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Equilibrium polymerization on the equivalent-neighbor lattice
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The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The
Flory-Huggins entropy of mixing is exact for this lattice. We verify the discrete version of the n-
vector model when n ~0 is equivalent to the equal reactivity polymerization process in the whole
parameter space, including the polymerized phase. The polymerization processes for polymers
satisfying the Schulz distribution exhibit nonuniversal critical behavior. A close analogy is found
between the polymerization problem of index r and the Bose-Einstein ideal gas in d = —2r dimen-
sions, with the critical polymerization corresponding to the Bose-Einstein condensation.

I. INTRODUCTION

The aggregation of monomers into linear polymers ob-
served, for example, in sulfur, and various proteins exhib-
its critical phenomena effects. De Gennes and des
Cloiseaux' have observed that the polymerization process
can be described by the high-temperature expansion of
the n-vector model with n ~0. This mapping was used
to study the critical polymerization by means of the
mean-field approximation, e expansion, and position-
space renormalization group. Gujrati has pointed to
peculiarities of the n ~0 limit at low temperatures which
may signal a phase transition line in the fugacities space
of the polymer problem. Gujrati has also argued that
mean-field theories of the n ~0 model and of the polymer
problem should not be equivalent at low temperatures. It
is thus desirable to compare the n —+0 vector model to an
alternative exact solution of the corresponding polymeri-
zation model in the whole parameter space. One such
comparison, one-dimensional polymerization, is already
present in the literature. In this paper we obtain the ex-
act solution of the polymerization problem on the
equivalent-neighbor lattice. This lattice is a collection of
X vertices, each connected to the other X —1 vertices.
Conventional spin models defined on the equivalent-
neighbor lattice are exactly solved by the mean-field
theory.

The polymerization process considered. here is con-
trolled by a fugacity k conjugated to the number of chem-
ical bonds and by a set of fugacities q, , g2, . . . conjugated
to the numbers of polymers of size (number of bonds)
1,2, . . . , respectively. The polymerization problem
studied by previous authors' is obtained when all fuga-
cities gI are equal to each other. In this case we verify its
equivalence to the n ~0 magnetic model in the whole pa-
rameter space, low-temperature regime included. Since
the lattice under study here is the equivalent-neighbor
one, the solution is closely related to the mean-field ap-
proximation, ' which in turn is equivalent to the chemi-
cal reaction theory of Tobolsky and Eisenberg. '

Flory" has argued that the principle of equal reactivi-
ty, according to which the opportunity for reaction is in-
dependent of the size of the participating polymers, im-
plies an exponential decay of the number of polymers of

size l as a function of l. This polymer number distribu-
tion is known as the most probable distribution. We
reproduce this result when gt =si, for all l (i.e., consistent
with equal reactivity). On the other hand, some experi-
mentally measured polymer numbers as a function of the
polymer size are described by the gamma distribution:
exponential times power, also known as the Schulz' dis-
tribution. Within our model the Schulz distribution is
obtained, provided we abandon the equal reactivity prin-
ciple and assume a power dependence: rlt=sl(1+1)"
The critical polymerization behavior depends strongly on
the Schulz index r. If r & —1 (this includes the r = 1 case
of equal reactivity and the most probable distribution),
the polymerized phase occurs at q=O and k ~ 1. It con-
tains a small number of macroscopically large polymers.
If r ( —1, the polymerized phase occurs for k & k, (sl ). It
is a mixture of a small number of macroscopically large
polymers and of a large number of microscopically small
polymers. This is akin to the two-Auid model' of
superAuidity. The critical exponents change continuous-
ly with the Schulz index r. There exists a close analogy
between the Schulz polymerization of index r on the
equivalent-neighbor lattice and the Bose-Einstein conden-
sation in d = —2r spatial dimensions. The Stockmeyer
et al. '" theory of ring polymerization is also analogous to
the Bose-Einstein condensation.

