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Using a new experimental technique, we have measured the fourth moment of the current distri-
bution in two-dimensional random resistor networks. The fourth moment is proportional to rela-
tive resistance fluctuations in a network of noisy resistors, and, until now, noise measurements pro-
vided the only experimental probe of this higher moment. We show that the fourth moment is sim-

ply related to the resistance change due to joule heating in a network of temperature-dependent
resistors. We report measurements on both square-lattice and random-void continuum networks,
fabricated by scribing computer-generated percolation patterns on sheets of aluminized Mylar.

I. INTRQDUCTIGN

Critical exponents describing the divergence of topo-
logical quantities at the percolation threshold are univer-
sal in the sense that they depend only on the dimensional-
ity of the system and not on system details. A topological
exponent, such the correlation length exponent, is not
sensitive to the lattice on which the percolation occurs
nor to the distinction between lattice and continuum sys-
tems. In contrast, exponents associated with the higher
moments of the current distribution in a random resistor
network are generally system dependent.

Rammal et al. ' and de Arcangelis et a/. have shown
that the current distribution in a percolating resistor net-
work is characterized by an infinite hierarchy of indepen-
dent exponents, each exponent associated with a di6'erent
moment of the current distribution. In general, the
higher moments are more dependent upon nonuniversal
aspects of system geometry. This dependence results
from the domination of the higher moments by the weak-
er links, whose exact distribution is sensitive to details of
the local geometry. The characterization of a system by
such a hierarchy of exponents has been termed multifrac-
tility.

Consider, for example, a random resistor network (Fig.
1) with total resistance R, earring a total current I, made
up of elements of resistance r carrying currents i . By
conservation of energy, we can write

R =(1/I ) pi r

critical concentration, and t is the conductivity exponent.
It is the second moment of the current distribution which
contains the divergence at p, and the exponent t. Simi-
larly, in networks of noisy resistors, one can show that
measurements of resistance noise probe the fourth mo-
ment of the current distribution. ' The relative resistance
noise in such a network diverges near the percolation
threshold with a nonuniversal exponent ~ as

(aR') yR'=(p —p, )- .

This divergence of the resistance noise near p, has been

seen in a number of measurements of 1lf noise in per-
colating metal-insulator systems and may be under-

stood intuitively as follows. Far above the percolation
threshold, there exist many current paths in parallel.

and we observe that resistance measurements probe the
second moment of the current distribution. Near the per-
colation threshold, the resistance obeys a power law,
R = (p —p, ) ', where p is the concentratipn, p, ia the FIG. 1. Discrete random resistor network.
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Each current path is noisy, but since the noise on
different paths is uncorrelated, the Quctuations tend to
average out. Closer to threshold, only a few paths carry
the current, the averaging is less complete, and the rela-
tive resistance noise is larger. In a finite discrete net-
work, the divergence is cut off by finite-size effects. The
relative resistance noise of the system cannot exceed that
of a single element and, in fact, it saturates at a lower lev-
el. '

Recently, the transport properties of random-void (or
"Swiss-cheese") continuum systems has been a subject of
active investigation. ' A random-void system consists of
a uniform metallic medium randomly peppered with in-
sulating voids. In general, the values of the exponents t
and ~ are sensitive to the distribution of constrictions be-
tween voids, which in turn depends on the shape of the
voids. An exception to this rule is the exponent t in two
dimensions (2D), which happens not to depend on the
void shape and has the same value" (r = l. 30+0.01) as in
lattice systems. However, the noise exponent ~, which
probes a higher moment, is extremely sensitive to details
of the geometry. Both analytic arguments and numerical
simulations' ' yield ~=1.12+0.02 for 2D discrete lat-
tice networks and 4. 12 & ~ & 5.02 for the 2D random-void
system with circular voids.

