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q = 5 Potts model on the quenched anisotropically site-diluted Penrose lattice
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(Received 28 December 1987)

Anisotropic site dilution is introduced into the two-dimensional Penrose lattice by varying the
seven-nearest-neighbor (7NN) site concentration p7 from zero (no 7NN sites) to one (all 7NN sites
present). A first-order phase transition line is found for the q =5 Potts model in the region
p7, &p7 1 which terminates at a critical point p7, =0.941(3), conjectured to be in a new universali-
ty class.

I. INTRODUCTION

One model for the underlying structure of recently
discovered quasicrystalline systems' is the Penrose tiling,
made up of two rhombi, one with angles 36' and 144,
and the other with angles 72' and 108'. Although these
lattice structures appear to lie somewhere between amor-
phous and periodic structures, the universality class of
various models has been shown to be unaffected by quasi-
periodicity. This is an interesting result given that the
coordination number of the sites varies throughout the
lattice between a minimum of three and a maximum of
seven (with an average coordination number per site
equal to four).

The primary objective in this study is to investigate a
new type of site dilution which we call "anisotropic dilu-
tion, " unique to quasicrystalline systems, by selectively
diluting only sites with a particular environment. Here
we study, in particular, the quenched dilution of the most
densely surrounded sites, those with seven nearest neigh-
bors (7NN). These 7NN sites make up only about 5.5%%uo

of the total number of sites, yet they participate in over
19.5% of the Penrose lattice's bonds. To this end we in-
troduce an anisotropic site dilution variable p7, where
p7=1 represents the full, undiluted Penrose lattice, and

p7 =0 represents the case where no 7NN sites are present
in the lattice. This dilution is clearly different from iso-
tropic site dilution where all sites may participate in dilu-
tion since the fully anisotropically diluted lattice is still
connected, as seen in Fig. 1. No completely disconnected
"islands" are found, but there are regions which are rela-
tively isolated from the rest of the lattice, connected by
only a few bonds. We have found that the q=5 Potts
model exhibits interesting behavior under anisotropic di-
lution and will present the results below.

Random bond dilution of Potts models on periodic lat-
tices has been studied under annealed and quenched con-
ditions. ' Although the exact phase diagram of the an-
nealed bond-diluted system has been obtained, little is
known concerning quenched bond or site dilution in
periodic lattices '" the phase diagrams of quenched sys-
tems are expected to be qualitatively different than for
annealed systems.

The q-state Potts model Hamiltonian is given by

H= —J g 5(o, , cr ),
&~,j)

where J & 0 is the ferromagnetic interaction, o.;,o.
=1,2, . . . , q, are the spin variables, 5(o;,cr, ) i.s the
Kronecker 6 function, and the summation is made over
nearest neighbors i,j. In two dimensions it is known that
the phase transition changes from second order to first
order as q changes from four to five for periodic lattices'
and for the aperiodic Penrose lattice.

II. METHODOLOGY

FIG. 1. A fully anisotropically diluted Penrose lattice is
shown where all seven nearest-neighbor sites have been re-
moved. Periodic boundary conditions are applied by joining
sides a d, b f, and c e, resu-lting in -a latti-ce with 357 sites.

In our study we implement the microcanonical simula-
tion, ' ' based on the microcanonical ensemble in which
a system's energy if held fixed while the temperature is
calculated. One advantage this technique has over the
traditional Monte Carlo approach' (based on the canoni-
cal ensemble) is that the van der Waals curve of an inho-
mogeneous finite-sized system indicative of a first-order
phase transition in the infinite system can be obtained.

39 689



690 WILLIAM CJ. WILSON AND CHESTER A. VAUSE 39

This curve enables the determination of the transition
point via a Maxwell equal-area construction. The
method as applied to this problem will be discussed only
briefly here, with details of the general method published
elsewhere

In the microcanonical simulation, the closed system is
imagined to consist of two parts, the extensive spin sys-
tem and an intensive demon. " The demon is simply an
extra degree of freedom with a Hamiltonian Hd= Jn
(n =0, 1,2, . . . , 7) which can be used as a small excess
energy sack during the spin flipping process. This is
needed since it is a difficult task to exactly conserve the
spin system's energy while flipping a spin. The demon
can be used to place excess energy into or take reserve en-
ergy out of when the spin flip does not exactly conserve
the spin system's energy. In addition, the spin system
acts as a reservoir to the demon, hence, the demon's
states are canonically distributed, meaning the closed
system's temperature can be determined from the mea-
surement of the demon's average energy and the
knowledge of its partition function.

