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While the volume .and elastic constants of a system are determined from its free energy, we note
that the free energy of a metal consists of the electron part and the thermal phonon part, and that
the phonon part also depends on magnetization. Starting from such an observation, we study the
role of electron-phonon interaction in the volume and elastic behaviors of a ferromagnetic metal in

the same spirit as we recently studied the role of electron-phonon interaction in determining the
magnetic properties [D. J. Ekim, Phys. Rev. Lett. 47, 1213 (1981); Phys. Rev. B 25, 6919 (1982); J.
Appl. Phys. 55, 2347 {1984)]. First, for the magnetovolume effect we find that in the ferromagnetic
state of metals the phonon Gruneisen constant behaves in quite diverse ways sensitively depending
upon their electronic structure near the Fermi surface, and can become negative to cause zero or
negative thermal expansion. We propose that such behavior of the Gruneisen constant can be an
important mechanism in the anomalous volume behavior of ferromagnetic metals including the In-
vars. Next, as for the magnetoelastic effect, in the ferromagnetic state the role of thermal phonons
is found to be of secondary importance compared with that of electrons; the dominant cause of the
magnetization dependence of elastic constants comes from that of electron energy as we previously
noted. In the paramagnetic state, however, the temperature dependence of the elastic constant is
found to be determined principally by the eA'ect of thermal phonons.

I. INTRODUCTION

In some metallic ferromagnetics, the temperature
dependence of volume in the temperature region below
the Curie point T& is quite different from that of ordinary
nonmagnetic metals. ' As is well known, in the case of
some Fe-Ni alloys the temperature dependence of the
volume markedly deviates from the linear extrapolation
of the higher-temperature behavior; thermal volume ex-
pansion coefficient can be very small, or even negative.
Not all ferromagnetic metals behave like the Fe-Ni alloy,
however; an example is pure Ni metal. These anomalies
of volume behavior are called the magnetovolume effect,
and a system with a very small or negative thermal ex-
pansion coefficient, as is the case in some Fe-Ni alloys, is
called an Invar.

In metallic ferromagnets, elastic constants also often
show anomalous temperature dependence, as is observed
in Fe-Ni alloys and Fe-Pt alloys, for instance. Not all
ferromagnetic metals are anomalous in their elastic prop-
erties, however. Again, in Ni the elastic constant shows
quite normal temperature dependence; the elastic con-
stant monotonously increases with decreasing tempera-
ture.

The mechanism of the anomalous magneto volume
effect and magnetoelasticity is not clear yet. ' Note that
this problem is directly related to the very mechanism of
itinerant e1ectron magnetism itself. The volume and elas-
tic constant of a system are determined from how the free
energy I' of the system depends upon the volume. The
equilibrium volume V of a system is determined from the
condition

dF( V, M)
dV

and the bulk modulus 8 or the compressibility K of the
system is calculated as

where

1 Vd F(VM)
dV

(1.2)

n++n (1.3)

dF( V, M)
dM

(1.4)

and the magnetic susceptibility g of the system in the
paramagnetic state is calculated as

d F(V,M)
dM M —o

is the (relative) magnetization of the metallic system, n+
being the number of + spin electrons. We do not explic-
itly show the temperature T dependence in I; note that in
an equilibrium state, M is determined as the function of T
and V, M =M(T, V), and that M in F( V, M) of Eqs. (1.1)
and (1.2) is to be understood as such an equilibrium mag-
netization [see Eq. (1.4) below].

On the other hand, the magnetic properties of the sys-
tem are determined from the dependence of the same free
energy on the magnetization. The spontaneous magneti-
zation in the ferromagnetic state is determined from the
condition
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Here in Eqs. (1.4) and (1.5) again, V in F is to be under-
stood as the equilibrium volume determined as the func-
tion of M or T.

Let us emphasize again that all the free energies ap-
pearing in Eqs. (1.1), (1.2), (1.4), and (1.5) are the same
ones. Different models and approximations culminate in
different results for F(V,M). Thus the elucidation of
magnetovolume effect and magnetoelasticity has served
as a crucial test of various models and theories of
itinerant electron magnetism. The mechanism of anoma-
lous magnetovolume effect has been particularly intensely
discussed from such a point. More recently, a very sen-
sitive dependence on volume of magnetism is noted for
transition metals.

Recently we pointed out the importance of the role of
phonons in itinerant electron magnetism. We showed,
for instance, how the phonon effect can make the
paramagnetic spin susceptibility of a metal Curie-Weiss-
like. The starting point of our such theory was to note
the fact that in a metal the free energy consists of the
electron part F,&

and the phonon part Eph,

F(V,M)=F„(V,M)+F „(V,M) (1.6)

and the F„h also depends on M as well as on V. The
dependence on M and V of F h comes from that of the
phonon frequency co~=co~( V, M) in

F„h =g I —,'Acu +ks T In[i —exp( %cod—/ks T)]I .
q

(1.7)

The magnetization dependence of the phonon frequency
originates from the fact that the screening constant,
which screens the bare phonon frequency Qq to Nq,
changes with the spin splitting of the energy bands of the
screening electrons. Thus we obtain '

F+(q)+F (q)
co =0 —Ig(q)I

1+u(q)[F+(q)+F (q)]

lim F+ ( q) =F+(0)
q~G

X+ c — dc. =X+ 0Bf(s)
Bc

(1.12)

where ok+, f (E), and X+(0) are, respectively, the one-
particle energy of an electron with wave number k and
spin, the Fermi distribution, and the density of states
at the Fermi surface of + spin electrons. The magnetiza-
tion dependence of co and, accordingly, I'

h comes from
that of F+ (q) or X+(e ). If we neglect the effect of the ex-
change interaction [V(q) =0], and consider only the
paramagnetic state, where

F+(q)=F (q)=F(q) . (1.13)

Equation (1.8) reduces to the well-known textbook re-
sult. ."

