „=0.4416,

z
= —0.687, and (1/N)lnN, (s ~ )=0.231; these

values are in good agreement with the exact analytical
values, with errors at most a few parts in 10 . Bray
and Moore have obtained the first two terms in the ex-
pansion (in powers of 1/z, where z is the coordination
number of the hypercubic lattice) of the function
(1/N)lnN, (E) for short-range Ising spin glasses. For
z =2, their expansion gives (1/N)lnN, (s~ ~ ) =0.233

Nl (p)= g NI (E)e~

The summand will be sharply peaked at some energy E'
so that NI (P) can be approximated by

NI (p)-NL(E')e~

Thus we have
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FICx. 1. Distribution of metastable states in the m-c plane for
the 1D Gaussian spin glass in zero applied field. Each point
represents a single pair of parameter values (P,P, ).
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FIG. 2. Distribution of metastable states in the rn-c, plane for
the 1D random ferromagnet, with bond distribution U(0, 2)
(bonds uniformly distributed in the range 0 to 2), in zero field.

with c, z
= —0.697, in good agreement with the exact

values despite the small value of z,' the prediction for c, ,„
( —0.414) is not as good, but still surprisingly close.

The surface defined by the function (1/N)in%, (e, m)
has the shape of a truncated semiellipsoid for the spin
glass, with the truncations at m =+m,„. A cut through
this surface along m =0 reproduces the results of Ettelaie
and Moore for the logarithm of the number of rnetasta-
ble states as a function of energy. A similar cut along

yields a curve of the number of metastable states
at a given magnetization m, a result derived analytically
by Derrida and Gardner for a symmetric bond distribu-
tion and zero field.

Figure 2 shows the distribution of metastable states (in
the m-e plane) for the random ferromagnet with bonds
chosen from the uniform distribution U(0, 2). The low-
energy bound c.o is independent of the magnetization
since the energy per spin to Hip a single, large domain is
negligible in the thermodynamic limit.

The recursive method allows one to treat arbitrary
bond and field distributions and may, for example, be
used to compare the SG with the RFM both in the pres-
ence and absence of an applied magnetic field. Figures 3
and 4 show the allowed values of energy c, and magnetiza-
tion m for selected values of the field H. Note that, for
the SG, the discontinuity in the magnetization remains
for nonzero field. Although the applied field breaks the
time-reversal symmetry S;~—S;, the distribution of
metastable states in the m-c. plane retains some syrnrnetry
due to the symmetry in the bond distribution; for a sym-
metric bond distribution P( J)=P(J—), the maximum
and minimum magnetizations and energies for each field
are located symmetrically about their most probable
values. The dependence of the most probable number of
metastable states on the applied field is shown in Fig. 5
for various bond distributions.

Figures 6(a) —6(c) show the field dependence of the
maximum, minimum and most probable values of the en-
ergy c. and magnetization m. The dependence of the
magnetizations on field is simple: the rnagnetizations m
increase linearly with field for smaH fields, then saturate
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FIG. 3. Distribution of metastable states in the m-c. plane for
the 1D Gaussian spin glass in applied fields H=0. 05 (top) and
H =0. 1 (bottom).

at m = 1 for high fields, corresponding to increasing
alignment of the spins with the applied field. For the SG
with uniform distribution U( —1, 1) of bonds, the magne.
tization saturates at H =2.0 since this field is su%cient to
overcome the strongest of negative local fields; for the
Gaussian distribution, arbitrarily large bonds can occur
and the magnetization does not saturate. For both spin-
glass distributions, at high fields the energy c. becomes
linear with the field and equal to the field energy. There
are no metastable states of negative magnetization for
fields greater than H =0.79 for the Cxaussian SG,
H =0.54 for the SG with bonds chosen from U( —1, 1)
and H = 1.1 for the RFM with bond distribution U(0, 2).
A notable feature of all three energy vs field curves in
Fig. 6 is the initial "spreading" of the maximum and
minirnurn energies for small fields; that is, the difference
between the maximum and minimum allowed energies in-
itially increases (widens) for small fields before decreasing
(narrowing) again at higher fields. This broadening is ex-
plained by the following picture of the effect of an applied
field.

