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Magnetism and local order: Ab initio tight-binding theory
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The effects of the local environment on the electronic structure and magnetic moments of Fe, Co,
and Ni have been studied by confining these atoms to assume various structural forms such as

chains, surfaces, layers, and crystals. The coordination number of the atoms can thus be changed

over a wide range. The local environment of the magnetic atom has also been altered by introduc-

ing defects such as impurities, vacancies, and vacancy complexes. A simple method based upon the

real space was devised that enables us to calculate the electronic structure of perfect as well as im-

perfect systems with speed and accuracy. The method is based upon a cross between the

molecular-cluster and the tight-binding theories and contains no adjustable parameters. The effect

on the magnetic moments due to vacancies, vacancy clusters, and surface relaxations in Fe are stud-

ied to illustrate the versatility of the method. The results in chains, slabs, and bulk are compared

with earlier theoretical results, as well as available experimental data. The excellent agreement

achieved in these comparisons provides room for optimism that our theory can be useful in studying

complex systems otherwise inaccessible to modern-day theories.

I. INTRODUCTION

%'ith the advent of sophisticated experimental tools for
preparing and characterizing exotic materials and the de-
velopment of highly accurate theoretical methods for un-
derstanding their fundamental properties, material sci-
ence is taking on a new look. Interest is now growing in
the design and fabrication of materials not found in na-
ture that can suit one's specifications. This new era of
atomic engineering involves superlattices, modulated
structures, over-layers, and cluster materials. The prop-
erties of these materials, which have atomic dimensions,
can be as varied as their structure and composition. Ap-
plications of these materials in the electronic, magnetic,
energy, and optical industries are among a few that show
promise for the near future.

These materials are also providing a real challenge to
theorists to unravel the mysteries concerning the unusual
size and structural dependence of their electronic proper-
ties. In spite of the inherent difficult in a fundamental
theoretical understanding due to the reduced symmetry
and dimensionality of these systems, notable progress has
been made during the last decade —thanks to the devel-
opment of the density-functional theory and high-speed
computers. Among the ab initio theories, the most wide-

ly used ones are (i) the full-potential linearized
augmented-plane-wave (FLAPW) method, ' (ii) the linear-
ized muffin-tin-orbital (LMTO) method, and (iii) the
self-consistent-field —linear combination of atomic
orbitals —molecular-orbital (SCF-LCAO-MO) method.
The FLAP% method can yield quantitatively accurate
total energies and all properties that can be derived from
it. It has been used successfully to calculate the electron-
ic structure and magnetic properties of bulk, surfaces,
thin films, and modulated structures. Since the method
inherently makes use of the Bloch's theorem, it is best

suited for studying systems with long-range periodic or-
der. Study of imperfections is still possible" within the
FLAP& framework if one assumes the lattice to consist
of a periodic repetition of supercells comprising the de-
fect site and a few of its surrounding host atoms. The
disadvantage of this approach is that computational limi-
tations restrict the size of the supercell, giving rise to an
undesirably large defect concentration. %'hile this can be
avoided in the LMTO method due to the use of the host
Green's function, the total energies are still difficult to
calculate. The SCF-LCAO-MO method based upon the
density-functional theory or more sophisticated quantum
chemical procedures is a real-space-based technique and
can be applied to perfect as well as imperfect systems
with equal ease. The method, however, relies on the as-
sumption that the local environment dominates the cal-
culati. on of all the electronic properties. Thus, one ap-
proximates the system by a cluster of atoms which can
then be embedded in the host to simulate the lattice. The
difFiculty with this technique is that one is usually limited
to about 40 atoms in a cluster. Thus, "Is the cluster big
enough~" remains a nagging question with no satisfactory
answer. In addition, all these techniques are very com-
puter intensive and many problems, such as complex de-
fects on surfaces or in bulk, cannot be treated even on the
world's fastest computer.