Attempts to determine K in 2D random-void systems
by measuring 1/f noise in discontinuous metal films yield
a wide range of values. Koch et al. report ~=2.6+0.2
in ion-milled gold films. Garfunkel and Weissman mea-
sure &=7.8 —9. 1 in sandblasted aluminum, indium, and
chromium films. Garfunkel and Weissman argue, howev-
er, that inhomogeneities in their samples result in an
artificially high value of v, and that, after an appropriate
correction, their best value is ~=5. Octavio et al. re-
port ~=2.7+0.3 in ion-milled silver films. While all of
these experiments yielded values of ~ significantly higher
than the lattice value, detailed interpretation of the re-
sults is hampered by the poorly known morphology of
the sample films.

In this paper we present measurements of the fourth
moment of the current distribution in 2D random resistor
networks. Using a new technique, which involves the
thermal response of the network to an external current,
we determine the fourth moment directly, without the
need for a measurement of resistance noise. Our 2D
resistor networks consist of sheets of aluminized mylar on
which are scribed computer-generated percolation
patterns —both lattice and random-void continuum pat-
terns. Because the patterns are computer generated, the
sample morphology is well characterized.

We emphasize that this new technique allows measure-
ment of the fourth moment of the current distribution in
a system in which a measurement of resistance noise is
impossible. Our samples are so large that 1/f noise
(which scales inversely as sample volume) is unmeasur-
ably small, being orders of magnitude smaller than the
Johnson noise in the system at practicable current levels.

This paper is organized as follows. In Sec. II we show
that the fourth moment of the current distribution in a
network of temperature-dependent resistors can be de-
duced from measurements of system's resistance change

arising from joule heating. In Sec. III and the Appendix,
we describe our samples and the ac bridge circuit that
measures thermally induced resistance oscillations. Also
in Sec. III, we calculate the amplitude of the temperature
and resistance oscillations for a particularly simple
geometry —a rectangular sheet —and compare the calcu-
lation with measurements. Our data on random net-
works, both lattice and continuum, and comparisons with
theory are presented in Sec. IV, along with a discussion
of finite-size effects. Finally, in Sec. V, we describe some
unusual features of the square-hole random-void continu-
um system, which was chosen for experimental conveni-
ence. We argue that unusual fluctuation effects in this
system may make the critical regime experimentally inac-
cessible.

II. THEORY OF THERMAL RESPONSE

The mean total resistance of the entire network (as mea-
sured either between two nodes in the network or, as in
Fig. 1, between two borders) is R. The network carries a
total current I with i defined as the current in element
CX.

By Tellegen's theorem, ' the relative resistance noise
S~ = ( 5R ) /R is given by

g i'(5r' )

R2 g i2r

If all of the elementary resistors r have the same mean
resistance r and the same noise (5r ), then Eq. (1) fac-
tors as

y &4

a

gi2 2

a

(2)

The first factor (5r )/r is the relative resistance noise
of each (identical) element and depends on the micro-
scopic mechanism of resistance noise generation in the
system under consideration. The second term, which is

Here we show how resistance changes arising from
joule heating in a random resistor network are related to
the fourth moment of the current distribution. The con-
nection between thermal response and resistance Auctua-
tions was first recognized by Weissman and Dollinger. '

Resistance noise and the fourth moment are dominated
by the system's weak links through which much of the
sample current is channeled. These same weak links
dominate the system's thermal response, since joule heat-
ing is greatest there.

Consider again the random discrete resistor network
shown in Fig. 1. Each network element a has a mean
resistance r and a resistance noise (5r ), the angle
brackets ( ) indicating a time average within some band-
width in frequency space. Resistance fluctuations of
different elements are assumed to be uncorrelated, i.e.,

(5r.5r, ) =5.,(5r'. ) .
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purely geometrical, contains the divergence at p, and the
exponent ~:

~ 4la

z. 2 -(p —p, ) ', p near p, .
la

We can argue similarly for the Swiss-cheese continuum
case. The irregularly shaped conducting paths in the
Swiss-cheese system can be regarded as consisting of a
fine mesh of identical, discrete resistors. In the limit that
the mesh size is very small compared to the size of the
holes in the system, the continuum system is accurately
modeled by a discrete lattice network. Equation (1), now
applied to this fine grid of resistors, again factors as in
Eq. (2). More generally, all arguments made below refer-
ring to discrete resistor networks apply equally well to
continuum systems.

