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Motion of a single hole in a quantum antiferromagnet

C. L. Kane and P. A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

N. Read
Department ofApplied Physics, Fale University, New Haven, Connecticut 06520

(Received 18 July 1988}

We formulate a quasiparticle theory for a single hole in a quantum antiferromagnet in the limit
that the Heisenberg exchange energy is much less than the hopping matrix element, J« t. We con-
sider the ground state of the spins to be either a quantum Neel state or a d-wave resonating-
valence-bond (RVB}state. We show in a self-consistent perturbation theory that the hole spectrum
is strongly renormalized by the interactions with spin excitations. The hole can be described by a
narrow quasiparticle band located at an energy of order —t with a quasiparticle residue of order J/t
and a bandwidth of order J. Above the quasiparticle band is an incoherent band of width of order t.
Our results indicate that the energy scale for any coherent phenomenon involving the holes is 6J,
where 5 is the doping concentration. In the Neel state we perform a spin-wave expansion on an an-

isotropic Heisenberg model. In the Ising limit we reproduce previously known results and then ex-
pand perturbatively about that limit. In this expansion we find that the holes have a quasiparticle
residue of J, /t and a bandwidth of J~. In the Heisenberg limit we employ a "dominant pole" ap-
proximation in which we ignore contributions to the self-energy from the incoherent part of the
hole spectrum. A similar technique is used to study the d-wave RVB state. The relevance of our re-
sults to recent optical experiments is discussed.

I. INTRODUCTION

Since the discovery of superconductivity in the rare-
earthy-based copper oxides' there has been growing in-
terest in strongly correlated electronic systems. Ander-
son has suggested that the physics of these materials is
contained in a two-dimensional, large- U, single-band
Hubbard model. In the large U limit, the Hubbard model
may be transformed into the model Hamiltonian

H= t g c, c, +—H. c. +J g (s, sj n, n, ) —(1.1)
(ij )

acting on the space with no doubly occupied sites, with s;
the electron spin and n; the electron number. We have
left out the pair-hopping term which is unimportant near
half-filling.

At half-filling, this model reduces to a two-dimensional
antiferromagnetic Heisenberg model, where the spins in-
teract via the super exchange mechanism. Neutron
scattering experiments on undoped La2Cu04 have
demonstrated the existence of long-range Neel order, and
have indicated that the antiferromagnetic exchange ener-

gy J=0. 1 eV. The nature of the ground state and excita-
tions of the two-dimensional Heisenberg model is a sub-
ject of intense current interest.

Many of the fascinating properties of these materials
emerge when they are doped. The holes are now widely
believed to be the charge carriers in these materials, and
the presence of superconductivity depends crucially on
their concentration. In -order to understand the super-
conducting and normal-state properties of these materials
it is of great importance to understand the holes.

When the doping concentration 5 is large, such that
5t))J, it has been shown that a Fermi-liquid descrip-
tion with a Fermi surface containing 1+5 holes in accor-
dance with Luttinger's theorem is a good starting point.
Here we are concerned with the opposite limit, 5t &(J,
where the Fermi-liquid theory is expected to break down.
In particular, this paper deals with the 5~0 limit, and
we discuss the motion of a single hole in an antiferromag-
netic background.

The presence of holes poses two questions: (1) How
will the holes affect the background spin configuration?
In particular, for a given concentration of holes, what
will the ground state and excitations of the spins be? (2)
What are the properties (i.e., mass lifetime, . . . ) of the
holes which are inbedded in this spin state'? By treating
the 5~0 limit, we forego the first question. The proper-
ties of a hole depend on the ground state and excitations
of the model at half-filling. We will consider two types of
ground states for the spins at half-filling: a quantum Neel
state and a d-wave resonating-valence-bond state. '6, 7

The important feature which we would like to em-
phasize is that the holes are very strongly coupled to the
excitations of the spins. In the Hamiltonian (1.1), a hole
can hop with rate t, which has been estimated to be 1

eV. But when it does so it disturbs the local spin
configuration. The typical energy for such disturbances
in J=0.1t. Each hole will thus be surrounded by a cloud
of spin excitations. In order to treat the holes correctly,
it is necessary to construct a quasiparticle theory for
them.

Our general approach is to select a ground state for the
spin configuration, classify its excitations and then deter-
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mine how a hole will couple to these excitations when it
hops. We calculate the hole propagator diagrammatical-
ly. Naive expansion in terms of the hopping interaction,
however, will not yield a sensible result because we are in
the strong-coupling regime t ))J. Diagrams with more
interactions will typically be higher order in t/J.

We consider the limit J (& t and obtain a self-consistent
perturbation theory, in which an infinite class of "non-
crossing" diagrams are summed. That is, we consider the
self-energy corresponding to the diagram shown in Fig. 1

where the wavy line represents a spin excitation and the
double line is the exact hole propagator. Summing the
"noncrossing" diagrams is equivalent to ignoring correc-
tions to the hole spin excitation vertex, and is the central
approximation in this paper. We do not expect that this
will qualitatively charge our results. We will address this
issue in Appendix A.

Since the energy scale in this problem is J=1000 K,
we adopt the zero-temperature formalism. When the
self-energy depicted in Fig. 1 is evaluated, we obtain a
self-consistent integral equation for the hole propagator

G(k, w)= 1

co —g f (k, q)G(k —q, co —Zq)
q

(1.2)

where f(k, q) contains information about the coupling of
the holes to the spin excitations and is of the order t,
since it involves two hopping events. Eq is the energy of
the spin excitations, which is of order J. The situation
will be slightly more complicated when we- consider the
RVB state, but the general features remain the same.

The quantity which we are interested in knowing is the
spectral function A (k, ap) =(1/m. )lmG (k, co), which de-
scribes the spectrum of energies of the hole excitations.
If the spectral function has a sharp peak as a function of
co, then we may think of this peak as describing a
coherent excitation, or quasiparticle. The positions of
these quasiparticle peaks as a function of momentum will
determine the quasiparticle mass. If there is no such
peak in the spectral function, then the hole is completely
incoherent, and a partic1elike description of its motion is
not valid.

Equation (1.2) is a very complicated integral equation,
which can only be solved in the simplest cases. We will
examine such cases in the next section. One may develop
some intuition for how the solutions behave by consider-
ing the following arguments. Since at zero temperature
the only mechanism for scattering of the hole is the
creation of spin excitations, holes may only scatter into
states with lower energy. Therefore, if the density of
low-energy spin excitations is small, there should be a
well-defined state at the bottom of the hole spectrum
which has an infinite lifetime. At higher energies,
scattering will dominate. The picture thus emerges of a
sharp quasiparticle peak at the bottom of a broad, multi-
ple spin excitation background.

This self-consistent perturbation theory for the hole
propagator has also been considered in Ref. 10. The in-
tegral equation (1.2) was solved numerically in one di-
rnension for the case of the Neel state, and a quasiparticle
peak was seen below an incoherent background. As we

FIG. l. Self-energy diagram considered in the noncrossing
approximation of the hole propagator. The double wavy line
represents the exact hole propagator and the solid line is the
propagator for spin excitations. The shaded circle is a hole-spin
vertex, which is of order t.

shall explain in Sec. II C, however, there are some
subtleties associated with one dimension, and in that case
the spectrum is entirely incoherent. In two dimensions,
though, we will show that there is a quasiparticle peak.

We are interested in obtaining information about this
quasiparticle peak. In particular we would like to know
its weight relative to the background and its dispersion
(or mass). This can be done by writing the propagator as

a
G(k, co)= +G;„,(k, co) .

CO COi

(1.3)

The following are self-consistent expressions for the
quasiparticle residue and the position of the pole:

1 coq=X(k, toq) .
1 — (k, co&)

ax
(1.4)

I+y; ""y',
(y —cok)'

I (k,y) may be thought of as a scattering rate for states at

In order to examine the shape of the quasiparticle
band, it is important to keep track of the fact that there is
implicit dependence of the self-energy on cok. Thus, for
instance, the mass at the bottom of the band will be re-
normalized by the quasiparticle residue, a&,

a'
COk

a' BX a2

ak. ak
'"' ' a~' ' 'akak

J I J

a'
=a~ X(k, co)

~

I J

Thus, as in Fermi-liquid theory, if the self-energy is a rap-
idly varying function of co then the residue of the quasi-
particle pole will be decreased, and its eff'ective mass will
be increased.

