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We expand the long-wavelength action of two-dimensional quantum Heisenberg antiferromagnets
on a triangular lattice around the Neel-ordered classical ground state and map it onto a nonlinear o.

model, where the field is an SO(3) element, describing the local orientation of the magnetizations on
the three sublattices. No topological information on the microscopic value of the spin S is seen to
subsist in the mapping, although some nontrivial third-order terms are found.

I. INTRODUCTION

Many authors' have recently shown that the long
wavelength action of two-dimensional (2D)-quantum an-
tiferromagnets does not contain any topological contribu-
tion able to distinguish between microscopically different
values of the spin S. One may ask whether this con-
clusion is generic in two dimensions to any approach to
the problem from the ordered phase side, or whether it
depends on the lattice to which the antiferromagnet is at-
tached. In order to shed some light on this question and

- to complete our previous study of the square lattice (Ref.
4, hereafter referred as I), we investigate in this paper the
case of the triangular lattice.

The reason for this particular choice is twofold. First
of all, since the classical ground state in this case has
three sublattices with noncollinear spins, the local order
parameter is no more a unit vector n but rather a rotation
matrix R defining the local orientation of the three spins.
It seemed to us interesting to work out the details of the
mapping in this new situation. Second, the resonating
valence bond (RVB) picture was originally proposed for
the triangular lattice, because of its nonbipartite struc-
ture, implying frustrated Heisenberg antiferromagnetic
interactions. Recently, interesting analogies to the quan-
tum Hall efFect have been put forward and used to con-
struct RVB-type wave functions. The nature of the
ground state on a triangular lattice is at present far more
controversial than on the square lattice, although some
recent variational calculations seem to favor the existence
of long-range order even in the former case. In view of
all this, the triangular lattice appears to offer the best
chances of finding some exotic physics.

We present in this work an expression of the Lagrang-
ian density containing second- and third-order terms in
derivatives of the order parameter. The second-order
terms give access to the spin-wave spectrum at long
wavelength. We find two different spin-wave velocities in
or out of the plane spanned by the three sublattice mag-
netizations in equilibrium. We obtain nontrivial third-
order terms describing nonlinear coupling s between
spin-waves. One of them has the property of remaining
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imaginary in Euclidean space but unfortunately, it does
not correspond to the topological invariant quantizing
n 2(SO(3 ) )=Z.

The paper is organized as follows: first we discuss the
nature of the order parameter for a triangular antifer-
romagnet and the correspondent hornotopy groups,
which are relevant to our problem. We then show how to
parametrize iong-wavelength and low-energy Auctuations
around the ordered phase, following the same line of
thought as Haldane in his treatment of the spin chain.
In Sec. III we present our calculation of the action to
second order, putting a large emphasis on the kinetic
term, known to be responsible for the interesting topolog-
ical efFects in the previously studied cases. In Sec. IV we .

brieAy quote our results for the third-order corrections to
the Lagrangian density.

II. TOPOLOGICAL CONSIDERATIONS
AND PARAMETRIZATION

OF THE LOW-ENERGY FLUCTUATIONS

The classical ground state of the triangular antifer-
romagnet has three sublattices 1,2,3 with spins on each
sublattice at an angle of 2m. /3 to those on the other two
sublattices. The lattice can be divided in upright triangu-
lar plaquettes, having the site l as upper vertex (see Fig.
l). To fix a reference ordered state, we take the three
spins on such a triangular plaquette to be directed along
the vectors ni, n2, n3 defined by (Fig. 2)

FIG. 1. The partition of the triangular lattice in triangular
plaquettes.
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FIG. 2. Orientation of the spins on a triangular plaquette.

n, =(0, 1,0), ni=(&3/2, —
—,', 0), n&=( —V'3/2, —

—,', 0).

Other degenerate ground states are trivally deduced from
our particular choice by a global orthogonal transforma-
tion S;=SRn;, where R satisfies R'R ='RR =1.