There are, however, semiempirical and approximate
methods that can be used to study complex systems in-

volving low symmetry and dimension. Among these,
tight-binding and effective-medium based theories are
most widely used by the theorists. The tight-binding
method, designed for localized or quasilocalized bands,
involves parameters that are conventionally determined
from bulk band-structure data. However, the transfera-
bility of these parameters to systems with reduced sym-
metry and dimensionality has been in doubt. Recent
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studies show that tight-binding parameters obtained
from bulk Fe data cannot explain the band structure of
Fe in linear chain. This problem is similar to the use of
interatomic potentials obtained from bulk data to inter-
pret structural evolution in small finite systems, such as
clusters. Here again one finds that the structures of
small clusters obtained from bulk-derived interatomic po-
tentials are at variance with the ab initio results. '

In our laboratory, we have initiated a theoretical pro-
gram for studying the electronic structure and properties
of finite systems with reduced symmetry and dimen-
sionality, such as small homo- and heteroatomic clusters,
surfaces with and without imperfections, thin films, va-

cancies and vacancy clusters in bulk materials, and
vacancy-impurity complexes in transition metals. Re-
cently, we have illustrated" that interatomic potentials
obtained from self-consistent total-energy calculations of
Be dilners, trimers-, and tetramers can successfully ex-
plain the evolution of the structural and electronic prop-
erties not only in larger clusters but also in the bulk.

Here we present a method for the transition-metal ele-
ments. It is based upon a cross between the molecular
cluster and the tight-binding method. We determine,
from first principles, the various overlap matrix ele-
ments' (ddo, ddt, dd5, sdo, and sso ) appearing in a
tight-binding formulation from the self-consistent treat-
ment of the dimer. Here the two atoms are placed at
their corresponding bulk distance. The moment ap-
proach' is then used to calculate the electron spin densi-

ty of states and magnetic moments of ferromagnetic
transition-metal elements. We refer to this method as the
ab initio tight-binding (ATB) method, since all the tight-
binding parameters used here are calculated from the ab
initio SCF-LCAO-MO theory.

This method is applied to study the magnetic moments
of Fe, Co, and Ni in linear chains, thin slabs consisting of
1, 3, 5, 7, and 9 layers with different crystallographic
directions and bulk. To demonstrate the versatility of
this method, we have also applied it to study the effects of
vacancies, vacancy clusters, and surface relaxation on the
magnetic moment of bulk and (100) surface of Fe.

Our emphasis on studying the magnetic moments is
due to the long-standing controversy in this field' and
due to the vast amount of other available theoretical cal-
culations' that our results can be compared with. The
magnetism of surfaces in modulated structures is also a
fascinating problem. While there is no conclusive experi-
mental evidence for surface magnetism, current
theories' " predict enhancements of surface magnetisxn.
We show here that our simple approach can yield mag-
netic moments in very good agreement with other state-
of-the-art calculations. ' ' Furthermore, we illustrate
that the tight-binding parameters derived here are
transferable to different environments. The fact that our
method is not computer intensive (calculation of a
20000-atom cluster in IBM 3081D computer requires
only 20 min of CPU time) means that we can study more
complex systems faster.

In the next section we provide a brief outline of our
procedure. In Sec. III we present our results for Fe, Co,
and Ni. The paper is summarized in Sec. IV.

II. THKORETICAI, METHOD

We discuss our approach in two steps. First we recall
the main features of the molecular-cluster calculations
based on the discrete-variation method (DVM). ' We
then outline the moment approach' and show how it can
be put on an ab initio basis when combined with DVM.

Consider a system of X particles described by a one-
electron Hamiltonian, H, in atomic units,

We assume that p;k= ~i, 2, ) form a complete orthonor-
mal set (the orthogonality condition can be easily re-
laxed). The C, are variational parameters to be deter-
mined from a solution of the Rayleigh-Ritz equation,

(H ES)C=O, —

where H and S are the Hamiltonian and overlap matrices
and E is the eigenvalue. In the DVM the Hamiltonian
and the overlap matrix element are evaluated as weighted
sums over a set of points rk with weight functions to (rk ),
namely, '

X ~ ( rk )4 'k( "k )H4'J ( rk ) (4)

In actual LCAO calculations one starts with a set of
atomic orbitals ~i, A. ) corresponding to a given atomic
configuration and calculates the Hamiltonian matrix ele-
ments. Starting from a set of C; corresponding to atomic
orbitals ~i, A), the Ham, iltonian matrix elements are used
to construct the Hamiltonian and overlap matrices. The
matrix (H ES ) is then diag—onalized to determine a new
set of C and the process repeated until self-consistency is
achieved. Since the size of the matrix depends on the
number of atoms and the number of orbitals per atom,
the computational time increases rapidly with size
(X —K depending on the details of the theoretical
scheme) and one is restricted to systems having at most a
few dozen atoms.