Before going into specific details, we first give a rough
estimate of the quasiparticle residue. We express the real
part of the self-energy in terms of its imaginary part,
I (k, co)=(1/n. )lmX(k, co), via the Kramers-Kronig rela-
tion,



6882 C. L. KANE, P. A. LEE, AND N. READ 39

momentum k and energy y. At low temperatures, holes
may only scatter by creating spin excitations, which have
a typical energy of J. Moreover, we shall see that in the
spin states which we consider, the density of low-energy
spin excitations vanishes like a power of their energy.
Therefore, for y —cok((J, we expect I (k,y) to vanish
like a power of y —cok. In two dimensions, this power is
sufficient to cut off the divergence in the integral. For
y —cok comparable or greater than J, we expect scattering
to dominate and I (k,y)=t. A schematic portrait of
I (k,y) is shown in Fig. 2. Given this form of I"(k,y) we
can estimate the residue for J« t to be

ak ~
1+j dyJ y

The effective mass of these quasiparticles can be es-
timated from Eq. (1.5). Though the self-energy has a
singular frequency dependence in the J—+0 limit, we will
argue that it is not a singular function of k in that limit.
Therefore, its derivative with respect to k in (1.5) may be
evaluated in the J =0 limit and must depend only on t.
Thus, the mass of the hole will be enhanced from the
noninteracting band mass by a factor of t/J.

The enhanced quasiparticle mass is consistent with re-
cent optical data, " in which the Drude peak in the con-
ductivity indicates a mass enhancement of order 10.
Furthermore, we shall argue that the broad feature ob-
served at higher energies may be associated with the in-
coherent part of the hole spectrum.

The remainder of this paper is organized as follows. In
Sec. II we investigate hole motion in a quantum Neel
state by formulating a large 5 expansion of the spin in-
teraction. We first consider the simplified case of an Ising
spin interaction and compare our results to the work of
previous authors. We then demonstrate the effects of the
Heisenberg spin interaction by expanding perturbatively
about the Ising limit. We then treat the Heisenberg limit
by considering the self-consistent equations for the quasi-
particle pole discussed above. In Sec. III we analyze hole
motion in a particular version of the resonating valence

FIG. 2. A schematic portrait of the imaginary part of the
self-energy, I (k, co) as a function of co.

bond state, using the same technique. Finally, in Sec. IV,
we discuss the conductivity, o(co), and the relevance of
our results to some recent optical experiments. "

II. HOLE MOTION IN A NEEL STATE

A. EB'ective Hamiltonian

In this section we examine the motion of a hole in a
half-filled Hubbard model, assuming that the ground
state at half-filling can be described by a Neel state with
spin-wave excitations. Our motivation for considering
such a state lies in the fact that undoped La2Cu04 has
been shown to posess Neel order, and simple spin-wave
theory has done quite well in predicting ground-state en-
ergy and magnetization in the Heisenberg antiferromag-

12, 13

Numerous authors have considered this prob-
lem. ' ' ' One line of attack is based on the retrace-
able path approximation of Brinkman and Rice. They
considered the Ising limit and the basic idea is that as a
hole hops in a Neel state, it will scramble the spin
configuration, creating a "string" of overturned spins
along its path. In order to return the spin configuration
to its original state, Brinkman and Rice argued that to a
good approximation, one can consider only paths in
which the hole retraces its path back to the origin, there-
by returning all of the spins to their original positions.
They found that in the J=0 limit (ignoring the spin dy-
namics), that the hole is described by an incoherent band,
which is somewhat narrower than the noninteracting
band.

The case of finite J has been considered by Bulaevskii,
Nagaev, and Khomskii' and Shraiman and Siggia. '

They considered the Ising limit of the spin interaction in
which the quantum fluctuations are turned off. In this
case, each time a hole hops, the "string" which it creates
costs a finite energy J„since there are bonds which are
left unsatisfied. The hole can then be viewed as if it were
a particle in a linear potential. They find that there is a
bound state with an energy which is of the order
t(J, /t) ~ above the Brinkman Rice band edge, and has a
spatial extent which scales like J, '

In this Ising limit, the holes are infinitely massive in
the retraceable path approximation, since they are bound
to their original position by a "string. " If we include J~,
the spins will no longer be in an eigenstate of the Hamil-
tonian, and quantum fluctuations will allow pairs of spins
to spontaneously flip, thereby relaxing the "strings, " and
allowing the holes to be mobile. ' Furthermore, if one
includes paths that have closed loops, the hole may hop
by going around a loop one and a half times and return
the spins to their original positions. ' Such effects of J~
have been included in the partial diagonalization studies
of Trugman' and the variational studies of Sachdev. '

Both authors find evidence that the mass of the holes is
large when J« t.

Our approach of summing noncrossing diagrams is
similar in spirit to the retraceable path approximation of
Brinkman and Rice. The retraceable path approxima-
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tion ignores processes where the hole goes around a
closed loop, returning the spins to their original
configuration in a different order than that in which they
were Hipped. By omitting crossed diagrams, we ignore
processes in which the spin excitations are absorbed in a
different order than that in which they were created. We
do, however, allow for the fact that the spin excitations
may propagate, so that the hole trajectory need not fol-

low a retraceable path, and the holes may be mobile.
Since the hole must absorb every spin excitation which it
emits, it must hop an even number of times in order to re-
turn the spins to their original configuration. Thus, a ~

hole is associated with a single sublattice.
We consider a more general anisotropic version of the

Hamiltonian (1.1) where we include two interaction pa-
rameters J, and Ji, with a ratio we define as a—:Ji/J„

H = t g c; cj + g c;~c;jjcjrcjs[J~cT~pcTrs+ Ji(o ~po ys+ o ~po ys)]
&r, j& &i,j&

(2.1)

with the constraint of no double occupancy. We have
omitted the density terms in Eq. (2.1), since near half-
filling they will have no effect. We consider this aniso-
tropic model because in the limit a=0, the calculations
are tractable, and we can compare our results with those
of Brinkman and Rice, Bulaevskii, Nagaev, and Khom-
skii' and Shraiman and Siggia. ' Furthermore, we can
perform a perturbative expansion in a and analyze the
effects of a finite J~. We will treat the Heisenberg limit,
+=1 using a "dominant pole*' approximation, where the
contribution of the incoherent part of the hole spectrum
to the self-energy is ignored.

Our approach is to formulate a 1/S expansion of the
spin part of the Hamiltonian (2.1), which in lowest order
yields an effective Hamiltonian which is expressed in
terms of Holstein-Primakoff' spin-wave operators. We
then introduce holes and determine how they couple to
these spin waves.

Away from half-filling, one must carefully treat the in-
equality constraint of no double occupancy. A powerful
method for doing this is to enlarge the Hilbert space by
introducing new operators to keep track of unoccupied
sites (holes) and occupied sites (spins). The inequality
constraint then becomes the equality constraint that on
each site the number of holes plus the number of spins is
unity. The electron creation operators are replaced by a
spin creation operator and a hole annihilation operator.
In order to preserve the fermion commutation rules for
the electrons, one operator must obey Bose statistics and
the other must obey Fermi statistics. We have the free-
dom, however, to choose which is which. In this section,
in order to facilitate a large S expansion in terms of spin-
wave operators, we represent the spins by boson opera-
tors and holes by fermion operators. We therefore ex-
press the electron operators in the "slave fermion" repre-
sentation, c; =f;b;, subject to the constraint that
f, f, +b, b, =1 on each site. .

We can express the Hamiltonian as,

H= rg f, b,t b, f,"—
&I,j&

+ X bi fbi pb„bjs'[Jz'~ap rs+ z(~ap is+oat ys)]
&I,j&

+ g A.;(f;tf;+b;t b; 1), — (2.2)

where A, ; is a Lagrange multiplier which constrains us to

+ gA, ;(b; b; —1) . (2.3)

We may generalize the Schwinger boson spin representa-
tion to large S by replacing the constraint by

b;gb;g+b~gb;g =2S,
so that there are now 2S spin- —,

' Schwinger bosons on
each site. Our approach is to consider large S, in which
we can formulate a consistent 1/S spin wave expansion.
As in usual treatments of antiferromagnets, we divide the
lattice into two sublattices labeled by 1 and 2, and Hamil-
tonian in (2.3) may be written

H = —g ,' Jz (2b „i b „—t 2S )( 2b 2~) i b 2—j i
—2S)

&I,j&

7 Ji(b i;tbilib2jib2Jt +b i//bi'ib2j tbj2i )

+ Q A, „(b „t b „t + b „ib„i
—2S).

I

+ g ~2j(b2j fb2j t +b2j ib2j i (2.5)

In the large S limit we may consider mean-field theory in
the Schwinger bosons and the Lag range multiplier s,
which is equivalent to a saddle-point expansion of a func-
tional integral. A stable mean-field solution occurs when

b(; ) =bqqg =0,
b„i =b2jt =&2S

~i =~a =0.
(2.6)

This mean-field corresponds to a Neel state. On the 1

sublattice, the spin points down, since there are 2S
"down" Schwinger bosons and no", up" Schwinger bo-
sons. On the 2 sublattice, the spins point up.