In a smooth spatial configuration of R, we note that we
may restrict ourselves to R E'SO(3) since if detR =1 at
some point, it has to be every~here so by continuity.
Therefore we shall assume in the following our parameter
space to be SO(3). Since SO(3) =SU(2)/Z2, we have the
following homotopy groups

ni(SO(3))=Z2, m~(SO(3))=0, m3(SO(3))=Z .

m, =z2 implies the existence of topologically nontrivial
vortices (or singular point defects in two dimensions) hav-
ing a 2' circulation (4nvortic. es are trivial). However
these objects have a singular core and are beyond our ap-
proach, which in essence applies to continuous
configurations of the order parameter. +2=0 shows that
there are no "skyrmions" in this case, unlike in the O(3)-
nonlinear o model adequate for bipartite lattices (order
parameter given by a unit vector n }. Finally, from
m3=Z, we see that there exist topologically distinct
configurations of a SO(3)-matrix field in (2+ 1)-space-time
dimensions. They are classified by the topological invari-
ant"

q =1/(24m. )Jdx dy dt e"

Xrr[(R -'a„R)(R -'a~)(R '8 R)],
(3)

which assumes integer values for any continuous
R (x,y, t) tending to a constant at infinity. In contrast to
the Hopf invariant, q is not related to linking properties
of curves and the presence of a term Oq in the action
would not mean nontrivial 0 statistics for any particular
topological defect. But the ground-state properties of the
triangular quantum antiferromagnet would certainly de-
pend on the value of 0 if q was there.

To answer this question, we need to derive microscopi-
cally an expression for the action of the triangular anti-

S; =SR (n;+a [L—(L n;)n;]) (6)

and thus, the net magnetization on a triangular plaquette
is given by

Si+S2+S3=-3aSR (TL),
where the tensor T is defined by T

&
=o & 3(g, n; n;&)——

(with our particular choice of the n;, 2T„„=2T
=T„=1, T; =0 otherwise). It will not come as a
surprise that this vector TL plays an important role in
the following.

We are now ready to proceed to the expansion of the
action along the path outlined in I. It turns out that the
calculations are greatly simplified by defining the fields L
and R on each site rather than on groups of three sites,
although the physical meaning of these fields become
then less obvious. We checked that the results we ob-
tained, using each 0f the definitions were equivalent, up
to a canonical transformation of the fields. The main ad-
vantage of the second choice is to keep more transparent
the underlying symmetries of the lattice, avoiding the
somewhat arbitrary partition of the lattice in triangular
plaquettes.

III. THE CALCULATION OF THE ACTION
TO SECOND ORDER

With the notations of I, the action we wish to estimate
reads

ferromagnet including third-order derivatives of R. For
this purpose, we write the three spins of a particular tri-
angular plaquette as

S; =SR (n;+aL)/(1+2an; L+a L )'~

i =(1,2, 3) . (4)

In this formula the n, are the three unit vectors previous-
ly introduced, a is the nearest-neighbor distance. R is a
rotation matrix, L a vector, both of them defined on each
triangular plaquette. R and L together give us six de-
grees of freedom (three from R and three from L), which
is what we need to describe an arbitrary position of three
spins. In the following we shall assume that R and L are
slowly varying fields with furthermore aL ((1.

It may be worth commenting here upon what we are
doing. The motion of the three spins attached to a same
plaquette is supposed to be primarily a rigid rotation, de-
scribed by R. By adding L, we allow for some small de-
formation of the triad S&,Sz, S3. Finally, the denominator
in (4) is required to insure a proper normalization of the
spins. Our approach is indeed very similar to the one
used for bipartite collinear antiferromagnets. In the last
case, one can group the sites by pairs and write inside a
given pair

Si 2=S(+n+aL}/(1+a L )'~ with L n=0 . (5)

In both situations, L is an unstaggered quantity related to
the local net magnetization (physically necessary to pro-
duce the rotations of the spins). From (4), we get to first
order in L.
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g f dt A(S~).B,S~
—J g f dt S~.Sq,

(p, q)

where the summation in the first term (kinetic one) is
done on each site and in the second term (Heisenberg in-
teraction) on each pair of nearest neighbors. A is the
vector potential of a magnetic monopole of Aux 4m and is
such that f A(Q).dQ measures the area covered by a
unit vector 0 on the unit sphere S . What we have to do
is to put the definition (4) into (8) and to expand in
powers of L and space-time derivatives of R.