Application of a small magnetic field has several
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FIG. 5. Logarithm of the most probable number of metasta-
ble states vs the applied field for the 1D spin glass with Gauss-
ian bonds ( ), the 1D spin glass with bond distribution
U( —1, 1) (A) and the 1D random ferromagnet with bond dis-
tribution U(0, 2) (C').
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FIG. 4. Distribution of metastable states in the I-c plane for
the 1D random ferromagnet, with bond distribution U(0, 2), in
applied fields H =0.05 (top) and H =0. 1 (bottom).

effects. (i) It changes the energy of states, proportionally
to their magnetization. A small applied field "shears" the
distribution of metastable states in the m -s plane (as
sh6wn in Figs. 3 and 4), and consequently broadens the
energy range. (ii) It affects the stability of states; states
which were metastable in zero field may no longer be
stable in the new field and states which were previously
unstable may now be metastable. One expects that as the
field is increased, states with the most negative magneti-
zation will become unstable while new states with posi-
tive magnetization will appear. (iii) It causes single spins
to Aip; although the spin configuration is changed, the
state is not, for the Qip reverses on decreasing the field.
On the other hand, the reversal of one spin may set off a
cascade of flips; such processes are included in effect (ii),
for the changes are generally not reversible. We expect
effect (i) to dominate at low fields. As a test, for the
Gaussian spin glass we added the field energies to the
zero-field data for fields of H =0.05 and 0.10; reasonable
agreement was found with the actual values, although it
is certain that effects (ii) and (iii) above must be taken into
account for a full description. For higher fields, this pic-
ture breaks down and the other effects cannot be neglect-
ed. The energies of the spin-glass states will cross as the

field is changed and the ground state at one value of the
field differs appreciably from the ground state at nearby
values. The implication is that the ground state of the
SG chain is sensitive to arbitrarily small changes in the
applied field; that is, small changes in H give rise to
large-scale rearrangements of the spin configurations.
This result, obtained here for the chain at T=O, is ex-
pected to carry over to higher dimensions. The spin glass
has been previously argued to be extremely sensitive to
changes in the temperature' '" and in the bonds. '

The energy distribution near the ground state can be
described by an exponent 1/X defined by

—inN, (e)—(E—eo)'

The value of 1/k can be obtained directly from a log-log
plot or indirectly by plotting lna(e) vs lnP where

1—lnN (c, ) =a(E)ln2 .

For the SG chain of length 10 sites with Gaussian bonds
we obtained 1/X=0. 495+0.005 while for the RFM chain
with uniform distribution of bonds 1/X=0. 491+0.001.
Both values agree reasonably with the analytical value of
1/A. =—,', but our method of determining the exponent
may have a small systematic error.

In the case of d = 1 chains, the distribution of metasta-
ble states is easily obtained analytically using standard
methods of statistical mechanics. ' This is due to the fact
that for any continuous distribution of bonds, the chain is
divided into blocks of spins separated by weak links.
Each block can be up or down and hence acts like a block
spin. All configurations of these block spins correspond
to metastable states. The calculation of the distribution
of these states in energy is equivalent to calculating the
entropy per site as a function of the energy per site of a
chain with an effective distribution of bonds given by the
distribution of weak links. In this way, the SG or RFM
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can be viewed as a system of weakly interacting two-level
systems. The energy c.=c,—co per site above the ground-
state energy co is

—2@iJ, 1

—2PI J1+e
and the entropy s per site is

s =—g [ln cosh(PJ, . ) —PJ;tanh(/3J; )]
1

l

1=Pe+ —g ln(1+e ' ),
N

(12)

where the summation is over the N /3 weak bonds J, , and
/3 is a Lagrange multiplier used to fix the energy. These
expressions were also obtained by Ettelaie and Moore, '

by a steepest-descent method.
As p~~, s —+Eo and the energy E near the ground-

state energy behaves as

E —I P (J)lJle ~~ dJ (13)

where the summation has been replaced by an integration
over the probability distribution P (J ) of the weak
bonds. The exponent 1/A, is determined by the form of
the weak-link distribution P (J) near J=0. If the distri-
bution behaves as J p near J=0, the energy c behaves as