If we expand to quadratic order about this saddle

the subspace in which there is one object on each site.
Consider first the case of exact half-filling. In that

case, the constraint requires that there be no fermions, so
the Hamiltonian reduces to the pure Heisenberg Hamil-
tonian expressed in terms of Schwinger bosons,

H= —g b,
~ b, pb,

~ b s[J,o'po's
&I,j&

+J,(o. po ys+o.~powys)]
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point, we obtain an effective Hamiltonian,

H= g SJ,(b„tb„1+b2,tb2jt)
(i,j&

+SJ~(b „1b2 1+. b„tb2./t ) . (2.7)

H= J g(1— y )'/PtP
k

(2.8)

where we have absorbed a factor of 2S into J, and
a=J1/J„z is the coordination number (z =4 on the
square lattice), yk= 1/zgse'", and

i k.r,. ik-r,
bk= g b„te '+ g b2 1e

iC1 j&2

1 k ~k Uk bk

13 k—uk

Note that the fluctuations in b&;&, b2J&, A, &, , and A,2j do
not appear in quadratic order. This is precisely the Ham-
iltonian for Holstein-Primakoff spin waves. What we
have done is identify the Holstein-Primakoff spin-wave
operators with the creation operators for the Schwinger
bosons to lowest order in 1/S.

This Hamiltonian is easily diagonalized by Fourier and
Bogoliubov transformation, and we obtain the Holstein-
Primakoff Hamiltonian,

in S =
—,', is to interpret the holes to be sites which have

spin S —
—,'. Thus, a site without a "hole" will have 2S

Schwinger bosons, while a site with a hole will have
2S —1 Schwinger bosons. The hopping part of the Ham-
iltonian will involve the interchange of a hole operator
with a single Schwinger boson on nearest-neighbor sites,
and will look exactly like the hopping part of the spin- —,

'

Hamiltonian (2.2). The only difference is.that in this case
we are constrained to a different sector of the Hilbert
space in which f; f, +b;&b;&+b;&b;&=2S. When S is
large, the presence of a "hole" is a small perturbation on
the spin state, so that a large S expansion for the hole
propagator exists.

For large S, we may replace b„& and b2J& by &2S.
The hopping Hamiltonian is then expressed in terms of
the Iluctuations in b1;t and hz~1. If we absorb &2S into
t, this becomes,

H, = t g—f f)~( b „t + b 2/1 ) +H. c.
(i,j&

zt g fk—fk q(yk qbq+ykb q)+H. c.
k, q

= —zt Xfkfk-, (~,)'k-q13„+U, ) kP'-, )+H c.
k, q

(2.12)

v„=- —(sgn) k)

1+(1 2 2)1/2

2( 1 ~2)/2 )1/2

2~2 )1/2

2( 1 ~2y2)1/2

(2.9) Thus, we have an effective Hamiltonian in which holes
may hop by emitting or absorbing spin waves.

Given the effective Hamiltonian (2.12), we would like
to calculate the spectral function for a single hole. The
true hole propagator depends on the electron operators
c,„.=f, b...

The ground state of this Hamiltonian is a Neel state
with quantum fluctuations. It may be expressed in terms
of the classical Neel state as,

G (i,j,co)

= f dt e' '(T[f, (t)b, (t)b, .(0)f, (0)]) . (2.13)

l0) =exp —g btkb k lx),
t,. uk

(2.10)

C. f btS+mbtS —m

&(S +m)!(S —m)!
(2.11)

Thus, an electron is composed of a fermion and 2S
Schwinger bosons. Unfortunately, if we use this
identification, the fermion couples to 2S bosons and it
turns out that there is no sensible 1/S expansion for the
hole propagator.

An alternative procedure, since we are really interested

where lX) is the classical Neel state. It is important to
remember that even in the J,~O limit, this ground state
depends on n. Though the operator in the exponent of
(2.10) does not appear to conserve spin, it actually does
because the form of uk and Uk ensure that the two b's lie
on opposite sublattices.

Next we consider the addition of holes. In this case,
we must generalize our identification of the electron
operators to large S. One possibility is to consider spin S
electrons. In that case, since we would like to express the
spin to the electron in terms of the Schwinger bosons, we
must identify the electron in the m spin channel as,

This fermion propagator is useful for calculating physical
quantities such as the conductivity. We will argue that
the low-frequency conductivity may be represented by a
bubble diagram involving these fermion propagator s.
Implicit in this way of looking at the holes is the assump-
tion that the spin of the hole decouples, so that we may
regard the hole as spinless.

We proceed to construct the self-consistent perturba-
tion theory discussed in the Introduction. The self-
energy depicted in Fig. 1 may be written as,

X(k,co)= gf(k, q)G(k —q, co —E ),
q

where,

f(k, q) =z't'l) k,~, + rkU, I' .

(2.15)

(2.16)

We obtain the following integral equation for the hole
propagator:

If we consider the dominant contribution in our 1/S ex-
pansion, the boson operators are replaced by &2S when
the spin is up on the 1-sublattice and down on the 2-
sublattice. We therefore focus on the f propagator,

G(i,j,co)= f dt e''(T[f;(t)fj(0) ]) . , (2.14)
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G(k, co) = 1

co —g f (k, q)G(k —q, co —E )

q

(2.17)

In the remainder of this section we will discuss some
limiting cases, in which this equation is exactly soluble,
and make connection to the work of Brinkman and
Rice, Nagaev, and Khomskii' and Shraiman and Sig-
gia. ' We will then go on to discuss the general case us-
ing the dominant pole approximation.

0

g

3

B. Expansion about Ising limit

We consider an expansion about the Ising, or o.=0 lim-
it of the model (2.1). In that case, we may expand the
coupling factor as,

f(k, q)=z t [Yk q
—

ccYkYqYi q

+.'~'Y', (Yk+r,')+ .
l

1
ur (in units of 2~zt)

(b)—

Ek =zJ, (1 —
—,'a Yi, + ) .

1. Ising limit a=0

(2.18) 3

0

We first consider the Ising limit, +=0. In that case,
the Hamiltonian is purely classical, in that the spin in-
teraction does not admix different spin states. The spin
excitations in such a model will not propagate. It is clear
from (2.18) that their energy is dispersionless, and corre-
sponds to breaking z bonds. As a hole propagates, it will
leave behind a trail of Aipped spins, so that there is a very
restricted set of paths which the hole can take which
leave the spin configuration unaltered.

For a =0, it is clear from (2.17) and (2.18) that G(k, co)
will be independent of k, so our integral equation be-
comes (using gi, Yi,= I /z ),

cu (in units of 2@zt)

FIG. 3. Hole spectral function in the J&=0 limit. (a) The
limit J, =O. (b) J, /t =0.1. The vertical lines represent delta
functions with weight specified by their height.

G(a)) = 1

co —zt G(co —J, )
(2.19)

Consider first the case J, =0. In that case G can be eval-
uated exactly as

G(~)= CO +CO 4Zt'

2zt 2

The spectral function is

=1 +4zt coA(co)—=—ImG(co)=
2

for co(2&zt
7T 2m'zt

(2.20)

(2.21)

as shown in Fig. 3(a).
This j:esult is similar to the result of the retraceable

path approximation of Brinkman and Rice. It describes
an incoherent band. The band edge is at coo= 2&zt, as-
opposed to —2&z —1 t in Brinkman-Rice. This discre-
pancy is a result of the fact that in our picture we include
certain hops which Brinkman and Rice would say are
double counted. Consider the diagrams shown in Fig. 4.
Both diagrams correspond to a hole hopping from site i
to i ' to i to i ' and back to i, so they both correspond to
the same physical process and should not both be count-
ed. Brinkman and Rice therefore enforce the constraint

FIG. 4. Two contributions to the self-energy which are over-
counted in our large S expansion. In both processes, the hole
hops from site i to i' to i to i' and back to i. For S = 2, (b)

should not be counted.
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that in the second diagram the hole cannot return to i.
Hence, it can only go z —1 places, which leads to the
band edge at —2&z —lt

In our picture, these two processes are different, since
the intermediate case in Fig. 4(a) has no spin excitations
present, while that in Fig. 4(b) has two spin excitations
present. The discrepancy has to do with our large S
treatment of the spin excitations. Since we have spin S
on each site, it is possible to have up to 2S localized spin-

excitations on each site. For spin —,
' there can be at

most one.
It is important to emphasize that the J,=0 limit of the

hole propagator still depends on u. This is because for
arbitrarily small J„ the ground state will contain
different amounts of spin Auctuations depending on a.
The case which Brinkman and Rice consider is the classi-
cal Neel state with no spin fluctuations, and corresponds
to cz=O. For a&0, the spectral function will in general
be k dependent and the band edge need not be at
2&z —1 t.

%'e next consider the case where J, is small but finite.
In that case, it costs an energy J, to hop by creating a
spin excitation. This situation has been considered by
Bulaevskii, Nagaev, and Khomskii' and Shraiman and
Siggia' using a technique similar to that of Brinkman
and Rice. The essence of their argument is that the fur-
ther a hole hops, the more spins it has left turned over
and hence the higher the energy cost. For small J„they
adopted a continuum limit in which the hole can be
viewed as if it were a particle in a linear potential de-
scribed by the Hamiltonian,

02
H = —&z —1 r +J,x —2&z —1 r .

Bx
(2.22)

The J, dependence can be scaled out, and there are
discrete levels at energies

. 2/3

ta„—2v'z —1t, (2.23)

ap
+Cp . (2.24)

Then, substituting this into Eq. (2.19) and (1.4), we can

where a„are the eigenvalues of a dimensionless Airy-like
eqoation. The lowest eigenvalues are separated by an en-
ergy of the order t (J, /t) . Like J, =0 case, our theory
will predict z in place of z —1 for the same reasons as de-
scribed above.