An important point to note concerning our free energy
of Eqs. (1.6)—(1.8) is that it was explicitly derived starting
from the microscopic Hamiltonian of a metallic
electron-phonon system. ' Note also that the free energy
should be, and actually was, obtained as the function of
given (variational) magnetization as is required in the
Landau procedure such as Eqs. (1.1), (1.2), (1.4), and (1.5).
Thus, the magnetization involved in Eqs. (1.8),
(1.10)—(1.12), and, accordingly, in F h, as well as in F„,is
not an equilibrium magnetization; the equilibrium mag-
netization is to be determined from Eq. (1.4) with such
free energy.

Now, in understanding the importance of the role of
phonons in magnetism of metals, the fundamental point
to note is that although

0 ( Fph /F, i ) =0 ( A'coD /s~ ) = 10 (1.14)

coa and cF being, respectively, the phonon Debye fre-
quency and the electron Fermi energy, the sizes of the
changes in F„& and I',I due to magnetization can be of the
same order of magnitude,

Ig qI'
u(q)

Ig (q) I'/u (q)
1+u (q)[F+(q)+F (q)]

o(IF (vM) F (vo)l)

=o(IF„(v,M) —F„(v,o)l) . (1.15)

(1.8)

F+(q)
F+(q) =

1 —V(q)F+ (q)
(1.10)

where V(q) is the exchange interaction between electrons,
and F+(q) is the ordinary Lindhard function

where g (q) is the electron-phonon interaction constant
which is related to the ionic plasma frequency 0

&
and the

Coulomb interaction u (q) =4vre /Vq as

Ig (q) I'/u (q) =&',
&

(1.9)

in the jellium model, " and we defined the exchange-
enhanced Lindhard function of + spin electrons as

In qualitatively understanding Eq. (1.15), let us consid-
er energies E,

&
and Eph in place of the free energies. At

T=O the phonon energy is given by that of the zero-
point oscillation,

Ep„=—,
' g fico =0(Xk~O )D,

q

where OD is the Debye temperature and X is the total
number of atoms in the system [see Eqs. (1.7) and (2.17)].
In a metal the interaction between ions is screened by
conduction electrons. While the screening constant is
proportional to the electronic density of states at the Fer-
mi surface, by the spin splitting of the electron bands the
electronic density of states at the Fermi surface can
change by one order of magnitude. This implies

f Ek+ f 8k+, ,
+-

F+ q =—
Sk+ Ek+ q, +

with the property

or

IOD(M0) —OD(0) I
=0 [OD(0)],

IEp„( V, M0) —Eph( V, O)
I
/N =0 (ksOD ),
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where Mo is the maximum possible magnetization [see
Eq. (2.11)]. On the other hand, for a ferromagnet we an-
ticipate

~E„(Vm, ) —E„(VO)tyn =O(k, T, ),

i( -1%
Vp(M))0

n being the total number of electrons, as can be explicitly
shown. Then, since generally O(n)=O(X) and
0 (Tc)=O(8D ) we arrive at the result of Eq. (1.15).

We now show how our such theory also leads to a new
way of understanding the diversified volume and elastic
behavior of ferromagnetic metals. ' What is required is
simply to carry out the procedure of Eqs. (1.1) and (1.2)
with exactly the same F with such F h as we used in dis-
cussing magnetic properties.

First, as for the magnetovolume effect, we may summa-
rize various volume behaviors of metals for T ( T~ as in
Fig. 1. All the previous theories' are then unanimous in
assuming that the lattice or phonon eftect would always
cause the "normal" volume behavior of the dashed line,
independent of magnetism. Any deviations from such
"normal" behavior are attributed entirely to electrons.
By treating the phonon effect with our F~h(V, M) de-
scribed in the above, however, we find that in the fer-
romagnetic state of a metal the phonon Gruneisen con-
stant ya can behave in quite diverse ways sensitively de-
pending upon the electronic structure; yD can take even
a negative value. With such behavior of the phonon
Griineisen constant it is no longer justified to assume the
phonon effect on volume always as the broken line of Fig.
1. Instead, depending upon the sign and magnitude of
yD, the phonon effect on volume b, V h [see Eq. (2.7)] can
be quite diverse as illustrated in Fig. 2. Note that such
phonon effect has enough size to account for actual ob-
servations such as summarized in Fig. 1. While the size
of the magnetovolume effect is generally of the order of
—1/o as illustrated in Figs. 1, the size of the phonon
effect on volume is also of the same order of —1% as in-
dicated by Eq. (1.14).

Next, as for the mechanism of the anomalous tempera-
ture dependence of elastic constant, particularly for the
ferromagnetic state, we already presented an extensive
discussion by exploring how the screening of phonon fre-
quency depends on the spin splitting of the conduction
electron bands' (see Sec. IV). More recently, ' however,
we realized that such a previous result can be rederived
alternatively by carrying out the procedure of Eq. (1.2)
without including F„h. Then a question arises: What

Yp(M) =0

fp(M)(0

Tc

I

1.P

FIG. 2. The relation between phonon Cxruneisen constant
and the temperature dependence of the phonon effect on volume
in the ferromagnetic state of a metal.

would be the effect of including F h in Eq. (1.2)'? We
answer to this question in this paper. For the ferromag-
netic state of a meta1, fortunately, the contribution of Fph
to the dependence on magnetization or temperature of
elastic constant turns out to be much smaller than that of
F,],' thus our earlier conclusion' remains essentially valid
as it is. For the elastic constant in the paramagnetic
state, however, we find the contribution of F h is very im-

portant; in this temperature region the temperature
dependence of the elastic constant is determined princi-
pally by the effects of F h. This new finding resolves the
difficulty with our previous result' in understanding the
temperature dependence of elastic constant for T ) Tc.

In concluding this Introduction, in response to the re-
cent question raised by Zverev and Silin, ' let us ela-
borate on the nature of our free energy, Eqs. (1.6) —(1.8),
especially on that of F„h. Although these authors funda-
mentally support our view on the importance of the role
of phonons in magnetisms of metals, they claim our F h

is calculated for a given magnetic induction but not for a
given magnetization. In the following we show how their
claim cannot be justified.

If we use the Debye approximation for the phonon fre-
quency ~q, the phonon free energy F„„ofEq. (1.7) can be
rewritten in terms of the bulk modulus or the Debye tem-
perature [see Eqs. (2.16)—(2.20) below]. The magnetiza-
tion dependence of Fph then is dictated by that of the
bulk modulus.