A. The kinetic term contribution to second order

only, tending to the identity at infinity. For three unit
vectors of zero sum like the n; defined in (1), it can be
shown that K is topological invariant, classifying the
homotopy group n. ,(SO(3)), which we know to possess
two elements [see (2)]. The proof goes as follows: let
Ro(t) be a first continuous path satisfying the boundary
conditions at infinity and R (t) =Ro(t)+5R (t) a second
one, infinitesimally near to Ro(t) Ta.king the variation of
IC and integrating by parts the term involving B,(M), it
is straightforward to get

5';=Sf

dt's

py(RO) (B,RO) (5R)pp. gn, n;p. .n, ,
'

ry'

To calculate this part of the action, we group together
the three spins of a triangular plaquette and obtain to
second order

$ A(S, ).B,S; =S$ A(Rn, ) ~ (),Rn, .

+aS g e p L (R 'B,R)rr. (n;pn;r),

=Sfdt e p (R 'B,R ),(R 'M)pp. T,p. . . (12)

where T pr
= g; n; n;pn, r. This tensor T p, which we

shall meet again in the following, has two noteworthy
features: it is symmetric with respect to permutations of
a, p, y and it satisfies

(9)
gT = gn; =0.
r

(13)

where we have used to get the second term the definition
of the vector potential A e & BA&/BQ =0 and the
property of rotation matrices e & R R&&.R ~ =e .&. ..
Forgetting for the time being the first term, we may as-
sume in the second term that the fields R and L take their
values at the same site: corrections to this approximation
are pure divergence terms, vanishing in the continuum
limit. Using then the fact that matrices of the type
R 'B„R are antisymmetric, one can write the second
term under the nice form

3aS(TL) V,
where the tensor T has been introduced in (7) and the
vector V is contributed from the matrix R 'B,R by

This is the term producing the coupling between the local
magnetization and the time derivative of the spin orienta-
tion.

Coming back to the first term in (9), it would seem here
a priori dangerous to neglect the spatial variation of R be-
tween the three sites I,2,3 constituting the triangular pla-
quette. In particular, such an approximation, in the
0 (3)-nonlinear o model, would miss the interesting topo-
logical quantities associated to "skyrmions. " However,
in the present case, it can be shown that this is again a
correct procedure. Mathematically this comes from the
observation that

e„)„(R 'B„R)(R '8+ )= —e„ i B„(R 'BQ ), (11)

which means that cross products of first derivatives of ro-
tation matrices are pure divergence terms. More funda-
mentally, this result could have been anticipated from the
triviality of n.2(SO(3) ), as opposed to vr2(S ) =Z.

We are finally left with the task of evaluating
SIdt g; A(R n, ) B,R n; =K, where R is a function of t

1

Now we take advantage of the antisymmetric properties
of both matrices R o 'B,RO and Ro '5R. We write
(Ro 'B,RO) as E.V .,—where the vector V has al-
ready been defined in (10). We get in this way

5K Sf dt e p~e y Vr (R() 5R)pp T

=Sf dt[V (R() '5R)pp Tpp r

—Vp(R() '5R)pp Tymp. ] . (14)

The first term is zero because Ro '5R&& and TI3&.~ are,
respectively, antisymmetric and symmetric with respect
to p and p ', the second one also cancels because of (13).

