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Time evolution of the nonadiabatic nonlinear quantum dimer
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We analyze the set of coupled equations which describe the strong interactions between a moving

quasiparticle in a solid and vibrations of the solid responsible for self-trapping and other polaronic
and solitonic phenomena. The goal of the investigation is the examination of novel e6'ects, if any, of
relaxing the traditional {adiabaticity) assumption of disparate time scales for the quasiparticle
motion and the vibrations. The study uncovers several striking phenomena including an approach
to the self-trapped stationary states of the adiabatic dimer and the coexistence of a static and a dy-

namic transition in the behavior of the quasiparticle motion.

I. INTRODUCTION

d x Idt +a(dx Idt)+to x = —(const)~c (1.2)

Equation (1.1) describes the evolution of the quasiparti-
cle: its amplitude for occupation of the site m is c (t) and
its (nearest-neighbor) intersite transfer matrix eletnent is
V. Equation (1.2) describes the evolution of the lattice vi-
brations with which the quasiparticle interacts: the oscil-
lator at site m has displacement x (t) and frequency to,
and is damped at a rate o.'. The strong interaction be-
tween the quasiparticle and the lattice oscillators is
represented by the last terms in each of (1.1) and (1.2): the
site energy of the quasiparticle is proportional to the dis-
placement of the oscillator at site m; and the equilibrium

A fundamental problem of condensed matter physics
concerns the description of the inhuence of strong in-
teractions of the lattice on quasiparticles such as elec-
trons or excitons moving in solids. Recent approaches to
this problem have been based on discrete nonlinear quan-
tum evolution equations. ' " In this paper we present
new results regarding the coupled evolution of such
quasiparticles and of the lattice oscillators with which
they interact, obtained without making the usual "adia-
batic" approximation.

The essential feature of the systems of interest to the
present investigation is a strong interaction between a
quasiparticle which moves on a lattice in keeping with a
quantum evolution equation, and oscillators whose dis-
placements modulate the quasiparticle parameters such
as the site energy. Several different sets of coupled equa-
tions for the moving quasiparticle and the lattice vibra-
tions have been arrived at from microscopic analysis or
postulated. &e focus here on the prototypical set
used by Scott ' and his collaborators. ' Of their two
coupled equations, one for the moving quasiparticle and
the other for the (optical) vibration which interacts with
the quasiparticle, we simplify the second and write

idc Idt = V(c +,+c &)+Ex c

idc~ Idt = V(c +&+c,) (1.3)

is taken as a point of departure for the analysis of the
evolution of the quasiparticle. Although (1.3) had been
obtained as early as 1959 by Holstein' (albeit in its sta-
tionary form) and although much physics has been ex-
tracted from (1.3) through numerical analysis, ' exact
solutions of (1.3) are not known in general. However, it
has been found recently ' that considerable insight can
be gained into the essential physics of the system through
exact analytical solutions of (1.3) when the system has
only two sites (m =1,2). Results available in the litera-
ture pertinent to this dimer version are exact time evolu-
tion in terms of Jacobian elliptic functions for arbitrary
initial conditions, "'"' ' explicit demonstration of
self-trapping transitions and other rich behavior in the
time evolution, ' evaluation of the stationary self-
trapped states of the dimer, ' ' ' " application of the
analysis to specific experimentally realizable dimer
systems, "' "and evaluation of nonlinear Inemory func-
tions. ' ' " Encouraged by the success of the dimer

position of the oscillator is shifted by the presence of the
quasiparticle at site m by an amount proportional to the
probability of site occupation. In writing (1.2) above, the
simpli6cation we have made relative to the equations of
Scott and co-workers is to replace the dispersion of
the 1attice vibrations by a damping term. Our damped
dispersionless (Einstein) oscillators do describe the essen-
tial physics of the removal of energy at a given site but do
not incorporate intersite motion of the x vibrations.