Note that expression (2) for the relative resistance noise
has the form of the inverse participation ratio. For an
L XL resistor network, with fill fraction p =1 and carry-
ing a total current I, i is either I/L or 0 according to
whether the bond a is parallel or perpendicular to the
current Aow. In this case,

gi =[(L /2)(I/L) ]/[(L /2)(I/L) ]
a

=1/(L'/2) .

In the extreme case that a single element dominates the
sums in (2), we would have

yi4

shift P depend on the details of the thermal response of
the resistor network; i.e., the thermal coupling between
the resistors and their environment, their heat capacity,
etc.

At this point, we make the crucial assumption that
b T is proportional to the local power generation and
write

b, T =i~r h( to), (6)

Ar =Pr hT =Pi r h(co) .

Here,

P=(1/r )(dr /dT)

is the temperature coeKcient of resistance, assumed equal
for all resistors e.

The network resistance R =R ( r ) consequently oscil-
lates at f=2' with amplitude

hR= g brM
ra

(9)

We now invoke Cohen's theorem" which states that
BR/dr =i /I . This theorem and Eqs. (8) and (9) lead
to

where h(co) is some function of frequency but not of a.
We will argue below that this assumption is valid for our
experimental system.

From Eqs. (5) and (6), r can be written

r =r o+b.r cos(2tot+P),

with

This would occur in a system with a single narrow con-
stric, tion through which all the sample current is fun-
neled. In general,

l afa
i r cos (tot)= [I+cos(2tot)] . (4)

Assuming linear response, the ac component of this
power at frequency f=2' causes temperature oscilla-
tions at f=2' of amplitude b, T . In the steady state, the
temperature of element a can be written as

T = T o+ b, T cos(2cot +P),
where P is the phase shift between power and tempera-
ture oscillations. Both the amplitude AT and phase

gi = 1/N,
a

where N is the number of bonds which contribute
significantly to the total noise.

Consider now a resistor network carrying an ac current
I=Iocos(tot) with each element a carrying a current
i cos(cot). Assuming that the resistors have a positive
temperature coefficient of resistance, joule heating will in-
crease both the temperature and the resistance of each
current-carrying element. The power dissipated in resis-
tor r is

Ph(to) ~ .4 2 Ph(co)r
I~ ~ a a I2a a

(10)

(In the last step we have once again assumed r =r for all
a.)

We conclude that the amplitude of the resistance oscil-
lation at frequency Zm, resulting from an ac current at
frequency co, is proportional to the fourth moment of the
current distribution. This conclusion is valid for both
discrete and continuum systems so long as the amplitude
of the local temperature oscillation is proportional to the
amplitude of the local joule power generated.

III. EXPERIMENT

Our experimental system is a sheet of aluminized My-
lar plastic, ' 0.005 in. thick, covered with a uniform 500-
A aluminum film. The sheet resistance of the film is ap-
proximately 2 0/ and varies by less than O. l%%uo over a
30X30 cm sample.

Using a technique described previously, ' we use a
"hot needle" to scribe a percolating pattern in the film
with a computer-controlled digital plotter. When the hot
needle draws a square, the interior of the square is electri-
cally disconnected from the exterior. As far as current
Aow is concerned, it is as if a hole were punched in the
sheet. Two types of patterns were studied: a square-
lattice pattern and a random-void continuum system con-
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sisting of square holes with parallel-oriented edges as
shown in Fig. 2. Typically, the lattice size was 100X 100
and the sample resistance varied from =2 0 for an un-
broken sheet to =200 0 for patterns near the percolation
threshold.