In their phenomenological phonon free energy Zverev
and Silin use the bulk modulus as calculated by the pro-
cedure of Eq. (1.2) on the mean-field part of the electron
energy. Let us call such a procedure of calculating elastic
constants the total-energy approach. There is, however,
an alternative method of calculating elastic constants. It
is to obtain the sound velocity s from the dynamically de-
rived phonon frequency co, such as given in Eq. (1.8), as

lim ~ =sq .
q~0

(1.16)

0 1.0 /Tc Then the bulk modulus is related to the sound velocity as

FIG. 1. Various characteristic volume behaviors of fer-
romagnetic metals below T~.

XM;B= s
V

(1.17)
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where M, is the ionic mass. Let us call this method of
calculating elastic constants the dynamical approach. If
calculations are carried out exactly, we expect both ap-
proaches to give the same result. It is very well known,
however, that if approximations are used, even if the na-
ture of the approximations are similar, the results of the
total-energy and the dynamical approaches can be quite
different. ' We have explicitly shown that it is only under
some specific assumptions on the volume dependence of
various physical quantities that the total-energy approach
can reproduce the dynamical approach result of bulk
modulus [see the discussion given below Eq. (2.13)].'

Furthermore, it is not obvious at all which approach
would give the better result on elastic constants.

Which bulk modulus, then, should we use for F h in
the Debye approximation? If we start from the legiti-
mately obtained result of Eqs. (1.6)—(1.8), we have no al-
ternative but to use the dynamical one, as we have been
doing. This is the main origin of the difference between
our phonon free energy and that of Zverev and Silin.

Let us also reconfirm that our phonon free energy of
Eqs. (1.7) and (1.8) is for a given magnetization as re-
quired in the Landau procedure such as Eqs. (1.1), (1.2),
(1.4), and (1.5). The magnetization dependence of co and,
accordingly, F„h is given solely through the magnetiza-
tion dependence of F+(q) and X+(e). Note that the
magnetization dependence of F,] also is given entirely in
terms of the same F+(q) and N+(e). Thus, the magneti-
zation dependence of F h can be treated exactly in the
same way as in deriving the Stoner theory' from the
magnetization dependence of F,&.

Also note that, unlike the case using phenomenological
approach, with our result there can be no ambiguity con-
cerning the contribution of the zero-point oscillation en-
ergy of phonons.

The organization of this paper is as follows. In Secs. II
and III we discuss the contribution of the phonon effect
to volume for the ferromagnetic and the paramagnetic
states, respectively. The contribution of phonons to bulk
modulus is discussed in Sec. IV and concluding remarks
are given in Sec. V.

F„(V, M) =F„(V, M)+6 F,t, ( V,M), (2.2)

where F,&
and AF,], are, respectively, the mean-field

and the higher-order correlation contributions to the
electron free energy. The dominant contribution to
hF,&, comes from F,„. Then we define Vo(M) from

BF) (VM)
BV V= Vo(M)

(2.3)

Vo is the volume when there are neither AF,I, nor F„h
contributions. By the effect of AF,&, and F h the volume
changes from Vo to V= Vo+AVat each temperature or
magnetization. Vo(M) itself depends on magnetization
and therefore, temperature. However, the dominant
cause of the dependence on temperature or magnetization
of volume is considered to come from F h and AF,&, .
Then since

~ v(MO) —v(0)~/v(0)=~5 v(MO)~/v(0)=10, (2.4)

as can be seen from Fig. 1, we may treat 6Vby perturba-
tion theory. We know that the equilibrium magnetiza-
tion also can be affected by the electron-phonon interac-
tion, as well as by electron correlation. :In this paper,
however, we neglect the effects of F h and hF,], on mag-
netization. Then, by noting Eq. (2.3), we make the fol-
lowing expansion:

F,i ( V, M) =F,
) [ Vo(M), M]

+ 1

2 Vo(M)~„(M)

X [ V —Vo(M)] + (2.&)

where lr,
&

(M) is the mean-field approximation compres-
sibility defined as

It is well known that the role of attractive F, and that of
repulsive Fo are generally of equal importance in deter-
mining the volume.

For convenience, we rewrite Eq. (2.1) as

II. MAGNETOVOLUME EFFECT FOR T (Tc

In determining volume of an itinerant electron fer-
romagnet our whole task is to carry out the procedure of
Eq. (1.1) with the free energy of Eq. (1.6). Note that F,&,

or, more simply, the electron energy E,] is considered to
consist of two terms, the one-particle energy of electrons
Eo and the exchange-correlation energy of electrons E,„.
For the uniform distribution of ionic and electronic
charges (the jellium model) the three kinds of direct
Coulomb interactions, among electrons, among ions, and
between electrons and ions, cancel out. However, it is

important to consider the energy E& of the interaction be-
tween ions beyond that of the jellium point-charge ions.
For convenience we include this E& into F,] or E,]

1 =8„(M)
M

d F„(V,M)=V
dV V= Vo(M)

(2.6)

b, V( M)/ V(oM)=x, ) (M)[P h(M)+P„, (M)]
= [5.V„„(M)+b,V„,(M)]/Vo(M),

(2.7)

The subscript el to ~ and 8 refers to the fact that they are
derived from F,~

alone (see Sec. IV). Then by putting
into Eq. (1.1) F~„and F„with this expanded F„,we
obtain

F,] =Fo+F„+E( . (2. 1)
with the pressures due to phonons and electron correla-
tion, respectively,
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P„„(M)= — F h( V, M)
d

P„,(M) = — bF„,(M)
d

v= v, (~)

v= v, (~)

(2.8)

All the previous theories' on the magnetovolume
efFect unanimously assumed that in Eq. (2.7) the contribu-
tion of AV„], is always "normal" as in nonmagnetic met-
als. The origin of the anomalous volume behavior is en-
tirely attributed to b, V,t, (M), although the details of
electron correlation effects are different for different
theories. In the following, by exploring the phonon effect
on volume as described above, however, we find that the
prevailing belief regarding the contribution of b, V h(M)
to the volume behavior is not valid.