For finite J„Eq. (2.19) cannot be solved analytically,
however, it is quite easy to obtain a numerical solution.
The spectral function for J, =O. lt is shown in Fig. 3(b).
The continuum in the Brinkman-Rice J=0 limit is split
into a series of sharp delta functions. Near the bottom of
the spectrum, the peaks have a weight very closely equal
to J, /r, and they are separated by an amount which is
proportional to r (J, /t)

Qne can understand the low-energy behavior by con-
sidering the dominant pole approximation. Suppose that
near the pole,

calculate the residue and location of the pole,

1ap—
1 —zt ((oo—J, ) 1+zt

ap

J2

(2.25a)

Qp
co — +C0 J 0

Z

(2.25b)

The dominant pole approximation cannot tell us the
value of cop, but from the J, =O limit, we know that it
must be close to —2&zt. If J, is small, we obtain from
Eq. (2.25a) that ao= J, /&zt. Furthermore, if the weight
of the lowest poles is proportional to J„their separation
must be proportional to J, in order to reproduce the
square-root band edge in the J, =O limit. This agrees
well with our numerical results.

In writing Eq. (2.25), we have ignored contributions to
the self energy from the other poles. This is valid for the
lowest pole, since the other poles are O(t (J, /r) ) away
in energy, so that their contribution to BX/Bco is propor-
tional to (J, /t) ', which is small compared with
(J, /t) ' when J, && t.

2. Lowest orderin a

We now consider slight deviations from the Ising limit
perturbatively. When J~ is finite, the spins are no longer
in exact eigenstates of the Hamiltonian so they can spon-
taneously Hip. In this way, "strings" of Aipped spins gen-
erated when the hole hops can relax, thereby allowing the
hole to propagate.

We first consider the J,=0 limit, to first order in a. In
this case, we expect a spectrum which resembles the in-
coherent Brinkman-Rice spectrum. To first order in a,
with J, =0, the equation reads,

G(k, co) =
z t g (y——ayky y„)G(q, co)

q

(2.26)

We can solve this equation to lowest order in o., and we
find that away from the band edge,

G(k, co)=G (co)

2GO( )3 ( 2)y(2)+y(3)

+ 1 —(z —1) r G (ro)

1 zt G (co)—
(2.27)

where, y), = —,'[cos(k„+k~)+cos(k —k~)] and yI,
'

=
—,'(cos2k, +cos2k ) are the cubic harmonics for

second- and third-nearest-neighbor hopping. The spec-
tral function for two values of k are shown (extrapolated
to a= 1) in Fig. 5. The perturbation theory breaks down
close to the band edge, where ImG is small. The fact that
the perturbation is negative near the band edges indicates
that the band edge moves inward, so that it is at an ener-

gy higher than coo= —2V z t
When J, is finite, we saw that for a =0 the spectrum is
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The dominant pole approximation cannot tell us the
position of the band, however, it can tell us about its
shape. When a is small, we expect that ~i, coq &&J so
that we may expand coi,

—
co& to lowest order in o, ,

Qq

q

&u (in units of 2~zt)

FIG. 5. Hole spectral function, 3 (k, co) obtained from the
perturbation in small a:—J&/J„extrapolated to a=1, and
shown as a function of co for two values of k.

azt'(yk —yk) —
J +Co

QoI+zt J2

(2.30)

Qi
G(k, co)= +Ck .

CO
Qadi

(2.28)

To first order in a, the self-consistent equations for Q&

and co& read,

Qi =
1+z t g (y ayky—k y )

(tok —co —J, )
(2.29)

Qq
mk=z t g(Yq a1 k3

—
k qyq) +Cq

co J

split into discrete poles. Making a finite affects the spec-
trum in two ways. First, it adds dispersion to the lowest
poles with a bandwidth of the order J~. Second, the
higher poles will be smeared out, and spectral weight will
appear at an energy J, above the lowest pole [as opposed
to t(J, /t)2i'].

The nature of the lowest poles is most easily examined
by considering the dominant pole approximation, which
gave a very good description of the a=O limit. There-
fore, we write,

Qo and Co are the +=0 limits of Q& and C&. From the
Ji =0 limit we know that —ao /J + Co = —2&z t, so we
find,

cok
—tok =2aJ, (yk —yk. ) .2 2 (2.31)

Thus, there is a band with a width 2J~. The quasiparticle
residue of these peaks, however will still be of the order
J, /t. Note that it was important to account for the
strong dependence of the self-energy on frequency. Had
it been ignored, we would have expected the bandwidth
to be at. The bottom of the band is degenerate in this ap-
proximation, and is at the points where y&=0, which lie
on a square corresponding to a half-filled Brillouin zone.

We may also ask what happens to the rest of the hole
spectrum. For a=O there was a series of sharp delta
functions separated by an energy = t (J, /t) ~ In ord. er
to see what happens for a&0, we iterate the integral
equation by inserting Eq. (2.28) into the right-hand side
of Eq. (2.26). The self-consistency of the dominant pole
approximation ensures that the pole will remain un-
changed, however, there will be new contributions as
well. The iterated spectral function can be written,

A(k, co)= r(k, ~)
2 (2.32)

(co —tok) 1+z t g (yq
—aykyk qyq) +I (k, co)

( CO COq Jz COk COq Jz

where,

I (k, to)=z t g (yq —aykyk qyq)ak q5(to —
coq

—J, ) .

(2.33)

If the lowest pole is at coo, then there is clearly no spectral
weight (besides the poles) up to an energy coo+J, . How-
ever at that energy, I (k, co) becomes finite, so there will
be spectral weight there. The amount of weight there
will be of order o. , since when o. is small the denominator

will be large at co=coo+J, . If we iterate the integral
equation further, these features will remain. However,
higher-energy spectral weight will emerge. This will
smear out the higher poles in the Bulaevskii, Nagaev, and
Khomskii, '" Shraiman-Siggia' spectrum.

Thus, to lowest order in o, , we have a quasiparticle
band with a width J~, and there is incoherent spectral
weight separated by a gap of order J, . If we go to higher
order in cx, we do not expect these qualitative features to
change. Larger a will introduce higher harmonics into
the band structure, and break the degeneracy of the band
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minima. Also, the gap to spin excitations will decrease
from its a=0 value of J„so there will be a smaller gap to
the incoherent background. When a —+1, the gap to spin
excitations disappears. In the next section we will discuss
the hole spectrum in that limit.

C. Heisenberg model in the dominant pole approximation

In the previous sections, we have seen that near the Is-
ing limit, the hole spectrum has a well-defined quasiparti-
cle peak which has a spectral weight comparable to J, /t
and a bandwidth of J~. This peak is well described by the
dominant pole approximation in which we ignore the
effects of the incoherent part of the spectrum and consid-
er only a single quasiparticle pole. The validity of ignor-
ing the incoherent part was justified by the fact that there
is a gap in the spin excitation spectrum of order
t(J, /t) ~, so that the dominant contribution to BXli3co
comes from the pole.

In this section we investigate the case where
J~ =J, —:J, so that there is no gap to the spin excitations.
The low-energy spin excitations have a linear dispersion
and in two dimensions a linear density of states. We mill
argue that even though there is no gap, the fact that there
is a small density of states of low-lying spin excitations
implies that a well-defined quasiparticle exists. We can
get qualitative information about the low-energy struc-
ture of the hole spectrum by considering the dominant
pole approximation. In this case the contributions from
the pole and from the incoherent part have comparable
magnitudes, so that by ignoring the incoherent part, we
are losing numerical factors, but not qualitative features.

The existence of a quasiparticle pole depends crucially
on the density of states of low-lying excitations which can
couple to the hole. When there are many such excita-
tions, there will be too much scattering and the entire
spectrum will be incoherent. However, as we shall show,
when there are very few low-lying spin excitations, there
is very little phase space available for the hole to scatter,
so that the low-energy states of the hole can have a long
lifetime.

We now consider the self-consistent equations of the
dominant pole approximation. We write the hole propa-
gator as,

ai A;„,(k,y)
G(k, co)= + dy

co m +iI co y
(2.34)

coi, = g f (k, q)ReG(k —q, co&
—E ),

q

(2.35a)

I i,
= g f (k, q)ImG(k —q, co„—E ),

q

(2.35b)

1 —g f (k, q) ReG(k —q, ~i, —E )
BQ)

(2.35c)

We may then solve for the parameters which describe the
pole,

Let us first consider the quasiparticle lifetime I &. Sup-
pose we are at the lowest-energy pole of the hole spec-
trum at co& . Then, since I"„depends on the hole spec-

tral function at energies less than co&+, it necessarily van-

ishes. This is because there are no lower-energy states to
which the hole can scatter. Thus, if there is a pole at the
bottom of the spectrum, it will have infinite lifetime.
This is a very general statement, and as we will discuss in
Appendix A, it is independent of the noncrossing approx-
imation for the self-energy.