The square holes of the square-lattice samples touch at
the corners. As shown in Fig. 2, corner contact between
square holes is guaranteed by short diagonal cuts added
at the corners where the squares touch. The uncut sites
thus form a percolating network with first-nearest-
neighbor contact only. The program that generates the
square-lattice pattern selects new sites at random but
does not repeat previously drawn sites. In the continuum
case, square sites are located at random with no underly-
ing background lattice, independently of previously
drawn sites. The sites are thus freely interpenetrating.

This aluminized Mylar technique was used previously
to study the conductivity of square-lattice and random-
void continuum systems. ' The measured conductivity
exponent and critical concentration for the lattice system
agreed very well with the results known from Monte Car-
lo studies, and, to within experimental uncertainties, the
conductivity exponents for the lattice and continuum sys-
tems were identical, as predicted by theory. '

We made several unsuccessful attempts to cut circular
holes in order to study the true "Swiss-cheese" continu-
um case which has been well studied theoretically. ' Two
difhculties were encountered which made this impossible.
The first problem was that the digital plotter could only
make straight lines, and so approximated circles with
many-sided polygons. The drawing of such polygons was
both considerably slower and mechanically less perfect
than the drawing of squares, resulting in poorly defined
sample geometries. A second experimental problem,
which was never clearly resolved, was that round-hole
patterns exhibited a puzzling frequency-dependent
thermal response. As explained below, the amplitude of
the joule-heating-induced resistance oscillation should
scale with frequency co of the ac current as (1/co)' . In-

stead, we frequently saw a (1/co)' ' dependence,
leading to ambiguous results.

As the percolating pattern is cut by the plotter, the
fourth moment of the current distribution is measured
with the bridge circuit shown in Figs. 3 and 8, and de-
scribed in the Appendix. The circuit is similar to the ac
double Kelvin bridge often used in cryogenic ther-
mometry' and resembles a circuit used recently to inves-
tigate the thermal response of glasses. '

In this circuit, an ac current at frequency cu(to=35 Hz)
excites a voltage response at frequency 3'. As described
in Sec. II, with a sample current I=Iocos(cot ), joule heat-
ing causes the sample's resistance to oscillate at 2m:

R =R0+ bR cos(2cot +P) .

Typically, AR &&Ro. The sample voltage is thus

V=IR =IORocos(cot )+—,'IDLER cos(3cot+P) . (12)

This result follows from Eq. (10) and the conservation of
energy relation

I R=+i r =rgi

[The difference frequency term, ,'IobR c—os(cot+/), is

overwhelmed by the large IOR 0 term and is ignored. ]
The voltage in Eq. (12) consists of a large component

(typically =0. 1 —1 V) at frequency co and a small com-
ponent ( = 1 —100 pV) at frequency 3'. As shown in the
Appendix, when the bridge is balanced, the large ~ com-
ponent is nulled, and the remaining 3' component at the
bridge output has amplitude V& = ,'IDLER (an —extra fac-
tor of —, is introduced by the bridge circuitry).

The quantity we seek, g i /( g i ), is related to the
3' component V3„, the amplitude of the sample current
Io, and the sample resistance R, by

4

Sg ~ '2 2 I+32 13

(Again, we take r = r for all a.)
A few comments on the bridge circuit are in order.

p.R == tV" ""~L-., @El
)~ czpF . . . 8 7 ~" rr

sync
out

balance

1kQ
10k')

l
I
I
I
I

sample ',

1

I
I
I
I
I

'VV'
10kQ

ref

FIG. 2. Scale reproductions of percolation patterns that were
scribed on aluminized Mylar sheets. The square-lattice pattern
is on the left and the random-void continuum pattern with

square holes is-on the right. Both patterns are shown at the
critical hole concentration.

3 x)
frequency tripler

FIG. 3. Bridge circuit.
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I R
cos (cot ) =j[1+cos(2cot )], (14)

The bridge arrangement relaxes the requirement for ex-
treme spectral purity in the signal source. Any 3' com-
ponent from the source appears across both arms of the
bridge and, like the co component, is balanced out. Only
the 3' signal arising from joule heating unbalances the
bridge and produces a signal at the output.