It is clear that if one wants to treat systems having
several thousand atoms, one has to go to a different
scheme. It is important to realize that the diagonaliza-
tion of the Hamiltonian equation provides us with the

Here j is the atomic site index. The second and the third
terms represent, respectively, the electronic and nuclear
contribution to the electrostatic energy. The last term is
the exchange-correlation contribution to the potential for
spin o and is approximated by the von Barth —Hedin ap-
proximation' to the local-spin-density (LSD) functional.
The wave function f for the system is expressed in terms
of a linear combination of atomic orbitals (LCAO) ~i, X)
localized at site i. A, represents the spin-orbital index

g= g C;kP;k .
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by the equality
—1

n, (E)= lim ImR;(E+iE) .
a~0

As was first shown by Cyrot, ' the coefficients in the
power expansion of &i, A, ~R(Z)~i, k, & are nothing but the
moments p„' of the local density of states n;. They can
be expressed as

with

Knowing the moments one can calculate R (Z) and
hence n; (E) The .actual passage from p„ to n;(E)
proceeds via a continued fraction' for G(Z) given by

Z —a 1

b,
b2

Z ap

The coefficients a„and b„are related to moments up to
order (2n +1). It is easy to show that coefficients of in-
creasing n include contributions from more and more dis-
tant regions, and in most cases one can obtain a reason-
able n;(E) from only a few moments. This is due to the
fact that local electronic structure is primarily dominated
by the local surroundings. Contrary to the previous case
where one diagonalizes H, the present approach requires
a calculation of p'„' which are sums over closed loops of n
steps starting from the site i and are extremely easy to
calculate numerically.

We combine the LCAO and the moment approach to
prescribe a new ab initio tight-binding (ATB) method.
The matrix elements &i, A ~H~j, p& appearing in Eq. (8) are
calculated from the self-consistent solution of the dimer
(with bond length confined to the bulk interatomic dis-
tance) within the local-spin-density approximation and
the discrete variational method. ' Here the Hamiltonian
H is determined self-consistently while the orbitals ~i,A&.
are our starting atomic orbitals. %'ith this formulation
we avoid the common practice of fitting the matrix ele-
ments to existing bulk band structure. Thus, the present
method not only has the advantage that all parameters
entering into our theory are calculated from first princi-
ples, but, as wi11 be shown later, they are transferable to
systems with finite size as well as with reduced symmetry.

This method can also be made into a fully self-

eigenstates of the whole system. On the other hand, the
quantity of prime interest is the local electronic density of
states n; (E) T. hey are related' to the resolvant, R (Z),

R (Z)= 1

consistent moment scheme in the following manner. One
would start with atomic orbitals ~i, A, & corresponding to a
given atomic configuration, ealeulate the Hamiltonian
matrix elements &i, A, ~H~j, p&, and use them in the mo-
ment expansion to calculate n;(E) from which one can
calculate occupation of various states by integrating up
to the Fermi energy. The new occupation numbers can
be used to generate a new set of orbitals ~i, A, & and iterate
until self-consistency. Such a procedure is under way.

III. RESULTS

TABLE I. Comparison of tight-binding parameters for Fe
obtained by various groups.

Reference

Present —0.0557
—0.0495
—0.0490
—0.0715
—0.0538
—0.0547
—0.0624

0.0501
0.0267
0.0300
0.0338
0.0377
0.0359
0.0427

—0.0121
0

—0.0028
—0.0044
—0.0044
—0.0080
—0.0090

'W. A. Harrison, in Ref. 6.
Reference 20.

'M. C. Desjonqueres and F. Cyrot-Lackmann, J. Phys. F 5, 1368
(1975).
R. A. Deegan, Phys. Rev. 17I, 659 (1968).