Therefore K is a constant depending only on the homo-

topy class of the path R (t). For trivial loops, contracti-
ble to zero, we have K=0 [by zero loop we mean
R(t)=1 for all t]. The simplest example of a noncon-
tractible loop in SO(3) constitutes of rotations about a
fixed axis by an angle 8(t) varying from 0 to 2m. between
t = —oo and t =+ ~. Choosing, for instance, the rota-
tion axis to be along z with the n, in the plane (x,y) and
taking the singularity of A to be also along z (i.e.,
A=[(1+cos8)/sin8])p in spherical variables), one finds
in this case K =6mS (three times the contribution of one
spin undergoing a 2' rotation about z at 8=m/2). This
gives in the action a factor ( —1) P for such loops on each
triangular plaquette. However, if R goes through such a
loop at some point r in space, it must do the same every-
where by continuity and does not then satisfy the right
boundary condition at infinity (i.e., R tends to the identi-

ty, in particular for all values of t). Therefore, for our
purposes, we shall assume in the following K to be zero.
Hence the result (10), divided by 3, gives us the contribu-
tion to the Lagrangian density per site coming from the
kinetic term.
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B. Evaluation of the interaction term and resulting
expression of the Lagrangian

To obtain the contribution to the Lagrangian density
per site coming from the Heisenberg interaction, we first
consider a spin of a given sublattice (index i) interacting
with its local environment of six spins belonging to the
two other sublattices. Then we sum over the three sub-
lattices (or equivalently the three spin orientations) and
divide the result by 3. The quantity which is therefore to
be calculated can be written as

H—= —(9J/2)a S (TL)

+(3J/16)a S

XTrIP[(R -'a.R)'+(R -'a, R)']] . (20)

In this formula P is the projection operator in spin space
onto the plane spanned by n„nz, n3 [within our initial
choice (1), P„„=P =1,P; =0 otherwise].

Using then (10), we get for the Lagrangian density A to
second order (normalizing every quantity by the unit cell
area a &3/2)

where e; are unit vectors directing the bonds between
nearest neighbors and S is now defined at the same point
as S;. We define the vectors e; as 0;.e with

e'=(1,0), e =( —
—,', &3/2), e =( —

—,', —&3/2), (17)

and 8; = —sgn[P(i, j)], P(i,j) being the permutation
transforming (1,2,3) into (i,j,i). The e" are obtained from
the n; defined at the beginning by a n/2 rotati—on in the
(x, y) plane. Like them they have a zero sum and upon
summation over k the various derivative operators in-
volved in (16) simplify into

g (e,j V) =0, g (e,", V) = 3 (8,+3,),
k k

g (e,", .V)'= 0,) Tapy dapy i
k

where the third-order tensor T'
p

= gk e "epe" is
equivalent to the tensor T p defined before in (12), after
interchange of the coordinates x and y (or 1 and 2 in-
dices).

Neglecting for the time being the third-order derivative
terms and discarding unimportant constants, we get for
H

H= —(J/2)(S, +S2+—S3)

—(Ja /8)(S, +S~+S3) (8 2+8 2)(S,+S~+S3)

J 2

+ ' g s, (a', +a', )s, .
i =1,3

(19)

In this expression S„S2,S3 take their values on the same
sites and we may therefore use our previous result (7) for
the net magnetization on a triangular plaquette to leading
order, S,+Sz+S~=3aSR (TL). The second term in (19)
is seen to be fourth order, in the third one we may simply
replace S; by SRn, and we end up, to second order in
powers of L or R 'B„R, with the result

S SJ",
i =1,3 j&i k =1,3

where the index k is there to recall that the spins of the
species j live on different sites from the central one occu-
pied by Si. Performing a gradient expansion we can
write SJ in (15) as

S,"—=S, +a(ei V)s~+ —,'a (e,~
V) Si+ —,'a (ei V) S~,

(16)

(a &3/2)A =aS ( TL) V —H . (21)

—c [A,'+ A,'+,'(8„'+C„')+ ~ (g2+C2)]I
(23)

In the linear regime around the ordered state defined in
(1), our result gives a spin-wave velocity equal to c in the
plane (x,y) and to c/&2 out of this plane. The first part
of this result is in agreement with the spin-wave calcula-
tions as performed for instance in Ref. 11, where authors
considered XY-like anisotropy in the Heisenberg interac-
tion. On the other hand we have not found in the litera-
ture any calculation of the B and C modes.