The signal source is 10-W audio amplifier driven by a
frequency synthesizer operated at a frequency of about 35
Hz. To achieve a bridge balance of 1 part in 10, the
capacitive component of the sample plus leads ( (0.1pF)
is nulled with a variable capacitor in parallel with the bal-
ance resistor. The 1-kQ resistors in Fig. 3 are large com-
pared to the contact resistances to the sample, thus
ensuring that the same current Bows in sample and bal-
ance resistor and that negligible current flows along the
voltage leads. The 10-kQ resistors are large compared to
the sample resistance so that most of the source current
fiows through the balance resistor and sample. The fre-
quency tripler uses a phase-locked loop circuit. '

As shown in Fig. 3, the bridge output must be trans-
former coupled to the lock-in in order to eliminate the
large common-mode signal which would saturate the
lock-in input. Care was taken to ensure that the source
impedance is such that the transformer provides a Aat
transfer ratio over the frequency range of interest. The
output impedance of the bridge in Fig. 3 is 5500 Q. With
this source impedance, our transformer, a G-10 Triad
Geoformer, provides Bat gain from 5 Hz to more than 1

kHz.
We turn now to a calculation of the magnitude of the

resistance oscillation in our aluminized Mylar sheets.
The thin aluminum film on the thick Mylar sheet may be
modeled as a 2D heat source on a semi-infinite substrate
with the substrate characterized by a thermal conductivi-
ty ~ and a heat capacity per unit volume c, . The alumi-

0
num film is so thin (=500 A) that its heat capacity is
negligible. Consider a film of length L„width 8', and
negligible thickness, carrying a current I cos(cot) along
its length. The film, at z=0, rests on a thick substrate
which fills the half-space z )0. The power /unit area gen-
erated in the film is

tions by m. /4. So long as 5 is small compared to L, W,
and the thickness of the substrate, edge effects can be
neglected and our 1D analysis is valid. At frequency
f=35 Hz, where much of our data was obtained,
5=20 pm. The thickness of the Mylar sheet is 0.005 in.
=130 pm, which is sufficiently large compared to 5 to
approximate a semi-infinite substrate with negligible er-
ror.

The resistance oscillation of the film resulting from the
temperature oscillation of amplitude 6T is

bR PRb, T= I R P 1

2(2Kc, )' ' LlV co' ' (16)

I R P 1

g(2KC„)1/2 Lg ~1/2

I Rz 13L 1 . (17)
g( 2KC„) W

Figure 4 is a plot of V3 /I versus frequency for a rec-
tangular sample. Our measurements of V3„ in rectangu-
lar samples show the dependence on I, I., 8', and co ex-
pected from Eq. (17), as well as the m/4 phase shift be-
tween power and resistance oscillations. In particular,
the 1/(co)'/ frequency dependence is clearly seen in Fig.
4. However, the measured magnitude of V3„ is about
50% smaller than that predicted by Eq. (17) using litera-
ture values for ~ and c, of Mylar and our measured value
of P. The reason for this discrepancy is not clear, but
may be due to inaccurate values for v and c, .

The results of this 1D analysis can only be applied to
our percolation patterns if all geometrical length scales in
the patterns are large compared to the thermal penetra-
tion depth 5. However, occasional narrow necks which
arise in the random-void patterns may have widths com-
parable to or smaller than 5. If such necks contribute
significantly to the fourth moment of the current distri-
bution, the 1D analysis given above is invalid, and one
would not see a co

' frequency dependence in V3 . The

The measured value of P, the temperature coefficient of
resistance, for our aluminum film samples is 0.0017 K
As shown in the Appendix, the 3' component of the
voltage at the output of the bridge has amplitude
V3„=ID,R /4, which becomes, using Eq. (16)

T(z, f)=ATe ' cos 2cot ——+—
4

j I R 1

(2COKC )1/2 (2LW) (2&KC„)1/2

(15)

Here, 5=[K/(roc„)]' is the thermal penetration depth.
At z=0, the temperature oscillations lag power oscilla-

where R =R ~L /8' is the film resistance and

j=I R /(2LS') is the average power/unit area dissipat-
ed.