'J. F. Cornwell, D. M. Hum, and K. G. Wong, Phys. Lett. 26A,
365 (1968).
'Y. Boudeville, J. Rouseseau-Voilet, F. Cyrot-Lackmann, and S.
N. Khanna, J. Phys. {Paris) 44, 433 (1983}.

By carrying out a spin-polarized ab initio LCAO-MO
calculation of dimer we obtained two sets of Slater-
Koster parameters' for spin-up and spin-down electrons
separately. We then apply them to the moment method
one by one to derive density of states for both majority-
spin band and minority-spin band. The band splitting
can be easily subtracted from the mean of spin-up and
spin-down diagonal matrix elements in the dimer calcula-
tion. Thus, the magnetic properties can be evaluated by
using this new tight-binding approach. The magnetic
moments in Fe, Co, and Ni are calculated by using the 4s
and 3d orbitals and the continued fraction constructed
from 22 moments. The densities of states for spin-up and
-down electrons were obtained by averaging over the par-
tial orbital density of states in the following manner:

Af

n;(E)= g n; (E),
a=1

where M is the number of orbitals.
In Table I we have compared the tight-binding param-

eters obtained in this work with those obtained by vari-
ous other groups. One notices large variations in param-
eters indicating a need for their ab initio determination.

In Tables II—IV we present the Slater-Koster parame-
ters (sstr, sdo, ddcr, ddt, and dd5) for Fe, Co, and Ni,
respectively, as calculated using the SCF-LCAO-MO
DVM. The bond lengths of the dimers were chosen to be
equal to their interatomic separation in the bulk. For Fe
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FIG. 6. Density of electronic states in bulk Co. The legend is
the same as in Fig. 5. FIG. 7. Density of electronic states in bulk Ni. The legend is

the same as in Fig. 5.

In Table VI the bulk magnetic moments of Fe, Co, and
Ni computed by integrating the majority and minority
spin density of states are given. Note that our results
compare quite well with the experimental values as well
as the band-structure results.

In Fig. 8 the magnetic moments referenced to their
corresponding bulk values are plotted as a function of
coordination number in Fe, Co, and Ni. The coordina-
tion number (CN) defines the number of nearest-neighbor
atoms. For Ni, the coordination numbers of 2, 4, 6, 8, 9,
and 12 correspond to linear chain, (100) monolayer, (111)
monolayer, (100) surface, (111) surface, and bulk, respec-
tively. Similar for Co, we plot moments for linear chain,
(111) monolayer, (111) surface, and bulk representing
CN's of 2, 6, 9, and 12. For Fe, CN's of 2, 4, 7, 9, 10, 13,
and 14 correspond to linear chain, (100) monolayer, an
atom at the inner surfaces of a 51 atom void, 9 atom void,

0.6-

0.4-
CQ

g 0.2-

TABLE VI. Magnetic moments (in units of pz) in bulk Fe,
Co, and Ni.

I I I I

4 6 8 10
COORDINATION NUMBE 8

Fe
Co
Ni

Present
method

2.53
1.69
0.59

Band
structure

2.15
1.56
0.59

Expt.

2.2
1.6
0.6

FIG. 8. Deviation from the bulk magnetic moment Ap in Fe,
Co, and Ni as a function of the nearest coordination number (in
various structures). (a), (b), and (c) correspond to Fe, Co, and
Ni, respectively. The smooth lines are drawn simply to guide
the eye.
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FIG. 9. Density of electronic states for majority and minority spins in {a) linear chain, (b) (100) monolayer, and (c) bulk Fe. The
Fermi energy is at E =0.

15 atom void, monovacancy and bulk Fe, respectively.
Note that for Fe, due to the small difference between the
first- and second-nearest-neighbor distance, we count
both the neighbors in arriving at the coordination num-
ber. In all three cases, the moments decrease monotoni-
cally as the coordination numbers increase. Thus, an

atom is more magnetic than a cluster which is more mag-
netic than a crystal.