In pursuing b, V~h(M) below, we discuss the bulk
modulus B,~

(M) and the phonon pressure P h(M) sepa-
rately in Secs. IIA and IIB and then in Sec. IIC we
present our phonon mechanism of magnetovolume effect
for T (Tc.

8„ (M)= s (M)
sp

2
s(M)

0
Sp

(2.14)

In the pure jellium Qq=Q~„and, therefore, /=0. g' is
considered to be a constant of order unity.

Note the result of Eq. (2.11) was derived first with the
dynamical approach by pursuing how the screening of
the ion-ion interaction changes with magnetization, '

namely, by the procedure of Eq. (1.16) for the phonon
frequency of Eq. (1.8). Then, later' we found the same
result can be obtained by the total-energy procedure of
Eq. (2.6) if we assume the parabolic electron energy band
and the volume dependence of the exchange interaction
and the parameter g, respectively, as V cc 1/ V and
(/so) 0.-1/V. Here, however, we assume that if the pro-
cedure of Eq. (2.6) is more properly carried out it would
reproduce the dynamical approach result of Eq. (2.9) and
(2.11)beyond such limitations.

With Eq. (2.11), we rewrite Eq. (2.9) as

A. Mean-field bulk modulus B,&
(M)

We can obtain the bulk modulus by carrying out the
procedure of Eq. (1.2) on the free energy of the form of
Eq. (2.1). With the mean-field approximation for the
electron energy as in Eq. (2.6), such a procedure was
shown to lead to the result of familiar form' [see Eq.
(1.17)],

NM,8„(M)= s (M) (2.9)

so = VQp, /8vre N(0), (2.10)

where N(0) is the electronic density of states per spin at
the Fermi surface in the paramagnetic state, it is given as

s(M) 2N (0)
$0

(2.1 1)
N (M)+

1 —VN (M)

N+(M)

1 —VN+ (M)

where N+(M) is the electronic density of states at the
Fermi surface of + spin electrons under magnetization
M, and V= V(q=0) is the exchange interaction between
electrons which appears in the Stoner spin susceptibility
(with pii =1) as

where the magnetization dependence of 8,&
comes from

that of the sound velocity s(M). If we normalize the
sound velocity by the Bohm-Staver sound velocity of the
jellium s0, which is given as"

Then, since Qz&=4me NZ /VM;, with NZ=n, in Eq.
(2.10), we have

fl
~0

2 VN (0)

2pl E'F

3V
(2.15)

where the last expression is for the free-electron band
where N(0) =3n/4eF. Note that due to the result of Eq.
(2.4) we may ignore the diff'erences among V(M), V(0),
Vo(M), etc. , and refer to them simply as V in an expres-
sion like Eq. (2.15).

N+(M) in Eq. (2.11) changes with the spin splitting of
the electron bands. Since the size of the relative change
of N+(M) can be generally of order unity, the change in
sound velocity due to magnetization can also be of order
unity unless g)) 1. Such an observation led to the result
of Eq. (1.15).

co~( V, M) =s ( V, M)q, (2.16)

this s ( V, M) is to be given by that of Eq. (2.11). Thus we
obtain

B. Phonon pressure P»(M) and Griineisen constant ya(M)

The phonon free energy, which is required in calculat-
ing the phonon pressure from Eq. (2.8), is given in terms
of the phonon frequency coq( V, M) as in Eq. (1.7). Then,
if we use the Debye approximation for the phonon fre-
quency as

2N (0)
1 —VN (0)

(2.12)

Note that earlier we used N+(0) for N+. (M) [see Eqs.
(1.12)]. The parameter g is introduced to represent the
effect of deviations from the jellium ions, which is con-
tained in E& of Eq. (2.1) in the following way:

II2 II2 g
2 2

F h(V, M)= ,'NficoD( V,M)—
r

0" ( VM)
+Xk T. ln 1 —expB T

OD( V, M)——D
3 T

where

(2.17)
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D(x)= J dy

is the Debye function and we set

(2.18) p T
OD

Rs ( V, M)qD( V) =A'coD( V, M) =kiiSD( V, M), (2.19)
4

g+5 O. for T ((0" (2.23)

qD being the Debye wave number de6ned by

VqD3

6m.
(2.20)

for T~OD/3 .
D

(2.24)

NksOD(M) TP h(M)= yD(M)P
D

(2.21)

where we introduced the Gruneisen constant

Note that since we are considering a jelliumlike model we
have only longitudinal acoustic phonons.

By inserting Eq. (2.17) into Eq. (2.8), we obtain the
pressure due to phonons as

V
co (M)

BcoD( V, M) BcoD( V, M) dM
BV

+
am dV

1D—(M)i+rD(M)2 . (2.25)

As for the Csruneisen constant of Eq. (2.22), in the fer-
romagnetic state it consists of two kinds of contributions

V d AD( V M)

coD(M) d V

and the function

V= Vo(M)
(2.22)

Let us discuss yD(M) &
and yD(M)2 separately.

ln calculating yD(M), from Eq. (2.11), we are required
to know how the various quantities appearing there
would change with volume. Here we assume the follow-

ing relations:

N (M)= —N (M),
ov v

b-V= ——Vav v

(2.26)

(2.27)

((so)= ——(/so) (2.28)

with positive constants of order unity a, b, and c. Then from Eq. (2.11) we obtain

1 C ~0
yD(M), — + +

s M

2

N(0) N+(M) +A' (M)2
(a —c) +(a —b)N(0) V

Ni(M)+N (M) [N+(M)+N (M)]
(2.29)

where we put Next, from Eqs. (2.16) and (2.11) we obtain

N~(M)
N+(M) =

1 —
VN+ (M)

As for yD(M)2, first we note, '

dM M-=f VyHF(M),

(2.30)

(2.31)
with

OCTAD

BM
1 Bs(M)

s (M) BM

s (M) 8' (2.33)

where

1 1

N (M) N (M)
(2.32)

is the high field susceptibility (with p~ = 1). Although the
relation of Eq. (2.31) with f = —

—,
' was derived for the

parabolic electron energy dispersion, we assume it is valid
beyond that limitation with a change in the numerical
coefficient f. Since generally f )0 according to experi-
ments, ' in our later numerical calculation we assume the
value off =

—,'.