It has been known' for a long time that the remark-
able physics of the systems described by the above equa-
tions stems from the respective last terms in (1.1) and
(1.2) through a feedback phenomenon and gives rise to
polaronic and solitonic behavior. Much past work in this
area has been based on a time scale disparity argument:
the vibrations described by the x's are assumed to reach
their equilibrium positions rapidly (typically within pi-
coseconds) relative to the evolution of the quasiparticle.
The time derivatives of the x's in (1.2) are then neglected
and the resulting discrete nonlinear Schrodinger equation
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analysis, we decided to address, in the dimer context, the
question of whether relaxing the disparate time scale ar-
gument in the coupled equations results in novel physical
behavior. The striking results we found form the content
of this paper.

In Sec. II we set out the dimer evolution equations
which constitute our point of departure, and derive from
them two coupled equations of motion for the quasiparti-
cle site occupation probability and the oscillator displace-
ments. In Sec. III we analyze these equations, report
several novel results, and describe them graphically. In
Sec. IV we give an approximate analysis which clarifies
the connection between the nonadiabatic dimer studied
here and its adiabatic version studied earlier. Concluding
comments are presented in Sec. V.

II. COUPLED EVOLUTION EQUATIONS
FOR THE DIMER

In order to arrive as rapidly as possible at the essential
physics of our problem, it is advisable (although by no
means essential) to consider a simplification of the oscilla-
'tor equation (1.2). We will assume that the damping
coefFicient o. is large enough to justify the neglect of the
second derivative of the oscillator displacements. More
formally, we take the limit co —+ ~, a~oo, co /a=1 .
The evolution of the oscillator displacements x towards
their equilibrium positions now possesses a single charac-
teristic "vibrational relaxation" time, viz. , a/co =1/I,
and (1.2) reduces to

d'p(t)/dt2= Ap(t) Bp3(t)—+C(t),
dy(t)/dt+ I"y(t) = I p(t) .

(2.6)

(2.7)

The details of the passage from (2.2)—(2.5) to (2.6) and
(2.7) are similar to those provided for the adiabatic
analysis in the Appendix to Ref. 8(a). The constants A
and B in (2.6) are given, as in the adiabatic case for ini-
tial occupation of one site, by

& =(y /2) —4V; B=y /2, (2 &)

and C(t), the correction term which marks the difference
between the present analysis and the usual "adiabatic
procedure" involving the replacement of y (t) by p (t), is
given by

initial condition: the two oscillators are in their equilibri-
um positions in the absence of the quasiparticle, i.e.,
x, (0)=x2(0) =0, and the quasiparticle is placed suddenly
on one of the sites: ~c, (0)~ =1, ~cz(0)~ =0. A physical
example of such sudden placement is the injection of a
photoinduced carrier in a molecular crystal, or the
creation of an electronic excitation through absorption of
radiation. ' Density-matrix equations can then be de-
rived and used to deduce the following coupled pair
describing the interaction of p(t)=—~c&~

—~c2~, the
difference in the probabilities of occupation of the two
sites, and of y (t):—( E/y)[—x&(t) —x2(t)], the difference
between the displacements of the two oscillators normal-
ized in the manner shown:

dx /dt+ I x = (yl /E) lc— (2.1) C(t) = —y y(t) f ds y(s)[dp(s)/ds]+ ,' fp(t) p(—t)]—

idc, /dt = Vc2+Ex, c&,

idc2/dt = Vc& +Ex2c»
dx, /dt+rx, = —(yr/E) ~c, ~',

dx, /dt+rx, = —(yr/E)lc l'.