We might expect that if we increase the energy slightly,
that the lifetime would be finite. However if the band has
quadratic dispersion, then since the spin excitations have
linear dispersion, conservation of energy and momentum
forbids scattering to the lower-energy states by single or
multiple spin wave excitations. This will be true as long
as the hole velocity, dE/dk is less than the spin-wave ve-
locity. Therefore, I &=0 for all of the low-energy poles.
There will be a critical energy when the hole velocity and
the spin-wave velocity will be equal, and above that ener-

gy, the holes may scatter, and will have a finite lifetime.
However, since we are interested in the low-energy poles,
we can set I i, =0.

Next we consider the quasiparticle residue a&. Since
the contribution from the incoherent part in the denomi-
nator of (2.35c) is necessarily positive, we can make the
following upper bound for the residue:

1+t g f (k, q) (~„—~i ~
—E~)

(2.36)

Consider first the pole at the bottom of the spectrum,
where co&=0 in the J=O limit. The integral in the
denominator will be dominated by its q=O limit. From
Eq. (2.16), the limiting behavior for small q is,
f(k, q)=~q~(y„—q.Vy„), which means that the hole
couples weakly to the long wavelength spin waves. If the
mass at the bottom of the band is m *, then

1+r'y /q/ 2

q
2m

(2.37)

The integral in the denominator is divergent in dimen-
sions three or less. Thus, in the case of interest, d =2,
a + =0. The fact that the pole cannot exist is a result of

k
the fact that it is too easy for the hole to scatter, due to
the large density of states at the bottom of a parabolic
band. In addition, the vanishing spectral weight implies
an infinite mass, so that there will not be any finite-
residue poles in the J =0 limit. Thus, we expect a broad,
incoherent continuum spectrum similar to the
Brinkman-Rice spectrum examined earlier, except for the
fact that it will be momentum dependent.

We may now ask whether a pole may exist when J is
small but finite. In this case, the divergence in Eq. (2.37)
is cut off by the linear spin-wave dispersion E,
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I+t'g lql

(2.38)

This integral is convergent in dimensions greater than
one. In one dimension, there can be no pole with finite
residue, even for finite J. (Note, however, that if a finite
lifetime is inserted by hand that this logarithmic diver-
gence will be cut off, yielding a finite residue. '

) In two
dimensions, the integral is not singular so that a conver-
gent result may be obtained. We may estimate the small
J singularity in two dimensions of the integral to be

Iqla, *

2

J
I ql+

m*a„
(2.39)

cok=t g f (k, q)ReG(k —q, cok —Eq) .
q

(2.40)

This self-consistent equation is rather subtle, since there
is implicit dependence on cok on the right-hand side,
which has a crucial efFect. If we calculate the slope of co&,

for instance, from the arguments given in the Introduc-
tion,

vk~k akt' g vkf (k, q)G (k —q, a~ —E, )I.=. (2.41)

If J is very small, then we may consider the J=0 limit of
the right-hand side, which can be written (after substitut-

Furthermore, we will show that the mass at the bottom of
the band is m*=m/a„+, where m depends only on t.
Thus, the integral is of the order t /J, so that a„+ ~ J/t

At this point we have an upper bound for the spectral
weight, which we derived by omitting the contribution
from the incoherent part of the spectrum. In Appendix
A we will argue that the incoherent contribution in the
denominator of (2.35c) will not be larger than t /J, so that
the qualitative result that ak =J/t remains true.

Let us now consider the shape of the quasiparticle
band. The positions of the peaks are given by

ing q~k —q in the sum)

Vka~k=akt'g [Vkf(k, k —q) jG'(q, ai, ), (2.42)

where G (q, coo) is the J=0 limit hole propagator, (which
we expect to resemble the incoherent Brinkman-Rice
spectrum) evaluated at its lower band edge, coo. Since
there are no poles at J=0, we know that
G (q, co 0)=O(I/t) and is a smooth function of q. It
should also be negative, since there is no spectral weight
below coo.

Thus, the band becomes flatter in the J =0 limit be-
cause the residue qi, =J/t, and the quasiparticle mass will
be enhanced by a factor t/J. We can also write the mass
at the bottom of the band (where Vkcok =0) as,

1 8=
ak, ak,mij

a2=akt'g f(k, k —q) G (q, ~o, ) . (2.43)

The reason why naively taking the J=0 limit of Eq.
(2.40) is incorrect is that for small J, the frequency depen-
dence of the self-energy becomes singular (BX/Bto~ oo )

at the band edge, so that it is important to account for
the implicit frequency dependence before the J =0 limit
is taken.

We can identify the position of the band minimum by
examining the zeros of Vkaik in Eq. (2.42). Though we do
not know the precise form of G(q, coo), we know that it
must be negative and have the full cubic symmetry.
Given the form of f (k, k —q), this allows us to say that
Vkcok=0 at the points (0,0), (m, m ), (+m/2, +m. /2), (O, vr),
and (vr, O) in the Brillouin zone. We numerically plugged
various plausible forms for G (q, co) into Eq. (2.43). We
found that independent of which forms we tried, the band
minimum was at (+m/2, +n. /2), and that the mass is
heavier along the direction towards (O, n. ) than in the
direction towards (0,0). This is in good agreement with
the results of Trugman. '

We now consider the behavior of the spectral function
at energies higher than the lowest pole. In general, we
may express the spectral function in terms of the self-
energy as,

A(k, co)= r(k, ~)
X(k, co)—X(k, a)k)

(co —
tok) 1 —Re

CO CO

+ I (k, co)

(2.44)

I (k, co)=t g f (k, q)A(k —q, co —Eq) . (2.45)

I (k, ai) = I /mlmX(k, co). In the noncrossing ap-
proximation, we write,

Eq «J. We may thus write,
T

I (k, co)=t g Iqlak q5 co-
q

(k —q) —Jlql
2m

(2.46)

For co —cok((J, the dominant contribution to I'(k, co)
will come from the pole in A(k, co). Furthermore, there
will only be a contribution when q is very small, so that

In two dimensions, we find that

a k co cok
I (k, co)=t (2.47)
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Thus, for co —cok«J, I (k, co) ~(to —cok) . Furthermore,
if we extrapolate this expression to co =J, we find
I (k, cok+ J)= t, as shown in Fig. 2. Since in this limit the
quantity in the brackets in Eq. (2.44) becomes
(1—BX/Bco) =a k, the spectral function may be written,

3
1

A (k, to)=t J3 t
(2.48)

Thus, slightly above the pole, the incoherent part of the
spectral function is a constant of order 1/t.

We have shown that there is a quasiparticle peak with
spectral weight J/t and mass enhancement t/J below an
incoherent background. From our intuition gained from
the J~ expansion, we expect that this peak will be at an
energy of the order —4t and that the incoherent band
will have a width proportional to t.

III. HOLE MOTION IN AN RVB STATE

In the preceding section we studied the motion of holes
in a state which is described by a Neel state, with
Holstein-PrimakofF' spin-wave excitations. Another pos-
sible ground state for spin —,', which has received a great
deal of attention lately is the resonating-valence-bond
state originally proposed by Anderson. Our approach to
treating the hole motion in this state will be the same as
our approach to the Neel state. We will examine the spin
excitations at the mean-field level of the model at half-
filling, and then determine how a hole will couple to these
excitations. By neglecting vertex corrections, we obtain a
self-consistent integral equation for the hole propagator
which can be analyzed using the self-consistent pole tech-
niques developed in the previous section.

In the original mean-field theory of the RVB state,
Baskaran, Zou, and Anderson ' decoupled the magnetic
interaction in the particle-particle channel by introducing
an s-wave order parameter b,k=5(cosk„+cosk ) which
describes an RVB state with a "pseudo-Fermi surface" of
low-lying excitations. It was subsequently shown by
Kotliar that at zero temperature, the stable mean-field
solution is a state with an order parameter with mixed
symmetry, b,k=5(cosk +i cosk ). In this state the gap
vanishes only at four points in Brillouin zone. AfBeck
and Marston developed a mean-field theory based on a
two sublattice particle-hole decoupling of the magnetic
interaction and found that the "Aux" phase was stable at
half-filling and has the same excitation spectrum as
Kotliar's mixed state. It was then shown by Aleck,
Hsu, and Anderson that these two solutions were relat-
ed by a local SU(2) gauge symmetry, which is essentially
a result of the particle-hole symmetry of the half-filled
Hubbard model.