F(M) = —
—,'N(0) W

N+ (M)/N+ (M)
X

[1—VN+ (M)]

X [N+ (M)+N (M)]

N' (M)/N (M)

[1—VN (M) ]

(2.34)

yD(M)2 = fn VM A /W, — (2.35)

where N'+(M) is the energy derivative of N+(M) and the
electron band width 8 is introduced for convenience.
Then from Eqs. (2.31) and (2.33) we have
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2
So

Y(M)yH„(M) .
s M

(2.36)

Both yD(M), and yD(M)z, and, therefore, yD(M) turn
out to be quite complicated quantities. In Sec. II C we
carry out some numerical calculations on these quanti-
ties. Before such numerical calculations, however, let us
note that the quantity 3 of Eq. (2.36) is directly related
to the external magnetic field dependence of sound veloci-
ty in the ferromagnetic state as, ' o

b,s (H) PsH
s 8' (2.37)

C. Magnetovolurne effect through phonons for T & Tc..
Negative phonon Griineisen constant

From the results of Secs. II A and II 8 we have

6 Vph(M)

V

1 P h(M)B„M
NksOD(M)

V B,i (M) SD(M)

(2.38)

Further from Eqs. (2.14), (2.15), (2.23), and (2.24) we
rewrite Eq. (2.38) as

b, Vph(M)

V

S()

s(M)
J

ks OD (M)
for T«OD

8

k~r
for T- eD~/3,

CF

(2.39)

(2.40)

where we assumed the parabolic electron energy disper-
sion. First note that if ~yD ~

=0 (1) we have

Thus, the effect of phonons is of enough size to account
for the actually observed size of volume change in fer-
romagnetic metals.

where b,s(II) is the change in sound velocity due to a
magnetic field H. We know that 3 can vary over quite a
wide range. In Fe-Ni Invar, an external magnetic field of
—1 T, produces a change in the sound velocity of
b s /s = 1%. This implies that in Fe-Ni 3 / W = 10
eV '. On the other hand, in Ni under the same magnetic
field of —1 T, change in sound velocity was not observ-
able, implying there ~A/W'~ &&10 eV '. Iff )0 as ex-
periments show, this situation causes to make yD(M) of
Fe-Ni much smaller than that of Ni. Note that such a
difference in the behavior of the Gruneisen constant
rightly coincides with the difference between the volume
behaviors of Fe-Ni and Ni. Large A makes yD(M)
smaller or negative.

How can it be possible, then, for hv h(M) to become
negative to cause negative thermal expansion? Since the
bulk modulus should always be positive, it should be pos-
sible for yD(M) to become negative. We show in t'he fol-
lowing, based on a numerical example, that actually is the
case; it is possible to have all the cases of Fig. 2.

In numerically estimating the Griineisen constant we
are required to know the values of the parameters a, b, c,
and f defined in Eqs. (2.26) —(2.28) and (2.31) besides the
electronic density of states N(E) and the value of g. At
present, however, we do not have any universally accept-
ed values for those parameters a, b, c, and f. Remember
that it is already a drastic simplification to assume the re-
lations of Eqs. (2.26) —(2.28) to begin with.

In our numerical example, we assume a =—', , b = 1, and
c =1 as in Ref. 16, f =

—,', and /=2. The value of a =—',
corresponds to the free-electron-like energy dispersion.
The value of b =1 comes from the assumption that V(q)
[ V= V(q=0) j is the following form of the Fourier trans-
form of the effective exchange potential between elec-
trons:

V(q) =—f V(r)e 'q'd'r,
V

(2.41)

and that since V(r) is of short-range the value of the in-
tegral would not be affected by a small change in the
volume of the system; the value of c =1 also is similarly
deduced. Note that there have been proposed a number
of different values for the parameters a and b. '
Heine, ' for instance, proposed a =

—,
' for 3d bands of

transition metals.
As for the electronic density of states we use the fol-

lowing model:

N(E) = s( IV —s),6N
(2.42)

which is illustrated in Fig. 3, where N is the number of
atoms in the system and 8'is the bandwidth.

In calculating yD(M), the equilibrium magnetization
M is to be determined as the function of temperature for
a given location of the Fermi energy EF in the band in the
paramagnetic state, and for a given value of V or
V= VN(0). Here, however, for simplicity, we change M
as the function of V for a given value of cF /8'at T =0.

In Fig. 4 we present the result of our numerical calcu-
lation of the phonon Griineisen constant for different lo-
cations of cF in the paramagnetic state, as the function of
magnetization, Mo being the maximum possible magneti-
zations for each case.

In Fig. 5 we show also how the role of y~(M) dom-
inates over that of bulk modulus B„(M)in determining
the behavior of the phonon effect on the volume of a fer-
romagnetic metal. Note that, as we will see in Sec. IV, in
the ferromagnetic state the observed bulk modulus is well
represented by B,i (M).

The result of Figs. 4 and 5 shows that the behavior of
Gruneisen constant depends very sensitively on the elec-
tronic structure near the Fermi energy. When the Fermi
energy in the paramagnetic state is located at the peak of
the electronic density of states, with sF/W=0. 5, yD(M)
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EF/w =0.5 10
EFiW=O.i or 0.6 (b)

1.0—
N(&)

N(—)
-1

0

r, (M
(So(

l;(M)( /~(~])

M/Mo
1.0

l

—10 i

0 0.5
M/M

I

0.5 1.0 10
CF/W=01or og (&)

10
CF / W = 0.3 or 0.7 (c )

FIG. 3. The model electronic density of states of Eq. (2.42) to
be used in the numerical calculation of Figs. 4, 5, and 6.

is positive and 0(1) except in the region M/Mo = 1 as can
be seen from Fig. 4(a). With such yD(M) we expect the
phonon effect on volume to be normal. When the loca-
tion of c.F is away from the peak of the electronic density
of states, yD(M) strongly tends to be negative, as can be
seen from Figs. 4(b) —4(d); in these cases the phonon con-
tribution to thermal expansion coefficient becomes nega-
tive. The Invar behavior can be associated to the cases of
Figs. 4(b) —4(d); the volume behavior of Ni corresponds to
the case of Fig. 4(a). As will be summarized in Sec. IV,
we previously' noted that the result of Eq. (2.11) can ac-
count for in the same way the difference between Fe-Ni
and Ni in their characteristic magnetization dependence
of sound velocity.