The simulation begins by first reading a data file into
the program that contained the relevant information for
the full Penrose lattice, specifically each site's NN sites.
We generate the lattices using the defiation method, ' and
apply "periodic" boundary conditions by joining the lat-
tice edges a-d, b f, and c-e to-gether (Fig. 1). Our simula-
tion algorithm allows for the simulation of 64 lattice sys-
tems simultaneously, or one lattice system for each bit
position of the 64-bit Cray Research X-MP supercomput-
er word. A second file contains a "dilution array" which
holds information regarding whether a particular lattice
site is occupied by a spin or not. This array is N elements
in length, where N is the total number of lattice sites in
the undiluted system. Each bit position in the dilution
array corresponds to the lattice at the same bit position
in the array that holds the spins, with a particular bit set
to 1 if the corresponding lattice site is occupied, or set to
0 if the site is vacant. Thus we are able to randomly di-
lute 7NN sites with a vacancy, and create an ensemble of
64 independent anisotropically site-diluted lattices. This
provides us with a way to perform a quenched average
for each value ofp7.

Next, the lattice systems are brought to the desired en-
ergy for the simulation. This is achieved by placing all of
the energy into a large array, with the spin systems in a
ground state, then dumping the energy into the spin sys-
tems as spins are flipped. In this energy dump, every-
thing is randomized to avoid correlated starting
configurations for the 64 lattices. Since the correspond-
ing sites on each of the lattices must be visited simultane-
ously, energy is dumped at a site with only a one in 16
chance, otherwise the energy would be placed at identical
positions for all 64 lattices, exactly correlating their ini-
tial configurations. When the energy array is depleted
the lattices are considered initialized, and the simulation
proceeds to the equilibrium period.

The purpose of equilibration is to bring the systems
away from their initial configurations and allow correla-
tions to grow to equilibrium values. We found in this
study, as in the simulation on the undiluted lattice, that

the temperature relaxes very quickly to equilibrium
values, but the order parameter relaxes very slowly.
Thus, due to the vast amount of computer time that
would be required to gain useful information regarding
the order parameter, only the energy-temperature curve
could be obtained in this study.

When a simulation run is completed, the results for
each individual lattice are determined separately, then
these results are averaged to give the reported values for
a particular p7 and energy per site e (in units of J). The
uncertainties are calculated as the standard deviation of
the 64-lattice mean.

III. RESULTS

e'"'+e

where t=~r —r, ~/r„e=~E —E, ~/E„and 3+ is the criti-
cal amplitude above (+ ) and below (

—
) the transition, in

order to obtain the universal specific-heat exponent o, , the
critical energy c.„and the critical temperature ~, . The
second is an analytic form

t =ac+be +ce (4)

with a, b, and c constants, which is appropriate for a sys-

We examine systems with number of spins N=378,
988, and 2585 in the undiluted limit, which in the fully
diluted limit contain N=357, 933, and 2441 spins, re-
spectively. The simulation data of the reduced energy c.

versus the reduced temperature ~=kz T/J for the largest
lattice are shown in Fig. 2(a) for selected values of p7.
The uncertainties in the data are on the temperature, and
in all cases are much smaller than the size of the plotting
symbol and are excluded. As can be seen from the data,
the undiluted system displays a van der Waals curve indi-
cating a first-order phase transition, whereas for small
values of p7 the phase transition appears "smeared. " The
more interesting region p7 )0.9 is expanded in Fig. 2(b),
where it is observed that as p7 is decreased from unity,
the van der Waals curve disappears and gives way to a
different behavior which we analyze below. We have ap-
plied a Maxwell equal-area construction for the incipient
first-order phase transitions to determine the first-order
phase transition points. This construction arises from the
condition that the entropy change between two equilibri-
um points is independent of the path taken. Hence,

C2

(e2 —e))/r*= I dE r (2)
1

where c., and c.2 are the coexisting energies, ~* is the tran-
sition temperature, and the integral is evaluated along the
van der Waals curve. The transition energies and tem-
perature are found by replacing the integral in (2) by a
sum and adjusting E&, Ez, and r* until the root of (2) is
found. Standard error propagation provides estimates for
the uncertainties in these quantities.

In the region of p7 where there is no van der Waals
curve, we have examined two possibilities. The first is a
singular scaling form indicative of a second-order phase
transition
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p7=0. 938 (N=2576), the fit to the singular form (3)
gives g =0.94 for 25 degrees of freedom, compared with

y =1.46 for 23 degrees of freedom for the fit to the ana-
lytic form (4). Thus, increasing p7 from zero shows a
trend of favoring (4) at intermediate values of p7 giving
way to near critical behavior in the region p7=0. 9. On
the other hand, as discussed above, upon decreasing p7
from unity, the system exhibits first-order behavior which
disappears upon diluting to p7-0. 94. These results lead
us to conclude that the line of first-order transitions
(coexistence curve) terminates at a second-order transi-
tion (critical point) p7„and for p7 &p7„ there is no phase
transition. The data in the region p7 slightly below p7,
are revealing precritical behavior. An examination of the
constant volume specific heats provides a more striking
picture of the phase transition behavior for the lower
values of p7. Figure 3 displays the specific heats at vari-
ous values of p7 for the )V=2585 lattice, obtained by
differentiating the fits to the polynomial (4). A sharp de-
crease in the specific-heat maximum is observed as p7 is
decreased from p7, .