Away from half-filling, particle-hole symmetry and
hence the SU(2) gauge symmetry is broken, so that a par-
ticular solution will be chosen. Kotliar and Liu and
Zhang, Gross, Rice, and Shiba have independently
shown that the stable translationally invariant mean-field
solution near half-filling is a state with a combination of
d-wave particle-particle paring and s-wave particle-hole
pairing. This particular mean-field solution is chosen

g f;g;girfi (e & ai, 1)—
(i,j )

++A,;(b;b;+ft f, 1) . — (3.1)

At half-filling (when there are no bosons), this Hamil-
tonian represents a Heisenberg model, with the spins ex-
pressed in the fermion representation. The spin interac-
tion is then simultaneously factorized in the particle-
particle and particle-hole channels. At half-filling the
mean-field equations admit a class of solutions which are
related by SU(2) particle-hole transformations. A slight
deviation from half-filling will single out one of these
solutions. At half-filling, the mean-field Hamiltonian cor-
responding to this solution is

H = —CJ g y'kf„ fk +ykfk f „+H.c. ,
k, o.

(3.2)

where C=2, and yk= —,'(cosk +cosk ) and yk= —', (cosk
—cosk ) are the s- and d-wave nearest-neighbor cubic
harmonics. This may then be diagonalized by Bogo-
liubov transformation yielding,

H=g EkPk Pk'

k, o.

where

—CJ(+s2+ ~d2 )
1 /2

=CJQ —,'(cos k +cos k ),
and

(3.3)

) —kl

Q k

T

s 1/2
Xk

E„ (3.4)

s 1/2
1 )'k

U„=(sinyk) 1+
k

The hopping part of the Hamiltonian is then,

H& 4t g 1 k —k'bkf k'o fk' — bkq—q
k, k', q

(3.5)

away from half-filhng because it allows the holes to gain
the most kinetic energy by maximizing the "bare-
hopping" probability of the holes. We will examine the
hole motion in this state.

Kotliar and Liu cast the problem in terms of a slave
boson Hamiltonian, in which an additional field is intro-
duced to keep track of unoccupied sites. We adopt this
approach, since it leads naturally to the treatment of
holes. Thus, as in Sec. II, we express the electron opera-
tor as a product of two operators. In this case, however,
we represent the spin by a fermion operator and the hole
by a boson operator. We write c; =b;f;, and impose
the constraint b; b;+f; f; =1. The slave boson Hamil-
tonian is then,
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FIG. 6. Hole self-energy diagram in the d-wave RVB state
which is responsible for the bare-hopping term.

This hopping Hamiltonian is di6'erent from that which
we considered in the previous section because the hole
couples to two spin excitations when it hops. This intro-
duces the new feature of a "bare-hopping term" in which
a boson can hop from one site to another without chang-
ing the spin configuration. The bare-hopping (BH) term
arises from a self-energy contribution shown in Fig. 6.

&'"(k,~)=—«gyi, i, &&2IUi, I' — tbyi, , —
k'

(3.6)

where Uk is defined above, and tb = t /3. The bare-
hopping term allows a hole to hop a single time while
keeping the spin state unchanged. Thus, unlike in the
Neel state, the hole will not be associated with a single
sublat tice.

Based on this mean-field theory we would expect a bo-
son bandwidth of 2tI„so that holes would have a kinetic
energy of —tI„and a band minimum at k=0. Indeed,
the reason that this solution is favored in mean-Geld
theory is that it has the largest bare-hopping term among
translationally invariant states so that the holes may ac-
quire the greatest kinetic energy. It is also possible to
consider the nontranslationally invariant decouplings.
For example, AfBeck and Marston's Aux phase is a two
sublattice decoupling in the particle-hole channel. The
magnitude of the bare-hopping matrix element is larger
than that for the d-wave state by &2. On the other hand,
due to the two-sublattice nature of the band structure,
the boson bandwidth in this case turns out to be the same
as that in the d-wave translationally invariant state.

However, we shall now argue that Auctuations about
the mean-field theory are very important, and provide an
additional source for kinetic energy of the holes of the
same order of magnitude as the mean-field theory, i.e., of

FIG. 7. Self-energy diagrams considered in the noncrossing
approximation of the hole propagator in the d-wave RVB state.
The double wavy line is the exact hole propagator, and the solid
lines are propagators for the spin excitations.

order t. Since the holes are very strongly coupled to the
spin excitations, it is important to consider the quasipar-
ticle hole, which is dressed by a cloud of spin excitations.
We anticipate a picture similar to that in Sec. II, where
there is a quasiparticle peak at the bottom of an in-
coherent band of width t.

As in the previous section, we calculate the propagator
for the spinless hole operator b,

G(i,j,co)= I dt e' '( T[b;(t)b (0)]) . (3.7)

Though this is not physically meaningful by itself, since
one cannot remove an electron without removing a spin,
it is useful for calculating physical quantities. For in-
stance, the conductivity involves the creation of particle-
hole pairs, and it is possible for the spins of the particle
and hole to be absorbed as a singlet into the background
spin state.

As in the previous section we consider a self-consistent
perturbation theory in which vertex corrections are ig-
nored, so that we consider corrections to the self-energy
of the form shown in Fig. 7. At zero temperature, these
diagrams can be evaluated to give the self-consistent in-
tegral equation for the hole propagator,

G(k, co) = 1

co+tbyi, t g f (k, k', q)G—(k —q, co —Ei,.—Eq i, )
q, k'

(3.8)

where

f(k, k', q)=I6lyi, i, &k Ui, q
—

yi, +i, qtti, qUi, I'.
(3 9)

We first show that in the J =0 limit, the hole spectrum
is completely incoherent, as it was- in the previous sec-
tion. In that case, the spin excitations cost zero energy.
Suppose the lowest pole is at cok. We may write its resi-
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due as,

(3.10) 1+t g f (k, k', q)

(3.14)

1 t—g f (k', k', q) G(k' —q, cubi, )
Bco

We show that this residue must vanish by considering the
following upper bound, in which we keep only the pole
part of G(k, co).

a„+
1+t g f (k",k', q)

q, k'

k* —q '2
q

2&l

(3.11)

The integral in the denominator will be dominated by its
small q limit. If k' is somewhere other than (0,0), (O, m. ),
(ir, O), or (~,~) [(n./2, m/2), for instance], then we can
see from (3.9) that gi, f(k', k', q) is of order unity for
small q. In that case the integral in the denominator is
divergent in dimensions four or less. If k* is at one of
those four points, then gi, .f(k*,k', q) is of order q for
small q, and the integral is logarithmically divergent in
two dimensions.

Since this upper bound vanishes, there can be no finite
residue poles in the J=0 limit. We expect the hole spec-
trurn to be an incoherent, k-dependent band with width
of the order t. In mean-field theory we would have ex-
pected a coherent boson band with a width 2tb. By in-
cluding the strong interactions of the bosons with the
spin excitations, we have shown that fluctuations destroy
the coherence.

We now proceed to consider finite J, and to show that
a sharp quasiparticle band does exist with a residue of the
order J/t and a mass enhancement of t /J. As in the pre-
vious section, suppose that

The sum in the denominator is convergent for small q,
because the region in phase space in which the integrand
diverges is very small. This is a result of the small densi-
ty of states of low-energy spin excitations. When J—+0
we have seen that the integral is divergent. Finite J will
cut o6' this divergence. We may estimate the singular be-
havior of the integral in the J =0 limit to be [assuming
the position of the band minimum is such that
f (k', k', q) is of order unity for small q]

t2
f (k*,k', q)a„,

OC

—Jlk'I —Jlk' —ql
2m

a+tm
(3.15)

Furthermore, as we mill see, we can say in general that
m ' = ( 1/a i, )m, where m is the noninteracting band mass,
which depends only on t. Therefore, the denominator in
equation (3.14) is of order t/J, so that a„„ccJ/t for
J &&t. Thus, as in the case of the Neel state, there exists
a quasiparticle peak with a weight of the order J/t If.
the band minimum is at (0,0), (O, m. ), (m., O), or (n, m. ), then

f (k*k , ,q) 'ccq, and finite J will cut off the logarithmic
divergence in the denominator of (3.14), and we find

a„=
a +t

1+ ln
a„

(3.16)

This is clearly only consistent if a is proportional to
J /t in the J~0 limit.

The dispersion of the boson band is given by

co~= tby~+t —g f (k, k', q)G(k —q, a)~ —Ev —Eq i ) .
q, k'

(3.17)
ak

G(k, co)=
CO

—e)k+L I k
(3.12) As in the case of the Neel state, we may write the mass at

the bottom of the band as,

We will omit the incoherent contribution in this treat-
rnent, since due to arguments similar to those given in the
previous section, they will not alter the qualitative
features.

We first consider the lifetime I k.

m fJ

t~'Vk

+t~ g f (k, k', k —q)G (q, coo)
I &=t g f (k, k', q)A(k —q, cubi,

—E&.—E& i, ) .
q, k'

(3.13) q, k'

(3.18)

As in the Neel state, since the hole dispersion is quadra-
tic, while the spin excitation dispersion is linear in the d-
wave state near half-filling, conservation of energy and
momentum forbids scattering as long as the hole velocity
Vkcok is less than the spin excitation velocity, VkEk.
Thus, I (k, co)=0 for the low-lying poles, and as in the
previous section, we shall henceforth omit it.