The balance of this paper is organized as follows. In
Sec. II we derive the exact solution of the polymerization
process on the equivalent-neighbor lattice. We find that
the entropy associated with putting linear polymers on
this lattice is closely related to the Flory-Huggins' entro-
pies of mixing and disorientation. In Sec. III we explicit-
ly verify the equivalence of the polymerization process,
with all the fugacities ql equal to each other, to the n ~0
vector model for the whole parameter space. The poly-
merization process with fugacities gt =sl(l + 1) is ana-
lyzed in Sec. IV. A summary of results is found in Sec. V.

II. MODEL AND SOLUTION

We consider a lattice of X vertices, each connected to
the other 1V —1 vertices: This is the equivalent-neighbor
lattice. Each vertex is occupied by one monomer. Chem-
ical bonds can be established between monomers along
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the lattice bonds in accordance with the following rules.
Between any two monomers there is at most one chemi-
cal bond. At most two chemical bonds meet at any
monomer. Each polymer group of two or more mono-
mers connected by chemical bonds, has two endpoints,
each of valence 1. The other monomers on the polymer
have each a valence of 2. This is a mixture of free mono-
mers and linear polymers.

The partition function is

a ~I ~2Z = g k g, 'g2'g3', . . . ,

a ~IZ= Q I N(P»P&)P». . . )k g1 rl2 'I!3 ) ) (2)

The combinatorial factor in Eq. (2) counts the number
of graphs with the same number of polymers
PI yP2y ~ ~ ~ y Ppf I ~

%'e next calculate the combinatorial factor for the
equivalent-neighbor lattice in three steps. First we con-
sider 1 polymer of size B, i.e., B bonds,

I N(O, . . . , P~= 1, . . . , 0)= (N!l(N —8 —1)! . (3)

This formula is justified as follows. The number of ways
of picking the two ends of the polymer is —,(X(N —1).
For a given pair of ends the number of linear paths con-
necting them is (X —2)(X —3) (X B). —

where B is the total number of bonds, PI is the number of
polymers of size l (i.e., I bonds and I +1 monomers). The
fugacities k and rl& are positive quantities, to ensure the
positivity of all probabilities. The sum in Eq. (1) is over
all possible-graphs of linear polymers and monomers, an
example of which is shown in Fig. 1. The summation
over graphs can be changed to a summation over the
numbers of polymers PI,P2, . . . , P& I by introducing
the combinatorial factor I N(P„P2, P3, . . . , PN, ), FICi. 1. Configuration of linear polymers on the equivalent-

neighbor lattice of N =6 vertices and 15 edges. Each vertex is
occupied by a monomer. The heavy lines represent chemical
bonds and the light lines represent unoccupied edges. Open cir-
cles represent monomers at polymers ends. There are P0=1,
P& =1, and P2=1 polymers and B =3 bonds. Since the lattice
is embedded in a high-dimensional space there are no crossings,
i.e., polymers are self-avoiding lines.

In the second step we count the number of ways of put-
ting Pz polymers, each of size 8, on the equivalent-
neighbor lattice

I N(0, . . . , P~, . . . , 0)=
Ps!2 ~fN Pg(B+ I)]!—

Equation (4) is obtained from Eq. (3) and

r„(o, . . . , p„.. . , o)=r (o, . . . , p, =l, . . . , o)

XrN q 1(0 . . .)P~ =)1 . . .)) 0) rN (P —1)(a+1)(0).. . ) Pa 1). . . ) 0)/P~. .
B

The factorial on the right-hand side of Eq. (S) is required by the indistinguishability of the Pz polymers.
In the third step we calculate the number of ways of putting P, polymers of one bond each, P2 polymers of two bonds

each, . . . , and Pz, of N —1 bonds each on the equivalent-neighbor lattice,

r„(p„p„p„.. . , p„,) =
Po!PI!P2!. . P~ )!2

(6)

where P =P, +P2+ . . +PN, is the total number of polymers and Po is the number of free (not on polymers) mono-
mers. Equation (6) is obtained from Eq. (4) and

rN(P(, P2, P3, . . . , PN 1)—rN(P1, 0,0, . . . , 0)