(2.2)

(2.3)

(2.4)

(2.5)

In this paper, we will focus attention on the simplest

The constant factor in (1.2) has been expressed in (2.1) as
yl /E in terms of the vibrational relaxation rate I and
of E and y. The quantity E which appears in (1.1) is the
rate of change of the quasiparticle site energy with the os-
cillator displacement, and is of little importance to the
present analysis except as a proportionality constant.
The new quantity g, which we will call the nonlinearity
parameter, occurs naturally in the study of the adiabatic
dimer and represents the lowering of the site energy of
the quasiparticle that occurs as a result of the feedback
phenomenon. Equation (2.1) describes the oscillator be-
ing driven by relaxation processes at rate I to its dynam-
ic equilibrium position which is the product of (g/E)—
and the probability that the oscillator site is occupied by
the quasiparticle. Although the relaxation processes
could actually be quite complex and involve vibrational
dispersion and interactions with other degrees of free-
dom, we have assumed here that they may all be de-
scribed through the single rate I .

The dimer (two-site) case of (1.1) and of (2.1) forms the
point of departure for our present analysis:

(2.9)

Equations (2.6) and (2.7) constitute our point of departure
for the subsequent analysis.

III. RESULTS

We have not yet been able to obtain exact analytical
solutions to the coupled equations (2.6) and (2.7). How-
ever, our numerical investigations of those equations,
equivalently of (2.2)—(2.5), have resulted in the following
remarkable findings.

(a) The probabilities of the two-site states settle at long
times into constant values. Inspection establishes these
values for this nonadiabatic dimer to be essentially the
stationary-state probabilities of the adiabatic dimer found
first by Eilbeck et a/. For g~2V these values equal —,'.
For y~2V they are given by —,

'
I 1+[1—(2V/g) ]'

Earlier studies of damping were based on the procedure
of appending stochastic Liouville equation terms to the
dimer evolution and resulted in an approach to equal
probability distribution on the two sites. It is well known
that the unphysical behavior stems from the infinite-
temperature nature of the stochastic Liouville equation
used. It is indeed satisfying that the present analysis
forces the probabilities into the correct stationary values.

(b) For values of the damping rate I which are large
enough (with respect to other rates such as V in the sys-
tem), the evolution of the probabilities ftrst follotos the
Jacobian elliptic function dynamics of the adiabatic dimer
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FIG. 3. The static transition at g=2Vr A d hre ecte in the asymp-
totic limit of the probability. The probabilit f ha i i y o t e initially oc-

xis. e time ~in unitscupied site is plotted along the vertical axis Th t ('

o V) and the nonlinearity ratio g/V are plotted along the
orizontal axes. The asymptotic (large-time) limit of the proba-
i ity is the constant 0.5 for g & 2 V but clearly undergoes a tran-

sition at =2V an
2V. The t

egins to decrease as g increases b deyon
e transition is marked by an arrow. The value of I /Vis

taken to be 2.

FIG. 5. The switching of the limiting values of the probabili-
ty of the initially occupied site between the two stationary-state
va ues as the vibrational relaxation time (1/I ) is varied. The
probability is plotted on the vertical axis and time t and I (in
units of 1/V and of V, respectively) are plotted on the two hor-

i c ing are seen clear-izontal axes. Three occurrences of the swit h'

ly as the I /V axis is traversed. The value of y/Vis taken to be
~ ~

r

~ IAo

r ~

r

0.0
I

100.0
I

ZOO. O 300.0
Vt

FIG. 4. The "misleading" evolution of the probability of the
initially occupied site as it oscillates and damps erst to the value

0.5 an.5 and then swings away to settle eventually into the stationary
value corresponding to the self-trapped state. Measurements
with probe times of the order of 100/V or smaller would tend to
lead to the interpretation that the dimer equilibrates equally be-
tween the two sites whereas experiments with longer probe
times would show that equilibration occurs at the self-trapped
state value 0.2. The value of I"/Vis taken to be 0.15.

see that the nonadiabatic dirner evolves at long times to
the stationary states of the adiabatic dimer. For g &2V,
which is the case represented by the dotted line in Fig. 1,
the limiting value is —,'. For g&2V, represented by the
dashed and the solid lines, the limiting values are those of
the self-trapped states of the adiabatic dimer: 0.2 and

0.052, respectively. Figure 1 thus explains observation (a)
above.

