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Measurements of magnetic susceptibility, electrical resistivity, thermoelectric power, and thermal
expansion have been made on CeNiIn single crystals with a hexagonal Fe2P-type structure. The re-
sults indicate that CeNiIn is a valence-Auctuating system with a significantly anisotropic Kondo
effect which comes from anisotropic c fmixing alo-ng the a and c axes. Specific-heat measurements
on a CeNiIn polycrystal sample reveal that the magnetic contribution divided by temperature C /T
takes a minimum around 20 K and reaches 60 mJ/K mole around T=2 K, which is still ten times
larger than that of LaNiln with no 4f electron

I. INTRODUCTION

In the course of our research on new Kondo com-
pounds, we have found that isostructural and isoelectron-
ic ternary compounds CeTIn with T=Ni, Pd, and Pt
display such interesting properties as Kondo lattice or'

valence-Auctuating states depending on the degree of
mixing of f electrons with the conduction band near the
Fermi surface. ' Our results, obtained using polycrystal
samples, can be summarized as follows.

CeNiIn is a valence-fluctuating system with Kondo-
like behavior; the magnetic scattering resistivity p ex-
hibits a broad peak around 100 K and a lnT dependence
above 120 K. The inverse susceptibility g ' shows a
weaker temperature variation than the Curie-Weiss be-
havior for free ions of Ce above 30 K, and the ther-
moelectric power 5 takes a huge but broad peak of 50
pV/K near 120 K, and an additional shoulder near 18
K.' CePdIn is an antiferromagnetic heavy-fermion sys-
tem with T&= 1.8 K and specific heat versus temperature
ratio C /T=700 mJ/mole K at 70 mK. ' CePtIn is a
nonmagnetic heavy-fermion system with C /T =500
mJ/mole K (Ref. 2) below 1.0 K, and shows no sign of
any phase transition at least down to 50 mK. All of
these compounds crystallize in a hexagonal Fe2P-type
structure with space group P62m. In such a low sym-
metric crystal, we can expect a huge anisotropy in mag-
netic, transport, and thermal properties. So, it is very im-
portant to study physical properties using single crystals
for the Cern systems.

In this paper, we present results of magnetic suscepti-
bility, electrical resistivity, thermoelectric power, and
thermal expansion measurements on the CeNiIn single

crystals. Specific heat has been also measured on CeNiIn
and LaNiIn polycrystal samples, and the electronic
specific-heat coeKcient y in CeNiIn was determined. In
addition, magnetic measurements on a NdNiIn single
crystal have been performed to obtain information on the
crystalline electric field (CEF) e5'ects in CeNiIn, since
NdNiIn has stable 4f electrons and is suitable for deter-
mining the CEF parameters in this system.

Polycrystal samples were prepared by arc melting the
constituent metals in a water-cooled copper hearth under
a Ti-gettered Aowing argon atmosphere. The ingots were
turned over and remelted several times to ensure homo-
geneity. Single crystals were grown by a Czochralski
method using a tnarc furnace.

II. RESULTS AND DISCUSSION

Temperature dependence of susceptibility measured
along the a and c axes is shown in Fig. 1 for the CeNiIn
single crystal. Both of the susceptibilities along the a and
c axes g, and g, indicate not only a weaker temperature
variation than the Curie-Weiss behavior for free ions of
Ce +, but also show anomalies around TM =120 K, sug-
gesting that CeNiIn is in a valence fluctuating state. The
susceptibility y, is larger than y, in all of the measured
temperature ranges. It is worth noting that this anisotro-
py cannot be accounted for by the CEF eA'ects, which will
be discussed later.