IV. RESULTS FOR ISING SG AND RFM STRIPS

0.50

0.49—
(a)

For both the SG and the RFM the algorithm was ap-
plied to strips of length l. =10 and width up to 8'=6
spins. The first 2000 iterations along the length were dis-
carded as before, and helical boundary conditions were
used in the direction of the width. Although a full inves-
tigation of the distribution of metastable states in the m-c.
plane was prohibited by the large amount of computer
time required, selected regions were probed to give the
pertinent data. For the SG strips, the distributions of
metastable states with respect to magnetization are simi-
lar to the 1D distributions: there are exponentially large
numbers of metastable states up to a cutoff magnetization
m „above which there are no metastable states. From
the data for strips of width 2 to 5 inclusive [shown in Fig.
7(a)], the values of m, „extrapolate for infinite width to
m „=0.46 for the Gaussian SG and m „=0.49 for the
U( —1, 1) SG; both values are only slightly larger than
the 1D result m, „=0.44. The persistence of the discon-
tinuity in the magnetization to the two-dimensional case
is remarkable. From Fig. 7(b), the exponent for the num-
ber of metastable states at the maximum magnetization is
approximately (1/N)lnN, (m, „)=0.03, about half the
value 0.063 obtained by Derrida and Gardner for the
one-dimensional case.

1
+2

from which the behavior of the entropy s is
1+p

s-pf- -(1+ )/(2+ )p p

(14)

(15)

0.48—

0.47—

0.48—

0.45—

0
0 0

and the exponent is

1/A, =(1+p)/(2+p) . (16)
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h
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The above expression predicts the exponent —,
' if the

bond distribution P(J) does not vanish as J~0, in agree-
ment with the numerical results for the SG and RFM
chains studied above. As a further test of Eq. (16), we
have studied the case p = 1 using a triangular distribution
P (J) generated by adding two random numbers each
distributed as U(0, 1), as well as the case p= ~, for
which we used a uniform distribution U(1, 2). The nu-
merical results for the energy exponent 1/A, were
0.66+0.01 for the case p =1 and 1.0+0. 1 for p = ~ in
agreement with Eq. (16).

The argument leading to Eq. (16) was made for d = 1,
but the result can be applied to higher d if one can view
the system as composed of weakly interacting subsys-
tems; a knowledge of the analogue of the weak-link distri-
bution is required to predict the exponent. In the next
section, we find the effective weak-link distribution for
the RFM in two dimensions; it provides a full under-
standing of the RFM distribution of states at low ener-
gies.
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FIG 7 (a) Maximum magnetization m as function of the
inverse width 1/8' for two-dimensional Gaussian ( ) and
U( —1, 1) (6) spin glasses. (b) Similar plot of the logarithm of
the number of metastable states at m
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The energy distribution of metastable states was inves-
tigated, with special attention to the region near the
ground state. The energy distributions for the two-
dimensional systems are qualitatively similar to those for
the chains, with one notable difference: while the distri-
butions for the chains are symmetric about their maxima,
this is no longer the case for the 2D systems. The asym-
metry in lnN, (E} is very slight for both SG systems
[Gaussian bond and uniform U( —1, 1) bond], with states
of low energy being slightly favored over those of high
energy, whereas the RFM exhibits a marked asymmetry
with many more high-energy states than low-energy
states. That the SG and RFM differ in this respect is not
unexpected, since they are no longer related by a simple
gauge transformation as in one dimension. Figure 8
shows results for two systems of width 6 and length 10
for the SG with Gaussian bonds and the RFM with
bonds chosen from U(0, 2).