To understand this trend, we plot the spin density of
states for different coordination numbers for Fe, Co, and
Ni in Figs. 9—11, respectively. In Figs. 9(a)—9(c) the spin
density of states of Fe for the 1inear chain (CN of 2), (100)

|c)

M
2'.
LU
Cl

I
I

s t i t l

-8 -6 -4 -2 0
ENERGY (eV)

I
I

I

I
I

-8 -6 -4 -2 0
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I

I
I l I I

-6 -4 -2 0
ENERGY (eV)

FIG. 10. Density of electronic states for majority and minority spins in (a) linear chain, (b) (001) monolayer, and (c) bulk Co. The
Fermi energy is at E =0.
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FIG. 11. Density of electronic states for majority and minority spins in (a) linear chain, (b) (111)monolayer, and (c) bulk Ni. The
Fermi energy is at E =0.

monolayer (CN of 4), and bulk (CN of 14) are plotted.
Similarly, the plots in Figs. 10(a)—10(c) correspond, re-
spectively, to coordination numbers af 2, 6, and 12 in Co.
Corresponding results are plotted for Ni in Figs.
11(a)—11(c). All these figures have one thing in common:
the density of states is narrow in linear chains and
broadens as one approaches the bulk. This broadening is
caused by the larger overlap between the atomic orbitals
as the number of nearest-neighbor atoms increases. As is
well known, most atoms have nonzero spins while a few
in the solid phase exhibit magnetism. The orbital overlap
as atoms form solids is responsible for loss of magnetic
character of atoms as they go into a condensed-matter
environment.

The reduction in the magnetic moment with increasing
coordination is caused, in addition, by a concomitant
transfer of electrons from the majority to the minority
spin bands as the density of states broadens in going from
chains to solids.

The changes in the moments can also be caused by di-
lating or compressing the lattice. The former would de-
crease the overlap and hence enhance the moment. The
opposite would be the case for compression. It is thus
possible to artificially control the magnetic moment by
both reducing the coordination number and increasing
the interatomic distance at the same time. This pro-
cedure can be achieved by adsorbing small clusters (of
varying sizes) of Fe, Co, and Ni onto substrates whose in-
trinsic atomic separations are larger than those found in
the elemental magnets. In this case, one also expects the
electronic interaction between the cluster and the sub-
strate to play a role in magnetism. We are currently
working on this and the results will be published in due

course.
Experiments on the magnetic moments of isolated clus-

ters in the gas phase have recently been carried out.
One Ands ' that the moments, in general, increase with
decreasing cluster size. For a proper theoretical under-
standing one must realize that there are two competing
factors that determine the magnetic moments of clusters.
The decreasing coordination number in small clusters
tends to enhance the moment. On the other hand, the in-
teratomic distances in metallic clusters increase as clus-
ters grow in size. This factor would tend to lower the
cluster moments as their size gets smaller. It is for this
factor that the moments in small clusters are not as large
as they would be otherwise.

B. Chain, thin slabs, and surfaces

TABLE VII. Magnetic moment per atom in linear chains of Fe,
Co, and Ni.

Present method FLAPW

Fe
Co
Ni

3.21
2.23
1.02

3.3

We have calculated magnetic moments for linear
chains and 1-, 3-, 5-, 7-, and 9-layer slabs of Fe(100),
Ni(100), Ni(111), and Co(001) orientations. The results
are tabulated in Tables VII —X, and compared with the
available band-structure results. We note that our com-
puted magnetic moments for the linear chains are in ex-
cellent agreement with the self-consistent FLAPW results
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TABLE VIII. Magnetic moments per atom in 1-, 3-, 5-, 7-, and 9-layer slabs of Fe(100).

1-layer
Present FLAP W 3-layer 5-layer

7-layer

Present FLAPW 9-layer

S
S —1

S—2
S —3

C

3.15 3.20 2.75
2.56

2.73
2.53
2.54

2.74
2.54
2.55
2.55

2.98
2.35
2.39
2.25

2.71
2.53
2.53
2.54
2.54

TABLE IX. Magnetic moments per atom in 1-, 3-, 5-, 7-, and 9-layer slabs of Co(001).

S
S —1

S —2
S —3

C

1-layer

1.85

3-layer

1.75
1.74

5-layer

1.74
1.71
1.71

1.74
1.72
1.69
1.70

1.73
1.72
1.70
1.70
1.69

TABLE X. Magnetic moments per atom in 1-, 3-, 5-, 7-, and 9-layer slabs of Ni.