Concerning the results of Figs. 4 and 5 we should note
that whereas yD(M) crucially depends upon the parame-
ters a, b, c, and f, we chose a particular set of values for

0-

0.5
M/M,

1.0
—10

0 0.5
M/Mo

1.0

FIG. 5. The magnetization dependence of phonon Gruneisen
constant, [so/s(M)], to which compressibility is proportional,
and their products calculated in the same way as in Fig. 4.

III. THERMAL EXPANSION IN THE PARAMAGNETIC
STATE OF METALS

them. Also, whereas yD(M) and [s (M)/so] depend very
sensitively. upon the electronic structure, we used the sim-
plest possible model electronic density of states of Fig. 3.
Thus, the result of Figs. 4 and 5 is of only qualitative na-
ture. However, it seems to offer a sufficiently convincing
evidence for the importance of considering the role of
phonons in understanding the magnetovolume effect of
itinerant electron ferromagnets.

3 I 'f
I

'
~

Qp/W = Q. 5 (o)
j"D(M)

3 I

C.,/W=o. a o 0.6 (b)

The formulation of the phonon effect on volume for
T ) T& is quite similar to that of the preceding section;
we only have to replace M by T. Thus, corresponding to
Eq. (2.7), for the phonon effect on volume we have

ro(v)--- ro(V)1

-3 E I

0 0.5
M/M,

-3
10 0

/

/
i I
/I
~ t
l t.

0.5
M/Mo

1.0

b, Vph( T)
(T)P „(T) . (3.1)

The meaning of notation is evident. The expressions for
a, &

(T) and P„h(T) also are evident.
Here let us define the thermal volume expansion

coe%cient as
3 ~ ~ I

Cp/'I/Y=0. 3 or 0.7 ((=)
3 I 1 I

~
Cp/W=0. 1 or 0.9 1 dV(T)/3=

V dT
=/3. i, +/3, h+&.t, (3.2)

/

lg
-3 . . /. ,

0 0.5
M/M

1.0
-3

0 0.5
M/M

1.0

FIG. 4. The magnetization dependence of phonon Gruneisen
constant calculated for various locations of the Fermi energy in
the electronic density of states of Fig. 3 in the paramagnetic
state.

The phonon contribution to thermal expansion coefficient
corresponding to Eq. (3.1) is given as

Nk~
PPh V g YD

el, m

(3.3)

2

B,i = [/+1 —VN(0)] . (3.4)

where we assumed T~ SD/3 in Eq. (2.38) and neglected
the temperature dependence in 8,] and yD. Note that
in the paramagnetic state



390 JKIM6852

therm al ex-The mean-"
.

h repr-esen
b the fac o

pansion Pd ~'
'

smaller
p

1on (see Sec.

1vhtc
than Pph y

ec. Iv).
1S

reg
d nce of o '

t tempe a
1 t'on eff'ect Pe), c

e
resell

o«ea '
in th

p . f electron c
trate on Pph

kg
trjbution

. e concen
As for the co

it in this papeot discuss

of only

we «n;
section.

stant con '
the preced1 g

-neisen const
(229) vie

as»
T the Qrun

h s from
For T &T&

f ~=0. I us'vanishes 0QD2

2.0
EF

15—

2.o f

I

0/W ~ ~EF= .

I

EF=0q or 0 6W &b)

g -2.0
1.6

1.2

O.e
0.6

I

CF= .1 orO
(3.5)

have

-~(0)(cso )(, —c)+ Vi=, +-',
2 s

~c+—

. II, Eq (3.5)inand aIf we pu
ces t.o

(3.6)

edu

5 1
yL) 6 6 /+1

h ~balue of yD '1, and the vaU less g«
f p=&&(0)

ct on

n
value 0

,h, dorni
~

nant epee
on-

sensi
aramagn

tween e e

tive to t e
etic state~

trons is c
al

Thus, in the p
teraction be w

ume thermata'ne
minated y

p,
the bulk rn

h hononexpansion
ct is estimat

js om
the e hange etc I

g =2.0

1.6

00

0.8

1.0
I

0.5
M

&.0
M

0M~

f soon" vedependence o
f the Ferrm en-

zatio
cations 0

6. The mag
he various &o

the param g-

FIG
E (211) fort e

ofplg-31n
cUlated ~

density oh electronic energyint ee
netic state.

xc

(Pph) vtv(o)=1vN(o)=) p

(Pph) vtv(o) =o(P) v)v(o) =o p

/+1 easilythe latter can ea yction electro n terms, the a
'm ortant roNt th

an
order unity.

a netization depe n

t of the e ecll than thato e sma erbe much sma er

c behavior ec e below T~ of
N canbequ

ad note,
alitative y u

hea, , d 6(d). ow6(a), 6(c), andp

t ofodel electron' y g
Ioce u

s-

rno e

p.11) Figure

1

ic eb havior of

a concludeThs, wemy
1 h

elastic be-then, in eluci a
'

How goo
of a metal in

re dependence
havior o a

Eq. (3.4) for n

+1—VF(0)]8„=8o +

2 for /=1
for /=2 .2

1 while the thermalram g state o
1

ag eticIn the param g

t tth F

enera
h nge ekeexc a t can

Its tha s
tre

(3.7)

n 1 observations.

ITY

nd of actua o ns.

TOELASTICEFFECT OON MAGNEIV. PHONON E O

+o(~+Xo~Xs (4. 1)

spectively, theare, resp=2F(0 =2%(0) and ys, spwhere go=

bulkd earlier w u
nd velocity o

d

or the soun
rom the resu

A d'the phonon r
p

P
d 1

interact ion t a

1 1 1 t
s or soun

ion on q.
dence of u

f nurnerica
i s. 4and

is the result o aFigure 6 is

del electronicith the same mode ewit
suit of Fig. s e

e ferromagne
ture near t eonic struc u

the locat1oDepending upon n
elastic-

tribut1ons
1 g

velocity of Eq.