XrN —2~, (0 P2 0 . 0) ' ' rN 2~, 3I, —(N ——(w„—
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The logarithm of the combinatorial factor given in Eq.
(6) determines the entropy associated with arranging
P, ,Pz, . . . , and P~, polymers on the X vertices of the
equivalent-neighbor lattice. This entropy can be split in
two contributions: the Flory-Huggins entropy of mix-
ing' and the disorientation entropy. ' The Flory-
Huggins entropy is extensively used in thermodynamic
studies of polymer solutions as an approximate method
for three-dimensional systems. The fact that it is also ex-
act for a well-defined statistical problem ensures the laws
of thermodynamics are satisfied, ' which may explain its
considerable success.

Since each term in the sum on the right-hand side of
Eq. (2) is of the type exp[NO(P„P2, . . . ,Plv, )j, where

Pl =Pl/N, in the thermodynamic limit N~ ~ the parti-
tion function Z is '

a ~l ~ZZ= max I lv(P„P2, . . . )(k/N) gl'ri2'. . .
I Pl, P~, . . . I

Note the added factor N to the right-hand side of Eq.
(8) ensures the extensivity' of the thermodynamic poten-
tial. The thermodynamic potential f = —lnZ/N is ob-
tained from Eq. (8) after applying the Stirling formula

f= min 0,

where x =kPQ. The total number of polymers per N is
then

I+1x I+1
2k

and the total number of bonds per X is obtained from
Eqs. (11) and (13),

(14)

b y i I+1Il

, 2k
(15)

For given values of the fugacities the parameter x =kpo
is determined by using the "equation of state, " which is
obtained from Eqs. (12), (14), and (15),

k =x+ —,
' g gl(l+ 1)x'+' .

1=1
(16)

Once x is determined, p and b are obtained from Eqs. (14)
and (15) andPQ=x/k.

The fraction of monomers belonging to polymers of I
bonds each is

=l(3 +1)p =l(I+ 1)x'+' for 1)0QI

2k

and

where
C&Q=PQ=x/k . (18)

0 pQln(pQ )+ g plln(2pl /lil )+bin(e /k)
1=1

(10)

b= pip, ,
1=1

PQ+ g Pl+b= 1 .
1=1

The minimization of 0 yields

(12)

where pl =Pl/N, 5 =B/N, and PQ is the fraction of free
(not on polymers) monomers. The minimization of 0 is
performed with respect to p1,pz, . . . since b and po de-
pend on the p, 's according to

Assuming all monomers are identical, 4& is also the
volume fraction occupied by polymers of I bonds each.
The thermodynamic potential f given in Eqs. (9) and (10)
can be expressed in a simpler form after using the equa-
tion of state, Eq. (16)

f =in@Q+b . (19)

52f
N pl pm=— pI

6 lng
(20)

The fluctuations of the various densities pI, p, b, etc. are
calculated by twice differentiating the thermodynamic
potential with respect to the appropriate fields. The
correlation of the Auctuations of polymer numbers
&pI~pm =pIpm pIp'm iS

I+191

2k
(13) The last derivative on the right-hand side of Eq. (20) is

obtained from Eqs. (13) and (16)

N5pl5p =5l x'+' — x™+2(1+1)(m+1)1+ g i(i+1)x'+'91 I +1 ~™1+m +2 9l

i=1
(21)

where 5 is the Kronecker delta. The fluctuations of the polymers length b and number p are obtained from Eqs. (11),
(14), and (21),

N5b = g i x'+' — g i(i+1)x'+'
, 2k , 2k

2
oo g. Oo

N5p = g x' ' — g (i+1)x'+'-
, 2k , 2k

2
oo

1+ y ' i(i+1)x'+'
, 2k

l+ I

i =1

(22)

(23)

N5P5b= g ix'+' —g (i+1)x'+' g i(i+1)x'+' 1+ g i(i+1)x'+'
, 2k
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III. EQUAL REACTIVITY POLYMERIZATION