Observation (b) is described by Figs. 2(a) and 2(b). For
rapid vibrational relaxation (V/I =2X10 ), Figs. 2
shows the similarity of the evolution of the nonadiabatic
dimer at short times to that of the adiabatic dimer. The
"dynamically free" case (g(4V) is shown in Fig. 2(a)
and the "dynamically self-trapped" case (y )4 V) in Fi .

or short times, the solid line, which describes the
nonadiabatic dimer, follows closely the dotted line, which
is a plot of cn(2 Vt ~y/4 V) in Fig. 2(a) and of
dn( —,'yt ~4V/y) in Fig. 2(b).

The coexistence of the static and the dynamic transi-
tions commented on in (c) above is difficult to appreciate
from a single plot. The dynamic transition is described
clearly by Figs. 2(a) and 2(b), which represent the two
sides of the transition. Figure 3 shows the static transi-
tion. The horizontal axes are Vt and y/V. Traversing
the latter axis, one can see the transition (marked by ar-
row in Fig. 3) in the long-time limit of the probability as
g crosses 2V.

The "misleading" evolution of the probability dis-
cussed in (d) is the subject of Fig. 4. The probability ap-
pears to damp to the value —,

' but swings away to settle for
long times into the stationary value corresponding to the
self-trapped state which, in the case of Fig. 4, is 0.2.

Figure 5 displays the switching of the limiting values of
the probability of the initially occupied site between the
two stationary state values as the vibrational relaxation
time (1/I ) is varied. This phenomenon would be partic-
ularly important in the case of an extended system since
an excitation could 6nd itself self-trapped on arbitrary
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where p is given by tan '(co/r) and the delay constant in

f equals P/co. If 1/I is small with respect to the charac-
teristic time for f (t), viz. 1/co, one can write

z(t)=f [t —(1/I )]=f (t) —(1/I )df(t)/dt (4.3)

if one's interest lies only in t ))1/r. If we now assume'
that (4.3) will hold approximately for driving functions
f (t) more general than sinusoidal, take z to be the dis-
placement difference y(t) in (2.7) and f (t) to be p(t) as in
(2.8), we can evaluate the correction term C (t) of (2.9) to
first order in 1/I as

C(t)=(y /I ) p(t) f ds[dp(s)/ds]
0

0.0
I

10.0
Vt,

I

20.0
I

30.0 —
—,'(1 p')(—dp /dt ) (4.4)

FIG. 6. The time evolution of the displacernent of the oscilla-
tor at the initially occupied site shown along with that of the
probability of occupation by the quasiparticle to emphasize the
absence of the adiabaticity assumption in the present investiga-
tion. Parameter values correspond to the solid line of Fig. 1:
y/V=4. 5 and I /V=1. The dashed line represents the oscilla-
tor displacement normalized by the factor y/E. The adiabatic
analysis assumes this normalized displacement to rise to (and
follow) the probability instantaneously.

sites in the lattice depending on an interplay of the initial
condition and of the relaxation rate.

The standard adiabatic analysis eliminates considera-
tion of the x's, i.e., the displacement of the oscillators, by
assuming that they follow the probabilities instantaneous-
ly. The present analysis allows one to examine this pro-
cess which in reality takes a finite time. We present Fig.
6 for this purpose. The solid line represents the probabil-
ity of the initially occupied site with the same parameters
as those for the solid line in Fig. 1. For those parameters,
the dashed line in Fig. 6 describes the rise of the oscilla-
tor displacement (normalized through the factor y/F. )—
from its initial zero value to the value of the probability.

IV. ANALYTICAL ARGUMENTS
IN THE CASE OF FAST RELAXATION

In this section we present analytical arguments which
assist one in understanding the results of the numerical
investigation reported above, particularly for the highly
physical case of fast vibrational relaxation. We also
derive a closed equation for the probability difference
p(t) in that limit.