The ground-state energy of the 2D Gaussian SG is es-
timated to be —1.308+0.004, in agreement with previous

0.24

0.80—

O.f8—

O.fZ—

0.08—

estimates. ' The ground-state energy of the 2D SG with
bonds chosen from U( —1, 1) is —0.791+0.001. For
both SG's the number of metastable states is
(1/N)lnN, =0.215; for the RFM, the number is slightly
less: (1/N )lnN, =0.198. In contrast, Cieplak and
Gawron found the values 1/4. 5413=0.2202 and
1/4. 4307=0.2257 for the Gaussian SG and the corre-
sponding ferromagnetic system (with Gaussian couplings
~J~), respectively. The most probable and the maximum
energies are c. = —0.992 and c. ,„=—0.669 for the
Gaussian SG, and c = —0.585 and c,„=—0.376 for
the U( —1, 1) SG. These results for the Gaussian SG are
in remarkable agreement with the predictions of the 1/z
expansion of Bray and Moore near c=c~ . The result
of the 1/z expansion with z =4 is plotted as the solid line
in Fig. 8(a); predicted values for various quantities
are s = —0.995, (1/N)lnN, (E )=0.216, and s,„= —0.579. As in the 1D case, the 1/z expansion works
very well, and best, near c = c,

The asymmetry in the energy distribution of the RFM
is understood as follows. The excitation energy above the
ground state is determined by the bonds on the perimeter
of the domains, including the domains within domains.
Low-energy states come from flipping small numbers of
small domains and high-energy states result from the flip-
ping of a few large domains or many small ones (or a
combination of both). Hence there are more high-energy
states than low-energy ones.

A zero-temperature scaling argument for spin
glasses ' gives a scaling relation for the logarithm of the
number of metastable states as a function of energy Z.
Two possibilities for the behavior of InN, (e) at low ener-
gies have been suggested:

W

0.04— —lnN (e)-+X1
S (17)

0—f.5 -f.3 -0.9
Energy g

—O. T -0.5 and

—111N (s}-z' "1
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FIG. 8. Distribution of the metastable states in energy for (a)
the two-dimensional Gaussian spin glass and (b) the two-
dimensional random ferromagnet with bonds in U(0, 2). Re-
sults shown are for systems of width 6 and length 10 . The solid
line in (a) shows the prediction of the 1/z expansion for z =4,
and the critical energy c,, is indicated on the curve.

where d is the dimension of the system and y is the zero-
temperature scaling exponent found to have values of—1, —0.3, and 0.2 for one-, two- and three-dimensional
Ising spin glasses. ' The 6rst relation is based on the as-
sumption that a spin glass can be regarded as consisting
of a set of weakly interacting two-level systems with P(J)
finite at J=O; it gives the value —,

' for the exponent I/A,
which describes the density of low-energy metastable
states. The second relation, based on a domain-wall ar-
gument for systems which do not order at T & 0, suggests
a value of I /A, =O. 86 for the d =2 SG.

Our numerical results for the exponent I/A, , for both
the SG and RFM, are plotted as a function of the width
8' in Fig. 9. %'e discuss these results 6rst for the spin
glass and then for the random ferromagnet.

The low-energy metastable states in the SG are expect-
ed to differ from the ground state and from each other by
very large clusters of spins on the order of the size of the
system. Hence one expects the exponent for the SG strip
to reach its limiting value only for systems large in both
directions. Numerically, the value of 1/A, increases
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FIG. 9. The energy exponent 1/k vs inverse width 1/8' for
the Gaussian spin glass (0), the U( —1, 1) spin glass (0), and
the U(0, 2) random ferromagnet (0). The dashed line is the
prediction of the two-level picture (random ferromagnet); for
clarity, &is treated as a continuous variable.

monotonically but slowly with the width of the strip; for
width 8'=6 the value obtained is 1/A, =0.54, but the
limiting value may be considerably larger. Much larger
widths than those permitted by our computing resources
are required to extrapolate to infinite width. The explicit
form of Eq. (17) is inconsistent with our numerical result
(that I/A, is greater than 0.5 for the SG). Perhaps the
weakly interacting two-level picture is valid, but the
weak-link distribution vanishes at J=O [that is
P (0)=0]; unfortunately, we lack a theory of the low-

energy excitations of the spin glass. The assumption of
weak interaction is questionable, since the low-energy
domains are large for the d =2 spin glass, but arguments
favoring it are given by Fisher and Huse. " The value
predicted by Eq. (18) is not confirmed by our results, but
neither can we rule it out (because our strips are too nar-
row).