Neglecting edge effects and the heat capacity of the
thin film, we solve the 1D heat-ffow equation with the
boundary condition that the heat Aux at the surface z =0
is given by (14). The time-dependent part of the solution
is a damped temperature wave'

1.0 ~

0
.0

Theory0
Experiment

Q

0
0

o

C9

3
0.1-

I

100
~ I

100010

frequency(Hz)

FIG. 4. V3 /I vs frequency for a simple rectangular sample
(no voids).
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co ' behavior was observed in all our square-hole
random-void patterns at all fill fractions. We take this as
strong evidence that the rare narrow necks with widths
less than 5 do not affect our results. Extremely narrow
necks are not expected to contribute significantly to the
fourth moment because such necks have very high resis-
tance and so the current through them is squeezed off.
The failure of round-hole random-void patterns to exhibit
the ~ ' frequency dependence may well be due to the
importance of narrow necks and the consequent break-
down of our assumptions in that case.

3
100 .—

0

0
Lattice

10

1000
F3
CQ Continuum.
lX 0

0

IV. EXPERIMENTAL RESULTS

—Na / A (18)

where a is the area of an individual void and A is the
sample area. [We note that Eq. (18) holds regardless of
the shape of the void if the void positions are uncorrelat-
ed.] From previous measurements, ' the square-void
continuum system has a critical void fraction of
f, =0.61+0.01.

Figure 6 is a semilog plot of V3 /(R I ) versus metal
area fraction p. The data shown are the averages of the

F3
M
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p 0 p Qp ~pp CoatiDu um

ooo ~
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a s saL'p

. o o o~g, ,

10; II

Lattic

I

1
0.01 0.10

(fc —f)/f

1.00

FIG. 5. Log-log plot of the noise parameter V, /(R I') vs
the hole concentration parameter (f, f )/f, for square lattice-
and square-void continuum cases. f is the area fraction of insu-
lator,

Figure 5 is a log-log plot of the noise parameter
V3„/(R I ) versus the hole concentration parameter
(f, f)/f, for—both the lattice and square-void continu-
um cases. f is the area fraction of insulator and f, is the
critical area fraction. [(f, f) If, = (p——p, )I( 1 —p, ),
where p is the metal area fraction. ] Displayed in the
figure are data from five trials of a 100X 100 lattice and
three trials of the continuum case for samples of size
L /c = 100, where L is the sample edge length and c is the
hole edge length.

For the lattice case, f

ccrc

where % is the number of
square holes cut and f, is known from Monte Carlo stud-
ies (f, ~,«,„-0.40723). For the continuum case, f and
Tare related by '

1
0.4 0.5 0.6 0.7 0.8 0.9 1.0

concentration p = 1 —f

FIG. 6. Semi-log plot of "noise" vs concentration p for
square-lattice and continuum systems. p is the metal area frac-
tion; f is the insulator area fraction.

tria1s displayed in Fig. 5. Note that the two curves, lat-
tice and continuum, coalesce in the dilute regime at
p &0.7. The corresponding data sets in Fig. 5 do not ap-
pear to overlap at high p (low f) because f, is different
for ihe two systems.

Because of finite-size effects in our small systems, it is
very difficult to extract reliable values for the noise ex-
ponent v. In a finite-sized system, critical power-law be-
havior is obeyed over a possibly narrow range in concen-
tration p, bounded by finite-size effects close to the criti-
cal concentration p, and by corrections to scaling away
from p, . We have fit the data in Fig. 5 to a power law

V3 I(R'I') ~(f, f)—
over the range bounded by the conditions (f, f)/—
f, =0.3 and g=L/2 (shown as dashed vertical line in
Fig. 5). g' is the correlation length for the lattice case
and L is the size of system. In units of the lattice con-
stant, L =100 and g is taken to be [f,/(f, —f)] . A
least-squares fit over this somewhat arbitrarily chosen
window yields

and

In each case, the assigned uncertainty is twice the stan-
dard deviation of the mean.