In order to understand the relation between the nona-
diabatic dimer and the adiabatic dimer, we examine the
"correction term" C(t) defined in (2.9). Consider a quan-
tity z ( t) which obeys the equation

A closed equation for p (t) then follows:

d p/dt +(y /2I )(1—p )(dp/dt)=A'p Bp . — (4.5)

By contrast, in the adiabatic case, p obeys

d p/dt = Ap Bp— (4.6)

2'=(g /2) — 4V —(y /I') f ds[dp(s)/ds]
0

(4.7)

Equation (4.5) can be looked upon as describing a ficti-
tious classical oscillator whose displacement is represent-
ed by the quantity p. The correction to A provided by
the new term in A ' clearly represents a dissociative an-
tirestoring force acting on the fictitious oscillator since
the factor (y /I ) f ds[dp(s)/ds] multiplying p(t) in

. 0
(4.7) is always positive. As t~m&, the value of dp/dt
must either vanish, or oscillate, or tend to a nonzero con-
stant, or grow without limit. The last three possibilities
would cause dp /dt to have a positive nonvanishing value.
The antirestoring force would then grow without bound
and dissociate the fictitious oscillator. It is guaranteed,
however, that this cannot happen since p, being the prob-
ability difference between the two dimer sites, is con-
strained to lie between —1 and 1. It follows that dp/dt
vanishes as t~ ~.

We have thus concluded that the long-time evolution
of the probabilities governed by (4.5) is to stationary
values. These values are given by putting the derivatives
of p equal to zero in (4.5). Ignoring the trivial solution
[p( oo )=0], we obtain, for the stationary probability
difference,

(4.6) being simply (2.6) without the C(t) term. Compar-
ison of (4.5) and (4.6) shows two differences. The nonadi-
abatic equation (4.5) has a "friction" term proportional to
dp/dt which drives the p to its stationary-state value, and
the term proportional to p on its right-hand side is not
the constant A of the adiabatic case but is time depen-
dent:

dz(t)/dt+I z(t) =I f(t) . (4.1) p(~)= 1 — (8&'/y')
If f (t) were to vary sinusoidally, in particular as coscot,
the exact solution of (4.1) could be written trivially in the
form

—(2/r) f "ds[dp(s)/ds]'
0

1/2
(4.8)

z(t) = [z(0)—cos P]e "'+(cosP)f(t —const), (4.2) The difference A' —A has a strong effect on the station-
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ary states given by (4.8). Neglect of that difference would
lead one to the erroneous conclusion that p( ~ )

=[1—(8V /g )]' . The latter value corresponds not to
the stationary states but to the average values around
which the initially localized adiabatic dimer oscillates.
The correct adiabatic result for the stationary states
is4 7[b] 8[~]

(4.10)

from (2.6) in (2.7). However, the resulting equation for p
is highly nonlocal in time and much less useful than (4.5)
above.

p( ~ ) = [1—(4V /g') ]' (4.9)

The integral fds[dp(s)/ds] thus builds up from its ini-

tial zero value to 21 V /y as t ~~. Given that dp/dt
vanishes as t ~ ~ [as we have shown from (4.5) above], it
is straightforward to return to the original equations of
motion (2.2) —(2.5), set the x derivatives equal to zero,
substitute the x values thus obtained in (2.2) and (2.3),
and obtain the stationary-state values of the probabilities
by taking c, and cz to be proportional to exp(i Et ) where
c, is the energy of the stationary state. The result is
indeed as given by Eilbeck et ah. We have thus ex-
plained why the probabilities in the nonadiabatic dimer
are driven to the stationary values of the adiabatic dimer.

Equation (4.5) also shows that the adiabatic time evolu-
tion is recovered for short times provided the relaxation
rate I is large enough. For short times, p differs little
from its initial value 1, and the friction term, which is
proportional to 1 —p, is negligible. The term which de-
scribes the difference between 3 ' and 3 is also negligible
at short times since it is proportional to the integral of a
nonsingular function from 0 to t. The correction C(t) to
the adiabatic evolution may be ignored, (4.5) does not
differ from (4.6) for short times, and the characteristic
Jacobian elliptic function evolution is thus observed.
Equation (4.5) also shows that a representative time for
the probability evolution is I /y .