We determined the critical value of p7, in the following
manner. For the largest lattices, the system with
p7=0. 944 (N =2577) clearly indicates a first-order tran-
sition [see Fig. 2(b)], whereas the system with p~=0. 938
(N =2576, not shown) has no van der Waals curve and
has an excellent fit with the singular form (3) as described
previously. Hence, our estimation of p7, involves the
averaging of p7 for these systems (they differ by only one
site) which gives p7, =0.941(3). It is quite astonishing
that the removal of only nine 7NN sites from the
N =2585 Penrose lattice, only 0.35% of the total number
of sites, is a large enough perturbation to change the
transition from first order to second order.

FIG. 2. The reduced energy vs the reduced temperature for
the N=2585 Penrose lattice is shown for (a) 0 p7 ~ 1, and for
(b) p& )0.9. The transition changes from first order to second
order at p7, =0.941(3). The uncertainties are approximately
the size of the plotting symbol and have been excluded.
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tern with no true phase transition in the thermodynamic
limit ("smeared").

The fits to the data of the largest fully anisotropically
diluted lattice (N=2441) give reduced y-squared values
of g =4. 1 with 29 degrees of freedom for the singular fit
(3), and y =2.9 with 22 degrees of freedom for the ana-
lytic form (4). We regard both fits as poor and the func-
tional forms to be unable to provide a quantitative char-
acterization of the system at this stage of dilution. How-
ever, we find improvement in both fits upon increasing p7
from zero, with the analytic form being favored over the
singular fit for lower and intermediate values of p7. For
example, at p7=0. 597 (%=2527) the fit to (3) gives

y = l. 51 for 28 degrees of freedom, whereas the fit to (4)
gives g =1.17 for 31 degrees of freedom. At p7=0. 896
(N=2570), both fits are very good with (3) giving
y =0.82 for 31 degrees of freedom, and (4) giving
g =0.88 for 30 degrees of freedom. Finally, for
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FIG. 3. Shown here are the reduced specific heats plotted vs
reduced temperature for p& &p7, determined by differentiating
the fits to Eq. (4) in the text for the N=2585 lattice. The max-
imum is seen to decrease as p7 is lowered from p„, indicating
the disappearance of the phase transition. The curve for
p& =0.9 is nondivergent, with a maximum of c„=95.
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In terms of the universal behavior of the critical point,
the values of the specific-heat exponent a obtained in the
fit to (3) were 0.642(4), 0.655(2), and 0.625(2) for the
N=376, 984, and 2576 lattice sizes, respectively. The
uncertainties in these values were determined by the stan-
dard method of fixing all other parameters while adjust-
ing 0. to increase g by one. Although this is a standard
definition, we feel the quoted uncertainties to be, perhaps,
a factor of 5 —10 too small. The value for a obtained here
is suspiciously close to the den Nijs conjectured value
a= —', (Ref. 17) for the undiluted q =4 Potts model in two
dimensions, shown to be the same for both the square and
Penrose lattices. We have no reason to believe the
quenched anisotropically diluted system is in the same
universality class, thus we conjecture that the critical
point obtained here is in a new universality class.

Figures 4(a) and 4(b) show the coexisting energies e,
and c.2, and transition temperatures ~*, respectively, of
the first-order phase transitions for p7 )p7, . The uncer-
tainties in both figures are approximately the size of the
plotting symbols and have been excluded. It is apparent
from these figures that the anisotropic dilution of the
7NN sites behaves as a "symmetry-breaking field. " This
is because the low-temperature phase can be reached
from the high-temperature phase via a path around the
critical point, while never undergoing a phase transition.

Finally, it must be emphasized that the systems simu-
lated are finite and we can only infer the results in the

limit. Finite-size scaling is, unfortunately, not
applicable to the lattice sizes presented here for two
reasons. First, the latent heats (coexisting energy
differences) shown for p7=1.0 in Fig. 4(a), for example,
do not show a trend that might reveal the latent heat in
the N~~ limit. A q=5 Potts model simulation on the
undiluted square lattice displayed a similar behavior in
the latent heats, with a 50 lattice system's latent heat be-
ing approximately four times larger than the infinite
lattice's known exact value. If the situation is similar for
the Penrose lattice system's latent heat, we cannot expect
the results presented here to be quantitatively accurate
predictions of the N ~ ~ values. Secondly, we are un-
able to perform a useful finite-size scaling of the critical
point because p7, cannot be determined with arbitrary
accuracy for each value of N. This is apparent from Figs.
4, where the successive removal of just one lattice site
produces large changes in the transition energies and
temperature. Only bounds can be placed above and
below the critical point, which do not provide adequate
information for finite-size scaling. In spite of these con-
siderations, we expect the qualitative picture that has
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FIG. 4. The (a) coexisting energies c& and c.2, and (b) transi-
tion temperatures ~ are shown vs the anisotropic dilution vari-
able p7. The critical point is at p7, =0.941(3) for the N=2585
lattice. Uncertainties are approximately the size of the plotting
symbol and have been excluded.

emerged from the simulation will remain unchanged as
the lattice size is increased.
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