For the square lattice case, ~ has been established with
high confidence by Monte Carlo simulations' and has
been set at ~=1.12+0.02. In addition, analytic argu-
ments provide rigorous upper and lower bounds on ~:
1.08 & ~ & 1.37. The discrepancy between our estimate of
v and the value predicted by theory indicates that our
system is not large enough to provide an adequate scaling
regime.
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As outlined in Sec. V, the calculation of ~ for the case
of continuum square voids is quite delicate, with unusual
Auctuation effects predicted. With the caveats described
belo~, the predicted value is K=3.4+0.3, higher than
our measured value. Again, we take the discrepancy to
mean that our system is too small to observe undistorted
critical behavior.

As seen in Fig. 5, finite-size effects cut off the noise
divergence close to f, . Rammal et al. ' predict that near

f, for g))L, the relative resistance noise Sz (p) will satu-
rate at

SR(p)/SR(p =1)-L
where v is the correlation exponent (v= —', in 2D). Taking
~= 1. 1 for the lattice case and I = 100, our lattice noise is
expected to saturate at 100"'~' '=50, approximately
the observed value. The continuum case, with a higher ~,
is expected to saturate at a higher value, as observed in
our data; however, the peculiar nature of the square-void
system (see Sec. V) makes a quantitative prediction
difficult.

V. DISCUSSION AND SUMMARY

In continuum percolation the exponent for the diver-
gence of the noise magnitude near the percolation thresh-
old deviates from the standard lattice value ~=1.12 be-
cause near p, small, noisy necks are forced to carry
current. This deviation depends on both the distribution
of resistances of narrow necks in the continuum conduc-
tor and on the scaling of the noise magnitude in a neck
with its resistance. Both of these factors are highly
nonuniversal in that they depend on the details of the
percolation geometry. In the case of 2D random-void
geometry with circular holes, convincing arguments in-
dicate 4. 12 &~ & 5.02. We shall see that when the circu-
lar holes are replaced with squares, the same value of ~ is
predicted, but with some peculiar statistical effects which
are expected to reduce the value of ~ observed in small or
moderately sized systems. These unusual effects are due
to the importance of rare small necks.

Unlike nearby circles, whose spacing is described by a
single length, two nearby squares (with the same orienta-
tion) must be characterized both by their separation a
and their overlap length b as shown in Fig. 7. As a result,
there is no simple scaling of noise with neck resistance,
since different shaped necks can have the same resistance.
This feature will lead to the complications described here.

Letting both the sheet resistance and the edge length of
a square be unity, the resistance formed by the neck is
r =(b la )+(4/ir)ln(1/a), where the first term is the ob-
vious internal neck resistance and second is approximate-
ly the spreading resistance required to squeeze the field
lines into the channel. We are not attempting here to
keep dimensionless factors which do not affect the quali-
tative conclusion. By arguments given previously, such
a neck will carry about the typical neck current so long
as r (r, where r is somewhere between the typical
node-to-node resistance and the node-to-node resistance
of the singly connected links alone. Thus r scales as

FIG. 7. Square-void geometry.

where 1(w &t=1.30. For r &r, the current through
the neck is inversely proportional to r, so that such weak
links are relatively unimportant.

Using the standard assumption that the fractional
resistance fIuctuations are inversely proportional to area,
we find that the leading term in (5r ) should be b/a .
The average link noise then increases as 6 goes to zero as

b =ar
1 1f f db da= f (r ——1)da

b&a a am a

= ( r —1)ln(1/a ),
where a is the width for which the spreading resistance
alone is r, ln(1/a )=r . We have neglected necks
with b (a, which makes a less divergent contribution.
The leading term of the integral is

r ln(1/a ) = r

which scales as 6 . Thus the correction to ~ from con-
tinuum effects is 3m =3.45+0.45, as for circles. Howev-
er, the path to this ordinary-seeming critical exponent is
peculiar, since it includes an exponentially small cutoff in
the neck width together with a logarithmic dependence
on that cutoff.