The equation of state Eq. (16) becomes after setting
g&=g for all l )0:

x (2—x)
k =x+q

2(1 —x)
(24)

where x =kpp =k4p ~ 1. For given values of the fields k
and q, x is determined from the equation of state Eq. (24),
and the volume fraction of free monomers (not belonging
to polymers) is then obtained, @o=x/k. The volume
fraction occupied by polymers of l bonds each is, accord-
ing to Eq. (17),

(l+l)x'+' for l)0.
2k

(25)

In this section we study a special case of the equilibri-
um polymerization on the equivalent-neighbor lattice:
The energy associated with the attachment of one poly-
mer to another does not depend on the sizes of the two
polymers. In Flory's terminology" this is equal reactivi-
ty. The fugacities qI are then all equal to g. In Sec. III A
we determine the dependence of the various thermo-
dynamic quantities on the fugacities k and g by specializ-
ing the formula derived in Sec. II to the equal reactivity
case. In Sec. III 8 the discrete version of the n ~0 vec-
tor, which was shown by Hillhorst to possess the same
high-temperature expansion as the polymer problem Eq.
(1), is solved on the equivalent-neighbor lattice. We veri-
fy explicitly the equivalence of the two models in the
whole parameter space. It is particularly important to
verify this equivalence in exactly soluble models in view
of its suggested breakdown in the low-temperature re-
gime.

A. Thermodynamic functions

2xx
N5b5p = 1—

2k (1 —x}2 2k (1—x)'
22x

2k (1—x)3
(30)

The equation of state, the thermodynamic quantities,
and their Auctuations (measured in scattering experi-
ments} are manifestly singular at x =1. From the equa-
tion of state Eq. (24},x = 1 corresponds to 11=0 and k ) 1

which is the phase transitions line in the fields space, and
the point q=0, k = 1 is the critical point.

On the g=O line the fraction of free monomers 4p
equals unity as long as k (1. For k ) 1, C&o=1/k (1,
i.e., some of the monomers are now aggregated into poly-
mers. The total numbers of bonds per N, b is zero if k ~ 1

and becomes finite for k ) 1, b =(k —1)/k. The number
of polymers per N stays zero for all k. Thus the polymer-
ized phase consists of a few macroscopically large poly-
mers. Along the phase transition line g =0, on both sides
of the critical point k =1, the following formulas give the
thermodynamic quantities as a function of k:

Cp 1 if k&1 and +p=1/k if k~ 1

b =0 if k (1 and b=(k —1)/k if k) 1,
p=0 for all k,
N5b =0 if k &1 and N5b =1/k if k) 1,
N5p =N5b5p=0 for all k,

(31)

f=0 if k &1 and f= —ink+(k —1)/k if k) 1 .

The singular behavior of the thermodynamic quantities
along the critical "isotherm" k =1 close to the polymeri-
zation critical point, g —+0, follows

xp=n
2k 1 —x

(26)

The total number of polymers per N and the total num-
ber of bonds per N are obtained from Eqs. (14) and (15)

( 1~)1/3 b (
t ~)1/3 p (

& ~)2/3

N5b2 2 [1 11( ] ~)1/3] N5p2 2( 1~)2/3

&

( 1~)1/3 f 3( 1~)2/3

(32)

g
2k (1—x)

(27)

x (1+x) 2) 2x
2k (1—x) 2k (1—x) (1+x)

2x
X 1+

2k (1—x)3

The Iluctuations of p and b are calculated from Eqs. (22)
and (23)

B. Polymerization in the magnetic language

The 0 (n) vector model in the limit n ~0 has the same
high-temperature series as the polymerization prob-
lem, ' ' '9 Eq. (1) with all g1 equal. Hillhorst has shown
a discrete version of the 0 (n) model is also equivalent to
the equilibrium polymerization. In this subsection we
verify the equivalence of Hillhorst's model to the poly-
merization model on the equivalent-neighbor lattice in
the entire parameter space.