IV. THIRD-ORDER TERMS IN THE LAGRANGIAN

We now turn to a brief discussion of the third-order
terms appearing in the Lagrangian. We note S,' and S;
respectively, the first- and second-order terms in the ex-
pansion of S;/S as given by (4) in powers of L,

S,'=aR [L—(L n;)n;],

S; =a R In;[ L /2+ —,'(L n;) ]—L(L —n;)I
(24)

It can be shown that the contribution to third-order from
the kinetic term, with the conventions of (9), is

Sg [(R 'B,Rn;) (S; hn;)+ —,'B,s,' (S,'hRn, )] . (25)

The extremization with respect to the field L yields finally

A = (g '/2)( —c ' Tr(R 'B,R )2

+c Tr[P[(R 'B„R) +(R '8 R)~]]),
(22)

where we have defined a con~ling constant g '=S/6a, a
spin-wave velocity c =(3&3/2)JSa and have rewritten
V as —

—,
' Tr(R 'B,R) .

Were it not for the presence of the anisotropic tensor P
in the spatial derivative term, A would be the Lagrangian
of a standard nonlinear o. model with an order parameter
in SO(3). P contains the information on the initial aniso-
tropy of the spin orientation in the ordered state. To
make this point more explicit, we represent the matrices
M =R 'B„R by a triplet ( A„,B,C„) with A =M, z,
8

@
M 1 3 C M23 The 3 components describe varia-

tions of the spin orientation in the plane defined by the
three sublattice local magnetizations, whereas the B and
C components correspond to Auctuations out of the
plane. In terms of 3, B, and C, A becomes

A=g 'Ic '(A, +8, +C, )



39 NONLINEAR cr MODELS FOR TRIANCxULAR QUANTUM. . . 6801

After some algebraic manipulations, this expression is
found to be equal to

—,'a SL LpV T p (26)

where the tensor T &z has been previously introduced in
(12).

As for the Heisenberg interaction —H, we get from
(18) and (19)
—JS (S', +S'+S') (S,+S +S )

desired quantity q of (3), which is completely antisym-
metric with respect to the three variables x,y, t. In terms
of the A, B,C components defined in (23), the third-order
corrections read

g '(a6&3)t —[B,(B +B C„——C )

2C—, (C B +C B )]

+c[A„(A +B„+C,)
+(J/4)a S g S,'. (8 g+i) 2)Rn,

+(J/16)a3$2T'& n, (R 'd
& R)(n2 —n3) . (27)

—3Ay( A„Ay+B.By+C.Cy)

+B„B„C„—3'B„C ] I . (30)

By expliciting each term, (27) can be written in the form

Ja S I 94T pyL LpLy

'L [(R—'8 R)~+(R ri R) ]p T p

+(V'3/12)T.'~, (R -'a.'~,R)„I . (28)

To deduce the Lagrangian density to third-order in
space-time derivatives of R, it is enough to put in (26) and
(28) the leading expression of L since by construction, it
extremizes the Lagrangian to second order. By doing so,
it is seen that the terms with three time derivatives cancel
exactly, leaving us with the following corrections to our
previous result (22) for A,

(S/&3)V [(R '8 R) +(R '8 R) ]f3yT p

+(J/6)aS T'pr(R d prR)2i . (29)

It is interesting to note that the spatial isotropy is lost
at this order: indeed T'& 8 &

=
—,'(8,—3 8 2). On the

other hand, we find also a term linear in S, involving one
time derivative and two space derivatives. This means
that this term gives an imaginary part in the action, after
analytic continuation in Euclidean space, as a topological
term would do. But our result does not correspond to the

We note that most of the terms involve three powers of
3, B, or C and are intrinsically nonlinear. They do not
affect the spin-wave dispersion relations, except for the
last two terms in (30), which are quadratic and yield a
coupling between the B and C components. This is quite
satisfying physically, because we do not expect on sym-
metry grounds any odd powers of the wave vector k in
the spin-wave dispersion relations.

V. CONCLUSION

To summarize this work, we have found no additional
topological term in the action of the triangular quantum
antiferromagnet like in previous studies of the square lat-
tice. Since these two systems are very far from each oth-
er in the family of two-dimensional antiferromagnets, our
result seems to support the view that such topological
effects, if they exist at all in 2D, cannot be obtained by an
approach from the ordered phase side.
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