Surface
Orientation

1-layer
Present FLAP W

3-layer
Present Present

5-layer
FLAPW
(Ref. 15)

FLAPW
(Ref. 16)

7-layer
Present FLAP W

9-layer
Present

(100) S
S —1

S —2
S —3
C

0.76 0.68
0.56

0.63
0.60
0.61

0.61
0.55
0.58

0.73
0.68
0.69

0.64
0.56
0.60
0.61

0.68
0.60
0.59
0.56

0.62
0.54
0.60
0.59
0.57

S
S —1

S —2
S —3
C

0.65 0.62
0.61

0.61
0.58
0.58

0.60
0.58
0.57
0.57

0.60
0.58
0.58
0.57
0.58

TABLE XI. Magnetic moments at the inner layer of atoms surrounding the void center in Fe.

Void size
(number of
vacancies)

Monovacancy
9
15
27
51

Nearest
neighbor

7

6
5
4

Next-nearest
neighbor

Coordination
number

13
9

10
10

7

Moment (pz)

2.55
2.70
2.61
2.64
2.75

TABLE XII. Magnetic moments at nearest-neighbor atoms to mono-, di-, tri-, and tetervacancy clusters in Fe(100) 9-layer slabs.

Only results for the two top layers are given (see Fig. 12).

Perfect
1-vacancy
Fig. 12(a)

2-vacancy
Fig. 12(b) Fig. 12(c)

3-vacancy
Fig. 12(d)

4-vacancy
Fig. 12(e)

5%%ui

Relaxation

S
S —1

2.71
2.53

2.73
2.54

2.73
2.56

2.76
2.56

2.73 2.81 2.65
2.52
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of Freeman and co-workers. ' For Ni(111) and Co(001),
the variation in the magnetic moment as one goes from
the surface layer (with a coordination number of 9) to the
central layer (with a coordination number of 12) in the 9-
layer slab is minimal [3% for Ni(111) and 2%%uo for
Co(001)]. Here the surfaces are most closely packed and
the overlap is already strong even for the surface layer.
Thus, changing the coordination number does not play a
significant role. On the other hand, for Fe(100) and
Ni(100) there is a significant dependence of the magnetic
moment on the coordination number. The surface layer
magnetism of Fe(100) and Ni(100) is enhanced by 7% and
9%, respectively. In addition, the magnetic moments in
Ni(100) exhibit Friedel-like oscillations as one approaches
the central layer. The central layer of even the 5-layer
slab in all these materials have magnetic moments almost
equal to their bulk values, indicating the extent to which
surface a6'ects electronic structure in underlying layers.
Our results are compared with available FLAPW results.
In general, the agreement is gratifying.

C. Point and complex defects-

So far we have concentrated on establishing the present
method by comparing our results with those available in
periodic systems. Now we discuss another aspect: the
role of defects an magnetic moments. This is where the
strength of our theory is most apparent, since we do not
know of any other technique that can compete in a eam-
putationally effective manner to treat such a large class of
imperfections as discussed below.

We have calculated the magnetic moments at the
nearest-neighbor atom to a vacancy in bulk Fe, voids cor-
responding to the removal of 9, 15, 27, and 51 atoms in

Fe (these represent the cumulative number of atoms in

the first, second, third, and fourth shells of atoms sur-

rounding the body center), mono-, di-, tri-, and tetrava-
cancy clusters on Fe(100) surface, and an inward relaxa-
tion of the surface layer of Fe(100) by 5%. An under-

standing of the role of defects on magnetic moments is
important since very few systems, especially surfaces, are
100% clean.