Hillhorst's model can be expressed as an Ising-Potts
model. At each site i of the lattice there are two vari-
ables: S;=+1 and o.; = 1,2, . . . , q. The Hamiltonian is

x
N5p =

2k 1 —x
x (x —4x +2)

(1—x) g 5(o;,o )S;S +H g 5(o;, 1)S;J
i,j

(33)

2xX 1+
2k (1—x)

where 5 is the Kronecker delta.
The partition function of this model Z' for small q, the
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analog of n ~0, is related to the partition function of the
polymerization problem Z

Z'=[2q(1+ —,'H )] Z . (34)

The polymer problem fugacities are related to the mag-
netic problem fields

J Hk= and q=
~+ ]H2 1+ ]H2

2 2

or by inverting Eqs. (35)

J=, andH =k
1 —

—,'g

(35)

(36)

The mapping given in Eqs. (34) and (35), first derived
by Gujrati, ' differs at high magnetic fields from the map-
ping used by other authors. ' The source of this
difference is the assignment by the latter of a weight
H /2 to a free monomer. This difference is insignificant

exp —ay + ydy=
]. /2

exp(P /4a), a) 0,

the partition function Z' can be written as

close to the polymerized phase, as H ~0, but non-
negligible at large values of the magnetic field.

Since k ~ 0 and g ~ 0, Eq. (36) implies J ~ 0 and H real
if g ~2, and J~0 and H imaginary if g ~2. Hence if
g ~ 2, the polymerization problem is equivalent to the fer-
romagnetic O(n), n ~0, model in a real magnetic field.
For g ~ 2 the polymerization problem is equivalent to the
antiferromagnetic O(n), n —+0, model in an imaginary
magnetic field. These statements hold regardless of the
underlying lattice.

We now solve the magnetic model defined in Eq. (33).
We consider first J +0 and H real. By using the Gauss-
ian integral

Z'= g exp( —&/k&T)
Io,SI

~ ~ ~
~ ~ ~dy, , . . . , dy exp — NJ g y —Nfo-

rn =1
(37)

fo= —1 [n2 csho(v'qH+&q Jy, )+2cosh(v'q Jyz)+ +2cosh(&q Jy )] . (38)

(39)

The optimization equations are

&q sinh( &q H +&q Jy, )

cosh(&qH+&q Jy, )+cosh(&q Jyz)+ . +cosh(&q Jy~)

&q sinh(Vq Jy ) m)1,
cosh(&qH+&q Jyi)+cosh(&q Jyz)+ . . +cosh(&q Jyz)

In the thermodynamic limit X~~ the partition function is given by the largest integrand on the right-hand side of
Eq. (37), and the free energy f'= —lnZ'/N becomes

qf'= min —J g y +f0
pl~ *~7 I 2

In the limit q ~0 for finite H, Eqs. (39) and (40) reduce to

(Jy, ) HJy,f'+ln[2q(l+ z'H )]=f=—'Jyi —ln 1+ +
2(l+ —'H ) 1+ 'H— (41)

and

Jyi+H
1+—,'(Jy, +H)

(42)

more important differences in the large-g regime to be
discussed next.

If g ~ 2, Eq. (36) and the positivity of k imply J ~ 0 and
H imaginary, i.e., H =iHI, where i =&—1, HI is real,
and ~HI ~

~ &2. By using the Gaussian integral

1/2
The first part of Eq. (41) is the consequence of Eq. (34).
Equation (42) is the mean-field equation of state for the
n ~0 vector model as well as for the Hillhorst model. '

Our free energy formula Eq. (41) divers from the f of
Ref. 2 by an additive factor of —ln(1+H /2), due to the
different weighting of the free monomers. There are

exp( —ay +iPy)dy =
QO EX

exp( —f3 /4a), a) 0

and following the same steps as in Eqs. (37)—(42) we find,

f'+ln[2q (1—,'HI )]=f, —
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=' J —1 1+ +=
—,
' Jyf —ln 1+