39 ELECTRON-PHONON INTERACTION MECHANISM OF. . . 6853

2.0 i I I I

F(0)=N(0) 1 —a

with 0 ( ~a~ ) =1,we have

k~T
2

EF
(4.2)

Be1,

dB,i ( T)
dT

k~T=0
C,F

(4.3)

0
0

I

0.5
c/W

1.0

FIG. 7. The model electronic density of states to be used in
the calculation of Fig. 8.

Pauli and the Stoner magnetic susceptibilities [see Eq.
(2.12)], F(0) being defined by Eqs. (1.12) and (1.13) and
Bc is given in Eq. (2.1S). Unlike in the case of T & Tc,
however, this result fails to reproduce the observed tem-
perature dependence of the elastic constant for T ) Tz of
ferromagnetic metals. In Ni the elastic constant de-
creases linearly with T for T & Tc. In the Fe-Ni Invar,
on the contrary, the elastic constant increases linearly
with T over a fairly wide temperature region for T & Tc.
Such a linear temperature dependence cannot be derived
from the temperature dependence of the Stoner suscepti-
bility in Eq. (4.1).

Also, the size of temperature dependence of B,1 ex-
pected from the temperature dependence of F(0) in the
result of Eq. (4.1) is much too small compared to actual
observations. If we note [see Eq. (1.12)]

where we assumed c.F-1 eV. If we put T=T~ in Eq.
(4.3), we have for Fe6s 5Ni3i 5 (Tc —370 K) and Ni
(Tc-630 K), respectively, -2X10 and -4X10
The corresponding observed values for those systems are,
respectively, -0.4 (Ref. 3) and -0.2 (Ref. 5). The
discrepancy between the expectation from Eq. (4.2) and
actual observation is a factor of —10 . Thus, as far as the
temperature dependence in the paramagnetic state is con-
cerned the result of Eq. (4.1) is quite insufficient; the situ-
ation is quite different from the case of the ferromagnetic
state.

A possible way to remedy this difhculty might be to re-
place the Stoner susceptibility by a Curie-Weiss suscepti-
bility in Eq. (4.1). However, not only is such a procedure
not justifiable but also the sign of the observed linear T
dependence is not always positive contrary to what is ex-
pected from such a replacement.

In summary, for T & Tc, B,i (M) can fairly well ac-
count for the observed various elastic behavior of
itinerant electron ferromagnets. For T & T&, however,
B,~

(T) completely fails to explain the observed various
temperature dependence of the elastic constant.

Now, from our discussion in Secs. I, II, and III, we
know that the bulk modulus is given as

B = Vd (F,i + b F,i, +F h ) /d V

=B 1, +B1, +B h (4.4)

c~/ W
=0.1 or 0.9

(b) ~F/w
=0.16 or 0.84

3 or 0.7

Besides B,1,we have to consider B„,and B h. As we
have done for the magnetovolume effect in Secs. II and
III, here we concentrate on the phonon effect on elastic
constant, B h. Then we will find in Sec. IVB that for
T~OD/3, B„h becomes proportional to T with either
positive or negative sign, and with coefficient of enough
size. There is, however, an additional source of linear T
dependence in B of similar importance. It is the effect of
the thermal volume expansion on 8,] . We first discuss
this subject Sec. IVA. Finally in Sec. IVC we find that
for the ferromagnetic state of a metal, the contribution of
B h is much less important than that of B,1

. By supple-
menting B,1

with such B h now we can account for the
temperature dependence of bulk modulus of ferromagnet-
ic metals both for T & Tc and T) Tc.

1.0
A. The eÃect of thermal expansion on the bulk modulus

in the paramagnetic state

FIG. 8. The magnetization dependence of [s(M)/so], to
which the bulk modulus is proportional, calculated in the same
way as in Fig. 6 for the model electronic density of states of Fig.
7. We put /=0 and the horizontal lines in each frame indicates
the origin of the ordinate.

( T) /B, i ( T)=M, V /V, (4.5)

where for T ~OD/3 we have

The effect of thermal volume expansion 6 V on B,1
of

Eq. (4.1) may be written as
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PDXkg
AT

V VB„
(4.6)

from Eq. (3.3), and

5=d 1nB,] /d lnV

= —(a + 1)—[(c —a)g+(a b—) V]/(g+ 1 —V), (4.7)

the parameters a, b, and c being defined in Eqs.
(2.26) —(2.28). By inserting Eq. (4.6) into Eq. (4.5) we ob-
tain

where D (x) is the Debye function of Eq. (2.18). yD is the
Gruneisen constant in the paramagnetic state given by
Eq. (3.6) and the function P(x) is introduced in Eqs.
(2.23) and (2.24).

As can be seen from Fig. 9 the function Q(T/SD)
defined in Eq. (4.11) behaves as T/SD except at very low
temperatures. As for yD, the second-order Gruneisen
constant, we can derive an expression valid for T & T&,
as well as for T ) T&. Since the result is quite complicat-
ed, however, here we present only the result for T )Tc,

dB„(T) /1 T=6y DNks /V (4.8)
yD =7yD/3 —

yD
—

—,'+c /2

for the effect of thermal expansion on the temperature
dependence of B,]

As we have seen in Sec. III, yD is positive and 0 (1) in
the paramagnetic state of a metal. As for 6, from Eq.
(4.7) it is likely to be negative with magnitude -0(1).
Thus Eq. (4.8) is estimated as

T dB„(T)
therm. exp.

k~T= —0
CF

(4.8')

Then, comparing to Eq. (4.3), we find that the effect of
the thermal expansion on B,i (T) is much larger than
that of the thermal smearing of the Fermi distribution in
F (0) by the factor of ( eF /ks T).

+ —,'(so/s) [(a —c )+ V(c b)—] . (4.12)

B „=Nks ( y D
—y D)T / V . (4.13)

If we compare this result with Eq. (4.8), we realize that
the effect of the thermal expansion on B„ is of the same
s1ze as that of B h. Summing B,&

and B „,for the bulk
modulus in the paramagnetic state we have

B„+Bi, =Be(s/so) +dNksT/V

=(2n EF/3 V)[/+ 1 —VF(0)]

As was with yD, it is difFicult to estimate yD, but from
Eq. (4.12) it appears that yD can be either positive or neg-
ative with magnitude 0 (1).