The peculiarity of the square-continuum problem be-
comes even clearer when we look at the divergence of the
eighth moment of the current distribution, which appears
in the sample-to-sample variation of the noise magnitude.
In this case the integrand must be replaced by (b/a ),
and the leading term of the integral becomes r exp(m. r ).
This diverges faster than any power law, and thus cannot
be characterized by any critical exponent. We believe
that such a result for a current density moment in a sim-
ple percolation problem has not previously been antici-
pated. In this problem, exponentia1 divergences occur for
all current moments higher than the fourth.

Two experimentally important consequences emerge.
The first is that one of the factors of 6 in the continu-
um correction results from exponentially improbable
necks, and thus is unlikely to be found often in smallish
experiments or simulations. Thus the expected observed
~ is about 1.12+2m =3.4+0.3. The second conclusion is
more troubling. When the variance in a quantity
diverges much faster than the square of the quantity, the
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critical region cannot be approached too closely in any
finite sample. The measurement of a true ~ for square-
hole-continuum percolation may be intrinsically nearly
impossible, since it would seem to require exponentially
large averaging areas.

One other unusual feature of square voids, which does
not seem to a8ect our conclusions, is that the current
density around an isolated square diverges near the
corners. The current density at a distance p from a right
angle corner diverges as p

'~ (Ref. 24). The resulting
fourth moment of the current density does not diverge,
however. Hence, the sharp corner makes a finite contri-
bution to the noise.

In summary, using a new experimental technique, we
have measured the fourth moment of the current distri-
bution in a 2D resistor network. Previously, resistance
noise measurements provided the only experimental
probe of this higher moment, and as a consequence, only
resistor networks with suitably high 1/f resistance noise
could be probed. Our technique relies on the thermal
response of the network to an external ac current and
gives a direct measure of the fourth moment even in a
noiseless system. We have measured the fourth moment
in 2D square-lattice and random-void continuum resistor
networks fabricated by scribing computer-generated per-
colation patterns on aluminized Mylar sheets. As pre-
dicted by theory, we find that the random-void system
has a higher fourth moment (higher "noise") than the lat-
tice system near the percolation threshold. Although our
results are in qualitative agreement with theory, our mea-
sured values of the noise exponent sc fall outside the
bounds provided by numerical and analytical calcula-
tions, a discrepancy we tentatively attribute to finite-size
e6ects.
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APPENDIX: OPERATION OF BRIDGE CIRCUIT

A schematic of the bridge circuit is shown in Fig. 8.
The sample resistance is Rz, and R~ is an adjustable bal-
ance resistance. Current leads on the sample have con-

V

R B

R,

)R, v

FIG. 8. Bridge circuit operation.

tact resistances ri and r2, while the voltage leads have
contact resistances r3 and r4. We assume Ri ))r& so
that negligible current Rows through the R, -R, -r3 chain
and nearly the same current I Aows through Rz, r „and
Rz. We also assume R, )&r3 and R2)&&4. Finally, we
assume R2 »R~, R& so that most of the current from the
source Bows through the sample (we want Iz ((I). Note
that the current through r2 is I+I2. The voltages V~
and V~ at the outputs are then

VA =(I+I2)r, +IRs+ ,'Ir, , —

V~ =(I+I2)r2+ ,'I(Rs+ri+—Ra)

The output of the bridge is then

V„—V~ =
—,'I(Rs —R~ ) .

(A2)

(A3)

When the bridge is balanced, the sample resistance
may be written as

Rs=Rtt+AR cos(2cot+P), (A4)

= —,'IobR c s(3ot+cot)+t' I&bR cos(tot+/—) .

(AS)

where, as explained in Sec. II, the ac part of the sample
resistance is due to joule heating. Writing the sample
current as I=Iocos(cot ), we have from (A3) and (A4),

V„—V~ =
—,'Iocos(tot ) X AR cos(2cot+P)
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