The quasiparticle weight must be determined self-
consistently from

where G (q, coo)= —1/t is J =0 limit with band edge at
coo. Thus, we see that both the "bare-hopping term" and
the self-consistent terms are renormalized by the quasi-
particle residue, leading to an e6'ective mass which is
enhanced by t/J.

Above the quasiparticle peaks, there will be an in-
coherent background. We may estimate its low-energy
behavior by interating the integral equation. As in Sec.
II we write
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A (k, co}=

(co —co„) 1—

r(k, ~)
X(k, co) —X(k, coq) + I (k, co)

(3.19)

where now the noncrossing approximation yields,

r(k, co)=t g f(k, k q', )A(k —q, co —Eq. E—q. ) .
o(co)= g fdQ C(k, Q, co) A (k, Q)

k CO

k', q X A (k, Q+co), (4.1)

(3.20)

As in Sec. II we may obtain the behavior for co —cok « J,
in which the only contributions come when k' and q —k'
are near the zeros of the spin excitation spectrum. We
find that

(3.21)

and

a k CO COk
3

A;„,(k, co) =t J3
CO COk

t J (3.22)

Thus we see that as in the Neel state, the hole spec-
trum in this RVB state has a quasiparticle band of width
J at the bottom of an incoherent spectrum. Note that
this is drastically different from the mean-field prediction
of a coherent band whose width is of order t. ' The
strong coupling with the spin excitations causes this
bandwidth to be renormalized. In fact, once these Auc-
tuations are included, it is not even clear that maximizing
the bare-hopping term necessarily gives the most energet-
ically favorable state. Via the interactions with the spins
alone, the holes are able to acquire a kinetic energy of or-
der t, whether there is a "bare-hopping term" or not.

IV. OPTICAL PROPERTIES

In this section we discuss the relevance of our results to
optical experiments. Recent reAectivity measurements
have probed the frequency-dependent conductivity,
o(co)." A Drude peak is observed with an integrated
area which corresponds to an effective-mass enhancement
of 10, assuming that the carrier density is the hole density
due to doping. At higher frequencies, there is a broad
feature which is peaked at 0.2 eV.

The large mass enhancement follows naturally from
the t/J mass enhancement predicted by our theory. In
addition, we would like to identify the observed broad
peak with the incoherent background in the hole spec-
trurn.

We now describe the conductivity predicted by our
theory. Details of the diagrammatic calculation may be
found in Appendix B. We will assume that the density of
holes is very small, so that they will not interact, and
their spectrum will be like that of a single hole. The con-
ductivity, o (co) is a measure of the excited states with en-
ergy co which couple to the current. In Appendix B we
will show that for co «J we may write o (co) in terms of
the hole spectral function A (k, co) and the current vertex
function C(k, Q, co),

where n (Q) is the thermal occupation number for a den-
sity of 5 carriers. When evaluated on shell near the bot-
tom of the band, C(k, Q=coz, co=0)=(e/m)(k —k*),
where k* is the position of the band minimum and m is
the bare hole mass (m =1/t) At .frequencies comparable
or larger than J, there will be additional, more complicat-
ed contributions to cr(co) which include spin excitations.

The Drude peak in the conductivity follows from the
consideration of the quasiparticle peaks in the spectral
function, A (k, co). If we omit the incoherent part of A,
then (4.1) may be written as,

2

crD(co) =5(co) g — (cog), (k —k*)'ag .
m

(4.2)

The sum over k may be converted into an integral over
energy. The density of states in two dimensions is a con-
stant m *=m /a „,, so

o D(co) =5(co) f d Q —co
e2 Bn
m* ~co

(4.3)

This may then be integrated by parts, and using the fact
that the hole concentration is 5 we find

5e
cr (co)= 5(co),m*

(4.4}

where m * is the effective mass which is enhanced by t /J.
The weight of this peak is consistent with the observed

behavior. Note, however, that it has zero width. This is
because the quasiparticle peaks are sharp at zero temper-
ature. At present we do not have an explanation of the
peculiar linear temperature dependence of the Dc con-
ductivity.

At finite frequency, the incoherent part will become
important. For ~ &&J and T &&J the occupation factors
in Eq. (4.1) will keep Q close to co „so that it is reason-

able to keep only the pole part of A (k, Q) in (4.1), while
keeping the incoherent part of A (k, Q+co }, so that we
may write,

n (co&) n(co&+ co)—
o(co)=g C(k, co&, co) a&A(k, co&+co).

k CO

(4.5)

Since we do not precisely know the form of C(k, co&, co)
for finite frequencies, it is difBcult to get a reliable expres-
sion for o.(co}. However, if the density of carriers is
small, the structure of o (co) will be similar to the struc-
ture of A(k*, co„,+co).

In Ref. 11, o (co) was analyzed in terms of a frequency
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dependent effective mass and effective scattering rate,

5e r(co)

2 m'(~) +r( )2
m

(4.6)

V. CGNCLUSION

We have developed a quasiparticle theory for the
motion of a single hole in an antiferromagnetic back-
ground, in which the ground state of the spins is de-
scribed either by a quantum Neel state or a d-wave RVB
state. By considering the J (& t limit, we have shown in a
self-consistent perturbation theory that interactions with
spin excitations strongly renormalize the hole spectrum.

We found a quasiparticle band which is at an energy of
the order —t and has an e6'ective-mass enhancement of
t/J. The origin of this mass enhancement lies in the
strong frequency dependence of the self-energy, which re-
normalizes the residue and the mass of the quasiparticles.
In this picture, the hole gains a kinetic energy of the or-
der t when it delocalizes by surrounding itself with spin
excitations. The mobility of these quasiparticles, howev-
er, is diminished by this cloud of spin excitations.

The existence of the quasiparticle poles depends cru-
cially on the vanishing density of states of low-energy
spin excitations which couple to the holes. In the Neel
state, the hole couples to a single spin wave which has
linear dispersion with an interaction strength which van-
ishes linearly with q. The density of states of low-energy
excitations is then proportional to E . In the d-wave
RVB state, the hole couples to two spin excitations,
whose energies have four-point zeros in the Brillouin
zone. In this case the density of states of excitations cou-
pling to the holes is proportional to E . In both cases,
this density of states is sufticiently small that the scatter-
ing rate vanishes quickly enough to have a coherent
quasiparticle pole. In the original s-wave RVB state, '

the spin excitations have a "pseudo-Fermi surface" and
hence a constraint density of states at low energy. The

To the extent that the structure of cr(co) is that of
A (k', co), we may identify the effective scattering rate
I (co) in (4.5) with the imaginary part of the self-energy
1 (k*,co). At low frequency and temperature, I (co) ap-
pears to grow like a power of m and increases rapidly up
to a frequency corresponding to roughly 0.1 eV, where it
levels oft' at a value corresponding to roughly 0.8 eV. If
we identify J=0. 1 eV and t =0.8 eV, then this is precise-
ly the behavior which we have suggested for I'(k*,co) in
Fig. 2.

At frequencies comparable or greater than J, Eq. (4.1)
must be modified in order to include spin excitations. We
may expect, however, that the qualitative features in (4.4)
remain. In particular, there will be a broad feature in
o(co) which decays like 1/co for J(co(t, since the in-
coherent spectrum extends up to an energy of order t.

Thus, we see that the qualitative features of the low-
temperature ac conductivity are consistent with our pic-
ture of a renormalized quasiparticle band beneath a
broad incoherent spectrum.

scattering rate would therefore not vanish at low ener-
gies, and the coherence of the quasiparticles would be
lost.

The large mass enhancement in our theory is consistent
with the observed weight of the Drude peak in the ac
conductivity. " Our theory also predicts a broad peak
with a typical frequency comparable to J, and extending
out to a frequency of the order t. This broad feature is a
consequence of multiple spin excitations and the in-
coherent part of the hole spectrum.

Since there are very few low-lying spin excitations, the
quasiparticle states below a certain energy have infinite
lifetime. This is in contrast to theories in which a hole
scatters oF spin excitations with a pseudo-Fermi sur-
face. Our theory has nothing to say about the intrigu-
ing linear temperature dependence of the dc resistivity.

An important lesson to be learned from our work is
that is is necessary to include fluctuations about mean-
field theory in order to have a complete description of the
holes. In mean-field theories of the RVB state, ' intro-
duction of holes favors states which have the largest
bare-hopping probability for the holes, so that the holes
may gain the most kinetic energy. We have found, how-
ever, that by including the interactions of the holes with
spin excitations, the holes may gain a comparable kinetic
energy, whether there is a bare-hopping term or not.
Thus, it is not clear which mean-field solution is the ap-
propriate starting point when holes are added. More
quantitative information is necessary before that can be
decided.

There remain many unanswered questions regarding
the motion of holes in an antiferromagnet. In our theory,
we have implicitly assumed that the spin decouples from
the hole, so that we may treat the hole as a spinless enti-
ty. It remains to be shown, however, whether or not
some spin is bound to the hole.