2( —'H —1) 'H— 1—

where y, is obtained from the equation of state

I Jly i+HI
—1+—,'(

~ J~y, +H~)

(43)

(44) pi= x'+'(l+I)" ', l =1,2, 3, . . . , (48)

The thermodynamic quantities are calculated by speci-
alizing the general formula of Sec. II to the power depen-
dence of the fugacities. The number of polymers of I
bonds each per N, ph, and the volume fraction occupied
by these polymers are obtained from Eqs. (13) and (17),

We verify the equivalence of the magnetic language re-
sults to the polymerization problem results of Sec. III A
for J~ 0 and real H or g ~ 2. The same procedure can be
used for negative J and imaginary H or g~2. Applying
the mapping given in Eq. (35), the number of bonds per N
is

and

x'+'(l+I)", 1=1,2, 3, . . . ,

pa=@0=x/k .

(49)

(50)

b= —k = —J
5k 5J

] Jy2 (45)

The total number of polymers and the total number of
chemical bonds per N are obtained from Eqs. (14) and
(15),

where the last part of Eq. (45) was obtained by
differentiating the right-hand side of Eq. (41) and by us-
ing Eq. (42). By comparing the above formula to Eq.
(27), derived in Sec. III A for b, we find

y, (1+ ,'H )—
e.= '

H+ Jy,

p = [E„,(x)—x],
2k

b = ~ [E„(x)—E„,(x)],
2k

where E„(x)stands for

(51)

(52)

where No is the fraction of free monomers. It follows
from the equation of state (42) and Eq. (46) that

(Jy& )'

2(l+ ,'H )—HJy
&

q)
—1

1+-'a'
2

(47)

IV. THE SCHULZ DISTRIBUTION

Flory" argued that the exponential decay of the num-
ber of polymers of a given size as a function of the poly-
mer size, the so-called most probable distribution, is im-
plied by the equal reactivity principle. Accordingly, the
opportunity for reaction between two aggregates is al-
ways the same, regardless of the aggregates' sizes. In our
notation this is equivalent to pl=a for all l. However,
certain polymerization processes exhibit a dependence of
the number of polymers of given size on the polymer size
better fitted by a gamma distribution, exponential times
power, the so-called Schulz distribution. ' Within our
model of equilibrium polymerization on the equivalent-
neighbor lattice, Sec. III, the Schulz distribution can be
achieved by relaxing Flory s equal reactivity principle, as-
suming a power dependence on the polymer size for the
fugacities i)I=i)(1 +1)" ', where r is a real number we
call the Schulz index. For r =1 we recover the equal
reactivity polymerization.

Equations (45) and (47) allow us to rewrite the free en-
ergy from Eq. (41) as f =ln&o+b, the general expression
for the thermodynamic potential of the polymerization
problem, Eq. (19). The equation of state (24) is identical
to the equation of state in the magnetic language Eq. (42),
reached by using the mapping given in Eqs. (35) and (46).
This completes the verification of the equivalence of the
q~0 Ising-Potts model, or the Hillhorst model, to equi-
librium polymerization for the entire parameter space.

E„(x)= g n "x" .
n=1

(53)

l

For given values of the fields k and g, the parameter x is
determined by the equation of state +0+b +p = 1, which
in view of Eqs. (50)—(52) is,

k =x+ ,'rl[E„(x) x—] . — (54)

g=0, k, =1 if r~ —1, (55)

k, =1+—,'i)[Z( r) 1] if r—& ——1 .

If the fugacity k is larger than the critical value k„
infinitely large polymers are formed and thus k, (il)
represents the critical polymerization locus.

The nonanalytic behavior of thermodynamic quantities
close to the critical polymerization locus is determined
next. We start with r ~ —1. Along the g=0 line we find

The various thermodynamic quantities are then calculat-
ed from Eqs. (48)—(52). The thermodynamic potential is
determined by Eq. (19),f =in'&0+b.