The magnetic moments at the inner layer of atoms sur-
rounding the void center is given as a function of void
size in Table XI. No relaxation of atoms around the void
center was considered. Generally, relaxations that de-
crease the distances between atoms cause the moments to
fall. It is interesting to note that these moments also os-
eil1ate with void size. In order to understand the source
of such an oscillatory behavior, we have given in Table
XI the number of nearest- and next-nearest-neighbors of
the atoms on the inner shell for various voids. In the case
of Fe, the distances of the nearest- and next-nearest-
neighbor atoms are close to each other. So we identify
the coordination number in Fe as the sum of these two
numbers. It is clearly seen that the change in moment is
related to the changes in the local environment. Sites
having greater coordination numbers show lower mo-
ments . Note that for a 51-atom void, the magnetic mo-
ment has approached its asymptotic value. No theoreti-
cal studies are available to compare with our results in
Table XI.

tal (b) tCI

Lf
/4,

BL

tel

FIG. 12. Geometries of various defects introduced at the sur-

face of Fe(100) 9-layer slab. Solid and open circles define the
atom positions on the top two layers. X refers to the vacancy
sites. The moments corresponding to these defects are given in

Table XII.

In Table XII we present the magnetic moments at the
nearest-neighbor atom on the top two layers of the
Fe(100) 9-layer slab by introducing mono-, di-, tri-, and
tetravacancy clusters on the surface plane. The topolo-
gies of these defects are shown in Fig. 12. Note from
Tab1e XII that the e6'ect of the vacancy clusters on the
magnetic moment, although noticeable, it is not very
significan. However, the e6'ect of a surface relaxation on
the magnetic moment is much larger —again increasing
overlap due to inward relaxation causes the moment to
decrease. This exercise demonstrates that a large
enhancement of the moment can be achieved by putting
"inverse pressure" (and thus increasing interatomic dis-

tance) rather than by decreasing the coordination num-

ber. An optimum would most likely result if the decrease
in coordination number is also combined with an increas-
ing interatomic separation.

IV. CONCLUSIONS

We have developed a theory based upon a combination
of the molecular-cluster and tight-binding approaches to
calculate the electronic structure and the magnetic mo-
ments of transition-metal atoms. A similar approach has
been taken by Chadi and Robertson in treating semicon-
ductor systems. Our theory contains no adjustable pa-
rameters, is simple and transparent in its construction,
computationally e%cient, and can be applied to systems
containing complex defects just as easily as it can be to
systems with perfect periodic order. The theory is ap-
plied to determine the density of states and magnetic mo-
ments of Fe, Co, and Ni forming linear chains, surfaces,
and slabs of varying thickness and crystallographic orien-
tation. The results compare well with the available ex-

. perimental data and other quantitative theories. The
ability of the method to reproduce a wide variety of data
in di6'erent environmental conditions clearly demon-
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strates that the Slater-Koster parameters determined.
from dimer calculations and used in the tight-binding
theory are transferable, much in the same spirit as pseu-
dopotentials determined from atoms are used in clusters
to crystals. We have also applied the method to study
the effect of imperfections such as vacancies, vacancy
clusters, and surface relaxation in Fe. Following is a
summary of our important conclusions.

(1) The magnetic moment per atom increases as the
number of magnetic atoms in the near-neighbor shell
(coordination number) decreases. This ts caused by the
decrease in the overlap of the nearby atomic orbitals as
coordination numbers decrease. This leads to sharper
density of states.

(2) The effect of vacancies on the nearest-neighbor
magnetic atom tends to enhance its magnetic moment,
again due to a decrease in the coordination number.

(3) Surface relaxations that tend to decrease the inter-
layer separation cause the magnetic moment to decrease
due to increasing overlap.

(4) The effect of interatomic distances on the magnetic
moment appears to be larger than the coordination num-
ber. Thus, it is likely that the moments per atom can be
significantly enhanced by depositing monolayers of mag-

netic elements on substrates whose only role would be to
stretch the absorbant's interatomic bond. Calculations
are presently underway to investigate these modulated
structures.

In spite of the optimism expressed here, the reader
should be reminded that the parameters used are deter-
mined from diatomic molecules. In situations where
many-body terms are important, one might want to go to
higher sophistication in the theory. In transition-metal
systems, however, the predominant contribution to the
magnetic moments comes from the quasilocalized d elec-
trons. The interactions are, therefore, local. This is
largely responsible for the success of our present calcula-
tion that only uses dimer interactions and neglects
higher-body correlation. We expect the three- and
more-body terms to be important in less-localized elec-
tron systems. We are presently investigating the effect of
these terms by recomputing the overlap parameters in
larger clusters.
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