The situation is much clearer for the random fer-
romagnet. First, since the RFM orders at finite tempera-
ture in d=2, the second relation Eq. (18) is not applic-
able. In the following, we derive the exponent for all
widths; we obtain the weak-link distribution (by consider-
ing the low-energy excitations of the system) and then use
Eq. (16). We start by quoting a general result: if the
bond distribution has nonvanishing weight at J=O, the
number of domains which are Ripped at an energy cost E
is proportional to E ', where N&b is the number of
broken bonds; the effective weak-bond distribution then
behaves as P (J)—Ji' with p =Nbb —1. The low-energy
excitations have different character for wide and narrow
strips. For wide strips, the dominant contribution to the
low-lying excitations obviously comes from Gipping the
smallest possible domains, those of two spins. For the
square lattice, six bonds are broken, and the exponent
1/A, for the RFM with bonds in U(0, 1) should be
(1+5 ) /(2+ 5 )-0.86 for large widths, in reasonable

agreement with the limiting value found numerically.
For narrow strips, the low-energy excitations arise not
from Aipping two-spin clusters, but rather from Gipping
all spins to the right (or left) of a line (a domain wall) nor-
mal to the length —recall that our systems are open at
both ends. With helical boundary conditions, the number
of bonds broken is NbI, = 8'+1 where 8'is the width of
the strip, and the exponent is therefore predicted to be
I/A, =( W+ I)/(6'+2) for small widths. The crossover
between the large- and small-width values occurs at
width 5 where the number of bonds broken is 6 for both
kinds of domains; the numerical results confirm this tran-
sition from one- to two-dimensional behavior. As a fur-
ther test, runs with periodic (rather than helical) bound-
ary conditions in the width were carried out; for these
boundary conditions, the number of bonds broken by Aip-

ping all spins to the right (or left) of a line normal to the
length is equal to the width 8' and our argument pre-
dicts I /A, = W/( 8'+ 1) for widths less than or equal to 6.
The numerical values are 1/A. =0.69 for W =2 and
I/A. =0.76 for 8'=3. Thus the picture of weakly in-
teracting two-level systems explains the low-energy exci-
tations of the RFM.

This picture may well be valid for both the SG and the
RFM regardless of dimensionality, that is regardless of
whether the system orders at finite temperature. Our nu-
merical results support the picture for systems (the 1D
SG and the 1D RFM) which do not order at finite T and
for a system (the 2D RFM) which orders at finite T; for
the 2D SG (where there is no ordering at finite T), our
results are inconclusive. Further work on the density of
low-energy excitations in 2D and 3D spin glasses is desir-
able, and might confirm the validity of the picture for
these system. s as well.

V. SUMMARY

We have devised an algorithm to obtain the number of
metastable states, and their distribution in energy and
magnetization, of Ising chains and strips. Previous
(analytical) studies were unable to treat arbitrary bond
distributions, or to treat nonzero external magnetic field,
or to find the full energy-magnetization distribution. A
reasonably complete study was made of one-dimensional
spin glasses and random ferromagnets for lengths up to
10 sites (for some quantities 10 sites). Two-dimensional
spin glasses and random ferromagnets were studied for
lengths up to 10 sites and widths up to 6. The number of
metastable states is exponential for both the SG [Gauss-
ian and U( —1, 1) distributionsj and the RFM; the ex-
ponent for the latter is only 10%%uo smaller, confirming that
at least this one measure of the complexity of the energy
surface is qualitatively the same in the SG and RFM.
The magnetization distribution of the two-dimensional
spin glass is discontinuous (as in one dimension). For the
random ferromagnet, the density of low-energy states is
fully explained by the weakly interacting, two-level pic-
ture; for the spin glass, no conclusive results were ob-
tained for the density of low-energy states other than that
the exponent is greater than —,'.
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