Electrical resistivity and thermoelectric power along
the a and c axes are shown in Figs. 2(a) and (b) as a func-
tion of temperature. The magnitude of the a-axis resis-
tivity p, is three times larger than that of p„which was
confirmed by repeating measurements of resistivity for
two or three diff'erent kinds of single crystals. It is no-
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FIG. 1. Susceptibility along the a and c axes as a function of
temperature for a CeNiIn single crystal. The dotted line
represents the Curie susceptibility expected from the free Ce'+
ion with one 4f electron.

ticed that p, exhibits a maximum around T~ and a InT
dependence in high-temperature ranges, whereas p, de-
creases with decreasing temperature without anomaly.
Such significantly di6'erent temperature dependences in-
dicate that the Kondo scattering occurs mainly in the c
plane. As is evident from Fig. 2(b), anisotropic behavior
is observable in the a- and c- axis thermoelectric powers
S, and S,. Both S, and 5, are positive in all of the mea-
sured temperature regions and show maxima of 36 pV/K
and 58 pV/K, respectively, around T~, where p, takes a
maximum. However, another shoulder appears around
40 K only in S, . The presence of a shoulder in S(T) has
been observed in nonmagnetic dense Kondo compounds
such as CeCu6 (Ref. 7) and CePd3 (Ref. 8).

In the thermal expansion along the a and c axes, aniso-
tropic behavior is also observed as shown in Fig. 3, where
b,L =L ( T) L(30—0 K) is plotted as a function of temper-
ature. The a axis shrinks remarkably with decreasing
temperature, and its thermal expansion coeKcient takes a
maximum around T~, while the c axis shrinks slightly
with decreasing temperature down to 120 K, below
which it starts to elongate. This behavior a1so suggests
the significant anisotropy in c fmixing in -CeNiIn, since
anomalous thermal expansion is thought to correlate
strong1y with valence-Auctuating states.

Magnetic measurements on a NdNiIn single crystal
have been carried out to obtain information on the CEF
e6'ects in CeNiIn. The magnetization curve and inverse
susceptibility measured along the a and c axes are shown
in Figs. 4(a) and (b). NdNiIn is a simple ferromagnet
with T, =20 K. The CEF efT'ects appear in the magneti-
zation curve at 4.2 K and paramagnetic susceptibility
along the a and c axes. In fact, the saturation magnetic
moment per Nd atom pNd deduced from I versus H
curves at 4.2 K is much smaller than that expected for
the Nd free ion, 3.2pz, although the effective number
of Bohr magnetons estimated from the Curie-Weiss law is
in good agreement with the Nd + free ion value 3.62pz.
The paramagnetic Curie temperatures along the a and c
axes are 0=4.0 K and 0,=9.0 K, respectively. Below
60 K, both y, ' and y, ' deviate from the Curie-Weiss
1aw, suggesting the importance of higher-order CEF
eff'ects.
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FIG. 2. (a) Electrical resistivity and (b) thermoelectric power
along the a and c axes as a function of temperature for CeNiIn
single crystals.

FIG. 3. Temperature dependence of thermal expansion along
the a and c axes for CeNiIn single crystals.
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FIG. 5. Temperature dependence of C/T for CeNiIn in the
temperature range between 1.8 and 80 K. The data for LaNiIn
are also shown by a solid line, for comparison.
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FIG. 4. (a) Magnetization and (b) inverse susceptibility along
the a and e axes as functions of magnetic field and temperature,
respectively, for a NdNiIn single crystal. The full lines
represent magnetization curves and temperature variations of
inverse susceptibilities calculated using B2 = —0. 17 K, B4
=2.6X10 K, B6=—6.8X10 K, B&=—3.4X10 K, and
k =7.8 mole/emu.