The function E„(x) defined in Eq. (53) appears in the
theory of the ideal Bose-Einstein gas, whose analytical
properties are well researched. For x &1, F.„(x) is
finite, while for x ) 1 the series on the right-hand side of
Eq. (53) diverges. For x =1, E„(1)=Z( —r), the
Riemann g function, which is finite if r & —1 and infinite
if r ~ —1. For any value of the index r, x =1 is a singu-
lar point. For small 1 —x the leading singular contribu-
tion to F.„ is I (r +1)(1—x) '"+",where I is the gamma
function. For r = —1, —2, . . . the leading singularity is
modified by a logarithm (1 —x) '"+"ln(1—x).

The locus of points in the fields space k, g where the
thermodynamic quantities exhibit nonanalytical behavior
is determined by setting x =1 in the equation of state
(54),
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b =0 if k ~ I and b =(k —1)/k if k ) 1

(57)

and

f= —ink+(k —1)/k if k) 1 .

(58)

For k =1, the "critical isotherm, " as g approaches zero,
we find

f= — [—,'I (r+1)i)] '"+ '+O(i)) if r)0,r+2

f=—,'i? lng+O(r)) if r =0,
f= —

—,
' [Z ( r+ 1 )

—1 ]—i)
(59)

p=0 for any k .

Thus for i)=0 and k )k, = 1, a small number (p =0) of
infinitely large polymers (b =finite) is formed. The ther-
modynamic potential f, for i? =0, is

f =0 if k(1

tributions to b and p are proportional to (k, —k)'~'
When the Schulz index is even smaller r & —2, the lead-
ing nonanalytic contributions to b and p are pro-
portional to (k, —k) " . If the Schulz index
r = —2, —3, —4, . . . , the power-law singularity is
modified by logarithms. ' For example, if r = —2 the
leading singularity of b or p is proportional to
(k, —k) /ln( k, —k).

What happens for r & —1 in the low-temperature re-
gime (k )k, )? Since E„(x) x is—a monotonically increas-
ing function of x, the equation of state Eq. (54) does not
have a solution for

k )k, =1+—,'i?[Z( r) —1]—.
Though a careful analysis of the thermodynamic limit is
yet to be performed, we expect in this regime a Bose-
Einstein cond ensationlike phenomenon. The volume
fractions occupied by finite polymers stay at their largest
possible values, which in view of Eqs. (49) and (50) are
achieved for x =1,

f= —
—,
' [Z (2 ) —1]rl+ —,

'
( —,

' i) ) [ln( —,
'

i? ) ] if r = —1,

4&o= 1/k,

@ = ~ (I+1)".
2k

(62)

where Z stands for the Riemann g function and I stands
for the gamma function. Equation (59) with r = 1 reduces
to Eq. (32). The behavior of f along the i)=0 and k =1
paths is consistent with the following scaling representa-
tion of the singular part of the thermodynamic potential

A finite-volume fraction is now occupied by infinitely
large polymers N„. The equation of state Eq. (54) must
then be replaced by

y, = [k —1['— g+(&/]k —1]™), (60)
which after using Eqs. (61) and (62) becomes

@„=(k—k, )/k .
where a =0 and 6= r +2 for r ~ —1. Thus the univer-
sality class of equilibrium polymerization changes con-
tinuously with the Schulz index r. Note the logarithmic
modifications ' of the power law when the Schulz index r
equals —1 and O.

Now consider r & —1. The values of the thermo-
dynamic quantities on the critical polymerization line

k, (i?) are obtained by setting x =1 in the appropriate
equations,

k, = 1+—,'i)[Z( r) 1],— —

b, = [Z( r) Z( r+ 1)], ———'9

2k,

The number of polymers per N and the number of bonds
per N are

b= g l&, /(l+1)+4
1=]

7l=1——— [Z( r+1)—1] . —
k 2k

(64)

The Auctuations of b and p are obtained by differentiating
b and p with respect to ink and lng,

p, = [Z( —r+1)—1],
2k,

+0, =1/k, ,

N6b'=1 —b, ,

N6p = —N6b6p=p, .