It is no doubt also possible to derive a different closed
equation in p by substituting the solution

y (t) =y (0)+f du I e " "'p (u)

(treated, for instance, in Refs. 4, 5, and 7—12) does not
show approach to the adiabatic stationary states. The
discrete nonlinear Schrodinger equation (1.3) (which pro-
vides the adiabatic description) can be used either (i) to
extract its stationary states as in Refs. 4, 7(b), and 8(a) or
(ii) to solve the initial value problem as in Refs. 7(a) and
8. The results of (ii) do not show evolution towards the
results of (i) because no damping agents appear in the
discrete nonlinear Schrodinger equation. Nor does the
approach towards the stationary states occur if such
damping is put in externally as in Ref. 9. It is remarkable
that it does occur naturally in the present investigation.
Our manner of introducing damping in this study is in
the vibrational relaxation process and therefore appropri-
ate from the physics of the system. We mention in pass-
ing that our results have a bearing on some questions that
have often been asked in the context of energy transfer in
molecular crystals and photosynthetic systems. ' ' '
One of these questions addresses the issue of whether it is
ever possible for electronic excitations produced by the
absorption of light in such systems to find themselves lo-
calized in various places in a manner that has been de-
scribed as being like "raisins in a pudding. "' Our study
shows explicitly that strong excitation-phonon interac-
tions can indeed lead to this picturesque state of affairs.

The starting point of our analysis is (2.2) —(2.5) and
contains the replacement of the oscillator equation (1.2)
by (2.1) which describes a tendency to exponential nonos-
cillatory evolution. This replacement requires no apology
since it is quite physical in many systems and its simplici-
ty allows us to characterize the vibrational relaxation by
a single rate. We have, however, also studied the dimer
evolution in the absence of such replacement and present
Fig. 7 as an example of the results. %'e see that the
analysis of (2.1) involving the limit co ~ ao, a~ oo,

V. CONCLUDING REMARKS

The primary results of our analysis are the observa-
tions (a)—(e) made in Sec. III and described through Figs.
1 —5, and Eqs. (4.5), (4.7), and (4.8). For the case of rapid
vibrational relaxation, these equations describe, respec-
tively, the evolution of the dimer probabilities, the nona-
diabatic correction to the "restoring" term 3, and the
stationary-state probabilities of the nonadiabatic dimer.
%'e hope to report further analytical work on the basis of
those equations in the near future. The main physics to
emerge from the present investigation is the recovery of
the adiabatic evolution at short times and the approach
towards the adiabatic stationary states at long times. The
former occurs only if vibrational relaxation is fast on the
scale of the other time constants of the system such as V,
while the latter occurs for slow as well as fast relaxation.
It is important to realize that the adiabatic evolution

10.0
Vt

I

Po.o

FIG. 7. The probability of the initial occupied site plotted to
examine the validity of the replacement of (1.2) by {2.1) which
involves the approximation of a single vibrational relaxation
time, i.e., the limit co ~~, a~ ~, co /o. = I . The solid line is
the result of the approximation (2.1). The actual evolution re-
sulting from (1.2) is described by the dotted line for co =10, by
the dashed line for co =50, and is indistinguishable from the
solid line for ~ =200. The description provided by (2.1) is thus
seen to provide an excellent approximation to (1.2).
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co /a=l (solid line), provides an excellent approxima-
tion to the actual evolution via (1.2) with co =10 (dotted
line) and co =50 (dashed line). For co =200, the descrip-
tion given by (2.1) is indistinguishable from the actual
evolution. Surely, the case of low to (e.g., co =1)—not
represented in Fig. 7—does show oscillations not de-
scribed by the solid line (co here is in units of V). Real
systems with such low damping in the vibrational evolu-
tion are rare. It is, furthermore, straightforward to gen-
eralize our analysis to such systems.