II =II, gps J,(II—+II ). '

Here, H, is the CEF Hamiltonian, H the applied magnet-
ic field, and H the molecular field. In a hexagonal lat-
tice, H, is represented by

H, =B202 +BO04 +B606 +B606,

where B„ is the CEF parameter and 0„ is the Steven's
operator. The molecular field H can be written
H =A,M, where A, is the molecular-field coefficient and
M the thermal average of magnetization which is given as
follows:

M=ggps J„exp( E„/kT)/Z . —

In order to determine the CEF parameters for NdNiIn,
we introduce the effective single-ion Hamiltonian, includ-
ing the CEF, molecular field, and applied magnetic field
as follows:

Here, Z is the partition function expressed by
Z=g„exp( E„/kT), J„—=(n ~J, ~n ), and E„ is the ei-

genvalue of the nth crystalline-field eigenfunction ~n ).
The CEF susceptibility pcE„without exchange interac-

tion along the i direction is given by

g Ps
+CEF X Z exp( E„/kT) g—(n

~ J, ~n )e—xp( E„/kT)/Z—
n

+2g pB (m ~J;~n ) (E E„) 'exp( E„—/kT)/Z— (4)

In the mean-field approximation, the effective susceptibil-
ity y, is expressed as

y'=y~cEF/( 1 —AXcEF) .

We determined the CEF parameters from a least-square
fitting of the data of M and g ' along the a and c axes for
NdNiIn. The best fit is obtained with the following pa-

rameters: Bz= —0. 17 K, B~=2.6X10 K, B6=—6.8
X 10 K, B6 = —3.4X10 K, and A, =7.8 mole/emu.
The calculated curves of M and y ' using these parame-
ters are drawn by solid lines in Figs. 4(a) and (b). The
fairly good fitting for both sets of the data suggest that
anisotropies in M and g for NdNiIn can be qualitative-
ly understood by the CEF effects. If we assume that Ce
in CeNiIn is a well-defined Ce state and the CEF in



39 ANISOTROPIC KONDO EFFECT IN A VALENCE-. . . 6843

CeNiIn is the same as in NdNiIn, then we can deduce the
CEF parameters for CeNiIn according to a scaling law as
Bz = —1.81 K, and B4=—0.82 K. These parameters
lead to y, )y, in all measured temperature ranges, which
is in contradiction to the experimental result, g, (y, . So
it is clear that the anisotropy observed in g along the a
and c axes for CeNiIn originates in the anisotropic cf-
mixing interactions rather than the CEF effects.

The ratio of specific heat to temperature C /T for
CeNiIn is shown in Fig. 5 as a function of temperature,
together with the data for nonmagnetic and isostructural
LaNiIn, which are drawn by a solid line. The specific
heat of LaNiIn below 11 K is well fitted with the sum of
the electronic contribution y T with y =9.1+0.2 mJ/K
mole and the phonon contribution PT with
P=0.64+0.05 mJ/K mole, from which the Debye tem-
perature of OD=209+4 K is obtained. The magnetic
contribution C is estimated by subtracting the specific
heat of the reference compound LaNiIn from that of
CeNiIn. As shown in Fig. 6, C /T takes a minimum
around 20 K, suggesting a spin-Auctuation contribution
at low temperatures, and reaches 60 mJ/K mole around
T=2 K. This value is one order of magnitude smaller
than the other isostructural and isoelectronic com-
pounds, CePdIn (Ref. 3) and CePtIn (Ref. 4), but it is
still one order larger than LaNiIn with no 4f electron.

In summary, all the results obtained on the single crys-
tals indicate that CeNiIn is a valence-fluctuating system
with significantly anisotropic Kondo anomalies on mag-
netic, transport, and thermal properties. The anisotropic
Kondo effect is thought to be due to anisotropic c fmix--
ing interactions along the a and c axes of the hexagonal
FezP-type structure. It is likely that the c fmixing is-

0.10

P4

0.05

Ce Niln

0
0 0 00 00

00 0 0 0
0 0 00

0 0 0
0

0
0

00 00

0
0000 00000

0

20
I

40
T( x)

60
I

80

FIG. 6. Temperature dependence of C /T for CeNiIn, ap-
proaching C /T=60 mJ/K mole around 2 K.
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strong for the Fermi surface perpendicular to the c axis,
while a substantial part of Fermi surface parallel to the c
axis has a weaker c fmixing. T-o understand the aniso-
tropic Kondo anomalies in CeNiIn, it is necessary to ob-
tain detailed information' on the electronic structure
near the Fermi surface.
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