By considering the motion of a single hole, we have
avoided the question of the hole statistics. Even though
at first sight, our slave boson and slave fermion decou-
plings appear to specify formally the hole statistics, that
the situati. on is more complex can be seen from the fol-
lowing example. Even though the RVB state has been
discussed in a "slave boson" type of decoupling, Arovas
and Auerbach have performed an RVB type of decou-
pling of the Heisenberg model in the Schwinger boson
representation. The natural generalization of that to in-
clude holes involves the introduction of "slave fermions. "
We are currently studying this model, but it is clear that
the general picture of a quasiparticle with a mass
enhancement of t /J remains the same.

We recal1 that the original suggestion of Baskaran,
Zou, and Anderson ' was that the presence of the holes
favors the RVB state because the kinetic energy gained is
greater. That point has been disputed by Lederer and
Takahashi, and our studies support their argument that
the kinetic energy of a hole in the RVB state or the Neel
state are both of order t and that it is a subtle question to
decide which is more stable. Baskaran, Zou, and Ander-
son also proposed that the holes are bosons with a band-
width t which undergoes Bose-Einstein condensation. '

That would place the e6'ective condensation temperature



39 MOTION OF A SINCxLE HOLE IN A QUANTUM ANTIFERROMACsNET 6895

at =5t in two dimensions. While our study cannot de-
cide the issue of the statistics of the holes, we can never-
theless conclude that any coherent phenomenon involv-
ing the holes, whether it is Bose-Einstein condensation or
pairing between fermions involves an energy of order 6J,
which brings the temperatures scale much closer to the
experimentally observed transition temperatures.
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In this appendix, we present some general arguments
regarding the quasiparticle residue of the holes without
making the no nero ssing approximation for the self-
energy. If there is a pole at ~1„we may write its residue
as,

1Qi—
1 — (k, co&)

(Al)

We may express the self-energy in terms of its imaginary
part, I (k, co) =1/vrlmX(k, co) as a spectral represeltation
and write,

Q1 =
1+ Jdy ~(ky),

(~&—y)'

(A2)

I (k,y) may be thought of as the inverse lifetime of a state
at momentum k and energy y. It depends on the density
of states into which a particle at k and y may scatter. At
low temperatures the only way in which a hole can
scatter is to create spin excitations, while lowering its en-
ergy. Since there are very few low-lying spin excitations,
we expect that for energies slightly above the lowest-hole
energies, I (k,y) will be small.

We may write a formal expression for I (k,y) using the
Landau-Cutkosky rule, which is essentially a general-
ized Fermi's golden rule,

I (k,y)= g g ~V(k,y, [qj, [E~I)~

N N
XA k —gq;, y —gE

i=1 i=1

(A3)

Equation (A3) is a sum over all possible states into which
the hole may scatter involving any number N of spin exci-
tations with momenta [qI and energy [Ez}.
V(k, y, [qj, [E&I) is the exact vertex function for the
creation of N spin excitations.

If we measure y relative to the low&st energy in the
band, then for y «J, there will be very few states into
which the hole may scatter, due to the small density of
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APPENDIX A

The dominant contribution will come from the pole,

1(k,y)= & IV(k, y, q, E, )l'~&, 5(y —~&,—E, ) .
q

(A5)

Provided there is no singularity in V when y~O,
I (k,y) will go as a power of y for small y. As we saw in
Sec. II, in the Neel state I (k,y) ~y . (Note that since the
bare vertex vanishes for q=O in this case, so must the
dressed vertex. ) In Sec. III we saw that in the RVB state,
where there are actually two spin excitations created,
I (k,y) ccy . Ther'efore, the y =0 divergence in the in-
tegral in (A2) is cut off, so that the resulting residue may
be finite.

In order to calculate the residue, we need to know
I (k,y) for larger values of y. This is very difficult, since
in general, I (k,y) depends on the exact vertex functions
and includes multiple spin excitations. We may say with
certainty however that

I (k,y)~ g ~
V(k, y, q, E )~ A(k —q, y E)—

q

~ & l
V(k, y, q, Eq)l'~g q&(y —~g —q Eq)

q

(A6)

since the terms involving higher numbers of spin excita-
tions are positive definite. We may then an upper bound
for the quasiparticle residue as,

Q1
1

~
V(k, co&, q, E&) ~1+ gal,

(cog col q Eq )

(A7)

The dressed vertex function contains many diagrams and
cannot be evaluated exactly. However, if we consider the
J =0 limit, V must be of order t (provided the coefficient
is not zero, which is unlikely, since in that case the self-
energy would be zero). It is therefore reasonable to sup-
pose that for J« t, V is of order T and is not qualitative-
ly different from the bare vertex. This is the essence of
the noncrossing approximation in which vertex correc-
tions are ignored. If we accept this assumption, then the
upper bound for the quasiparticle residue discussed in the
text follows.

In order to replace the inequality Q1, & J/t by equality,
we must show that the denominator of (A2) is not larger
than t /J. Since for y ((J, I (k,y) goes to zero at least as
fast as y, the integral in the denominator is effectively
cut off by J, and may be written as

states of low-lying spin excitations. The density of excit-
ed states with more' than one spin excitation present will
be a higher power of y/J, so that we may get the low-
energy behavior by considering only a single-spin excita-
tion. We assume the vertex functions for multiple spin
excitations are not singular as co goes to 0,

I (k,y)= g ~V(k, y, q, E&)~ A(k —q, y E)—. (A4)
q
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r(k, y)
J y

(A8)

When y =J, we know from (A6) that I (k,y) is at least of
order t. In the J =0 limit, the only way it could be larger
is if I (k,y) diverged at the band edge. This, however, is
unlikely. There is no reason to expect scattering to be
much stronger at the bottom of the band. Therefore, we
contend that I (k,y) may be qualitatively described by
the picture in Fig. 2, where for y &&J, it grows as a power
until y =J, where it has a value of the order t. In that
case the residue may be written as

1

l+ J dy(tly )J
(A9)

This argument also shows that the incoherent part of the
hole spectrum does not qualitatively change the results of
Secs. IIC and III, which were based on the dominant
pole approximation.

(c)

APPENDIX B

In this appendix we consider the conductivity, o (co), in
the context of our quasiparticle theory. We will consider
both the Neel state and the RVB state discussed in the
text.

The conductivity may be expressed in terms of a
current-current correlation function arid evaluated di-
agrammatically. The current operator may be expressed
in terms of the electron operators as,

j„(q)=g e ' t(c;+& ~c;—c; c;—+„)
1

FIG. 8. Several diagrams which contribute to the dressed
current vertex. (a) and (b) arise in the Neel state, and (c)-(e)
arise in the d-wave RVB state. The large shaded circle is the
bare current vertex, the wavy line is the hole propagator, and
the solid lines are the spin excitation propagators.

= g czar+ cz —sin(2k+q) .
k

(Bl)

As in the text, we replace the electron operators in terms
of their slave boson or slave fermion representations. In
the case of the Neel state, we make the replacement
c; +f, b;~ . Sinc—e th.e two electron operators are on op-
posite sublattices, one of the b operators will contribute
&2S in our large S expansion, while the other will be a
Holstein-Primakoff spin-wave operator. We may then
write the current operator in this state as,

k CO

(84)

much less than J, then since the density of low-energy
spin excitations is small, the dominant contribution will
come from the intermediate state in which there are no
spin excitations directly excited. This corresponds to dia-
grams of the type shown in Fig. 8.

We may write the general finite temperature, finite fre-
quency conductivity as,

k, k'

+b z z+& sin(2k+q)] . (82)

In the RVB state, we make the substitution c; ~b,f;.
and we find

j" = g fs a+a+ k+q i ( k'
k, k', q

Thus, both current operators involve the creation and an-
ihilation of the "holes" and the creation or anihilation of
the spin excitations.

As in the previous appendix, we may organize the di-
agrammatic expansion of the conductivity in terms of the
intermediate states which may occur between the current
vertices. If the temperature and frequency are both

where n(co) is the thermal occupation number, which for
the limits we consider is a Boltzman distribution, and
L (co, Q, k) is a spectral function for the current-current
Green's function, which may be expanded in terms of in-
termediate states using the Landau-Cutkosky rule,

L(co, &,k)= lC(~, &,k)l'~(k, &)W(k, &+~)+. . . ,

where A (k, 0) is the hole spectral function and
C(co, Q, k) is the exact dressed current vertex with two
external hole legs. The remaining terms in (85) will have
intermediate states which contain spin excitations, how-
ever, at low frequency their contributions will be small,
and will be ignored.
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C(co=0, Q, k)=eVkG '(k, co)=eV„X(k,m) . (B6)

Since V&X(k, co) is not singular in the J =0 limit we know

The current vertex, C, will in general be the sum of
many diagrams, and is difBcult to evaluate in general. At
zero frequency we may appeal to the Ward identity
which states that

that it must depend only on t, (or the unrenormalized
mass, m). Furthermore, if we are on shell, then we know
that at the bottom of the band, V&X(k', Q)~n =0, so
that near the band minimum we may write C(co=0,
Q=coz, k)=e/m(k —k'). At higher frequencies we ex-
pect that C(ro, Q, k) should still be of order t, though we
do not know its precise form.
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