Thus, by going back to Eq. (4.9), for T ~ SD /3 we find

B. Phonon effect on bulk modulus in the paramagnetic state

If we note that in Eq. (4.4) F h of Eq. (2.17) depends on
V only through the Debye frequency coD, the phonon
contribution to bulk modulus is obtained as

with

+dNks T/V,

7D~ VD+7D

(4.14)

(4.15)

dFh
dV

dF h d coD d
+V

dV dm&

2

d =+0(1) . (4.16)

In d of Eq. (4.15), as we already noted, 5 is likely to be
negative, while yD is likely to be positive; as for yD, it
can be either positive or negative. Thus, if we note
0(~yD~)=0(~yD~)=0(~5~)=0(1), we find

yDP(T/OD) —yDQ
D

(4.9)

where we put

V2 d coD
TD= dV'

(4.10)

and

coD d Fph

OD XA

T D D

OD T
3

exp(OD /T) —1

4~4

5
for T &(OD

T
'

D

T
otherwise,

D

(4.11)

FIG. 9. The illustration of the function Q(T/OD) defined in

Eq. (4.17).
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The linearly temperature-dependent contribution of
Eq. (4.14) with d of Eq. (4.16) can now reproduce such
observations as given in Refs. 3—5; d =0(1) for Fe-Ni
Invar and d = —O(1} for Ni. In the case of Fe-Ni, at
higher temperatures the temperature dependence of B be-
gins to deviate from linear one and changes its sign. Such
a behavior may be understood by considering the temper-
ature dependence of B „more in detail by including that
of F(0), as we recently did in analyzing the temperature
dependence of the magnetic susceptibility of Y2Ni7.

C. Phonon effect on the bulk modulus in

the ferromagnetic state

s
Bel, m +Bph Bo

so

2

XA'e)D
+ yDP

V O~

2 T—7'DQ
D

s=—Bo
So

[1+R(T)] (4.17)

with

XAcoD soR=
VBo s

2
T

rDP
D

2 T—rDQ
D

At the beginning of this section we confirmed that in
the ferromagnetic state of a metal the observed diversified
temperature or magnetization dependence of an elastic
constant can be satisfactorily accounted for by B,&

(M)
or [s(M)/s0] of Eq. (2.11) alone. Such a situation sug-

gests that in the ferromagnetic state the contribution of
B h is much less important compared to that of B,&

quite contrary to the situation of the paramagnetic state.
Let us show actually that is the case.

Note that Eq. (4.9) is valid also in the ferromagnetic
state. Then we have

ic state, the temperature dependence of bulk modulus is
dominated by that of B „;in the paramagnetic state, the
temperature dependence of B,&

through (s /s0 ) is
much smaller than that of B h as we saw in Sec. IV 8

V. CONCLUDING REMARKS: ISOTOPE EFFECT
ON J5L Vpg ( M)

In this paper we have discussed on the role of phonons
in the volume and elastic behaviors of ferromagnetic met-
als. We have shown the importance of treating phonons
and electrons on the same footing in dealing with these
subjects as was the case also in elucidating magnetic
properties of metals.

All the previous theories' attributed the origin of
anomalous volume behavior entirely to the effect of elec-
tron correlation; the phonon effect on volume Jean Vph is as-
sumed to always behave "normally" as in nonmagnetic
metals. In this paper we have shown such prevailing
premises are not justified. On the contrary, even with
b, V~&(M) alone, without considering the possible effect of
electron correlation at all, we can understand the diverse
characteristic volume behaviors of itinerant electron fer-
rornagnets quite satisfactorily.

Our such finding in this paper seems to cast a rather
grave question on the validity of the recent theories of
itinerant electron ferromagnetism. All of those recent
theories are based on the common ground of entirely
neglecting the role of phonons such as we discussed in
this paper. They attribute all the observed deviations
from the mean-field approximation prediction entirely to
the effect of electron correlation. If the phonon effect on
magnetovolume, and magnetic properties in general, is as
large as we have found, we have to fundamentally modify
such understanding of itinerant electron magnetism.

Note that if the phonon effect is a dominant origin of
the rnagnetovolume effect we may observe an isotope
effect in the volume at low temperature of an itinerant
electron ferromagnet. If we put the ionic mass and its
isotopic difference, respectively, as M,. and 6M;, by as-
suming SD oc M, '~ in Eq. (2.38},we have

(4.18)
5b, V q(M0) 1 5M,

hV q(MD) 2 M;
(5.1)

where we did not include the effect of thermal expansion
on B,&

. If we note P ( T!OD ) =—Q ( T/OD ) =0 (1), and
(s/s0) =O(1) we find

O([Rf)=O
VBo

%COD=0 =10 (4.19)

Thus, in the ferromagnetic state of a metal, the ternpera-
ture dependence of a bulk modulus is dominated by that
of B,&

through [s(M)/sa]; [s(M)/sa] can change by
order unity in the ferromagnetic state. Consideration of
the effect of thermal expansion, the size of its contribu-
tion being the same as that of R, does not change the
above result.

Note that Eqs. (4.17)—(4.19) are valid in the paramag-
netic state too; there, however, unlike in the ferromagnet-

for the change in the phonon effect on volume at
T ((OD. For an Invar system, since generally
~
6 V~&(MD )/V~ = 10, if ~5M, /M; ~

= 10, we expect
~5b, V„&(MD)/V~ =10 . An isotope effect of this magni-
tude on volume may be observable.

One feature of recent theories on magneto volume
effect, and itinerant electron ferromagnetism in general,
is to require the presence of localized moments. We have
shown, however, that if we consider the effect of the
electron-phonon interaction, it is not necessary to have
such localized moments. In this respect it ~ould be very
interesting if we can decide experimentally whether local
moments are present or not in an itinerant electron fer-
rornagnet. Such experiments are now beginning to be
done. The conclusion, however, appears not to be
definitive yet.
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