The use of the damped dispersionless oscillator equa-
tion (1.2) in place of the undamped equation with disper-
sion used by Scott and co-workers requires comment.
An equation with dispersion and no damping is unphysi-
cal for the diner which we have undertaken to study, al-
though it is certainly appropriate for long chains or crys-
tals. In the absence of damping, the vibrational energy
would not be depleted in the dimer. Physical dimers '

are coupled to a reservoir (consisting, for instance, of oth-
er vibrational degrees of freedom) with which they ex-
change energy, and must therefore be treated either by

stating explicitly the dynamics of the reservoir degrees of
freedom or through damping terms as we have done in
(1.2).

Finally, a remark concerning terminology might be ap-
propriate. There has been some discussion as to whether
the traditional assumption of neglecting the time deriva-
tives of the vibrations x to obtain closed nonlinear equa-
tions for the quasiparticle amplitudes should in fact be
called an "adiabatic" assumption. We have used the
term only to follow what appears to be standard usage
and stress that the physics under which that assumption
is valid is rapid vibrational evolution.

ACKNOWLEDGMENTS

One of us (V.M.K.) thanks Dr. David H. Dunlap for
an early discussion on the meaning of adiabaticity, and
Professor Anil Prinja for a helpful conversation concern-
ing multiple time scale perturbations. We acknowledge
support by the U.S. Department of Energy (DOE) under
Contract No. DE-FGD4-86ER45272.

~A. S. Davydov, J. Theor. Biol. 38, 559 (1973); Usp. Fiz. Nauk.
138, 603 (1982) [Sov. Phys. —Usp. 25, 898 (19821], and refer-
ences therein.

A. C. Scott, Philos. Trans. R. Soc. London, Ser. A 315, 423
(1985).

A. C. Scott, Phys. Rev. A 26, 578 (1982).
4J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, Physica D I6,

318 (1985).
5J. M. Hyman, D. W. McLaughlan, and A. C. Scott, Physica D

3, 23 (1981).
D. W. Brown, K. Lindenberg, and B.J. West, Phys. Rev. A 35,

6169 (1987), and references therein.
7(a) V. M. Kenkre and D. K. Campbell, Phys. Rev. B 34, 4959

(1986); {b) V. M. Kenkre, G. P. Tsironis, and D. K. Camp-
bell, in Nonlinearity in Condensed Matter, edited by A. R.
Bishop, D. K. Campbell, P. Kumar, and S. Trullinger
(Springer, Berlin, 1987), p. 226.

(a) V. M. Kenkre and G. P. Tsironis, Phys. Rev. B 35, 1473

(1987); (b) G. P. Tsironis and V. M. Kenkre, Phys. Lett. A
127, 209 (1988); (c) V. M. Kenkre and G. P. Tsironis, Chem.
Phys. 128, 219 (1988).

G. P. Tsironis, V. M. Kenkre, and D. Finley, Phys. Rev. A 37,
4474 (1988).
H.-L. Wu and V. M. Kenkre, Phys. Rev. B 39, 2664 (1989).
D. W. Brown, K. Lindenberg, and B. J. West, Phys. Rev. B
37, 2946 {1988).
T. D. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959);8, 343 (1959).

~ See, e.g., M. Pope and C. E. Swenberg, Electronic Processes in
Organic Solids (Clarendon, Oxford, 1982).
It is possible to justify this assumption by decomposing a gen-
eral f (t) into Fonrier components provided I is larger than
the largest frequency with a non-negligible component.

tsR. S. Knox, in Bioenergetics of Photosynthesis, edited by
Govindjee (Academic, New York, 1975), p. 183.

'sSee, e.g. , Energy Transfer Processes in Condensed Matter, edit-
ed by Baldassare Di Bartolo (Plenum, New York, 1984).