(61)

N5b =1—b, N5p = —N6b6p=p . (65)

f= 1 ——— [Z ( r+ 1 ) —1]—lnk . —Yl

k 2k
(66)

The thermodynamic potential f is obtained by substitut-
ing on the right-hand side of Eq. (19) the expressions for
@o and b from Eqs. (62) and (64),

When approaching the critical polymerization from
the high-temperature side, i.e., k & k„ the thermodynam-
ic quantities exhibit singular behavior determined by the
nonanalyticity of the function E„(x), defined in Eq. (53),
at x = 1. For —2 & r & —1 the leading nonanalytic con-

An important difference between the polymerized
phases for r & —1 and r & —1, respectively, is that in the
former there are a few macroscopically large polymers,
p =0, b =finit, while in the latter the polymerized ma-
terial consists of a large number (pi is finite) of finitely
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large and a few (p„=O) infinitely large polymers. The
latter is reminiscent of the two-Quid picture of
superAuidity. ' The mathematical analogy between poly-
mers of Schulz index r and the Bose-Einstein ideal gas in
d dimensions is borne by the function E„,with r = —d /2.
The critical values of the Schulz index r = —1 and —2
correspond to the lower and upper critical dimensions for
Bose condensation d =2 and 4, respectively.

V. SUlVIMARY

We have presented the exact solution of the linear po-
lymerization process on the equivalent-neighbor lattice
(N vertices and ,'N(N ——1) edges connecting all pairs of
vertices]. Other exact solutions for the polymerization
process in the literature concern the one-dimensional
and the Bethe lattice (interior of Cayley tree) problems.
Exact solutions are desirable because a large proportion
of the studies on the polymerization problem have used
its high-temperature mapping into the n ~0 vector mod-
el, and the validity of the mapping at low temperatures
was questioned by Gujrati. ' In this connection Wheeler
et al. have discussed the inAuence of the order of limits
X~~, n ~0, and H ~0 on the existence of the poly-
merized phase. In Sec. III we have verified that if the or-
der of the limits is as above (from left to right) the
discrete version of the vector model provides the correct
solution of the polymerization process at all tempera-
tures. Since this verificati. on was performed for the
equivalent-neighbor lattice, a model suitable for high di-
mensions, we cannot rule out peculiarities of the type dis-
cussed by Gujrati ' in three-dimensional systems.

The polymerization process analyzed in Sec. II is more
general than the one discussed by other au-
thors' ' "' ' in the sense that the fugacity control-
ling the number of polymers is allowed to depend on po-
lymers sizes. This generalization enables rich critical po-

lymerization behavior as explicitly demonstrated in Sec.
IV, for the special case of a power dependence of the
fugacity rit on the polymer size gt=g(l+1)" '. Poly-
mers sizes have a gamma distribution in this case, also
known in the polymer literature as the Schulz distribu-
tion. The critical exponents vary continuously with the
Schulz index r. For r ~ —1 the phase diagram is identi-
cal to the one obtained for r =1, which corresponds to
the equal reactivity case of gI =g for all /. The polymer-
ized phase appears at low enough temperatures k & 1, in
the limit g~0. If r & —1, on the other hand, a critical
line k =k, (g) separates the polymerized and the unpo-
lymerized phases. There is a close mathematical analogy
between the polymerization process of index r and the
Bose-Einstein ideal gas in d = 2r—dimensions. For in-
stance, the critical values r = —1 and —2 correspond to
the lower and upper critical dimensions for Bose-Einstein
condensation d =2 and 4, respectively. The equal-
reactivity polymerization r = 1 corresponds to the Bose-
Einstein gas in d = —2 dimensions.

The entropy associated with polymers located on the
equivalent-neighbor lattice is equal to the Flory-
Huggins entropy of mixing' plus the disorientation en-
tropy. ' This observation offers the opportunity to
render rigorous the large number of thermodynamic stud-
ies (micellar mixtures, polymers, etc.) where the Flory-
Huggins theory is applied.
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