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The equilibrium structure and energetics of the crystal-melt interfaces of simple systems are stud-
ied using the nonlocal weighted density-functional approximation (WDA) to the Helmholtz free en-
ergy. The WDA, previously used to accurately predict bulk phase coexistence at the melting point,
is combined with a new flexible, two-parameter parametrization of the crystal-melt interfacial re-
gion to predict interfacial properties. The parametrization allows for variations in the width of the
interface and in the rate of broadening of the sharp density peaks of the crystal through the inter-
face at fixed width, generating physically appealing profiles similar to those observed in simulation
studies. The WDA in tandem with this parametrization thus avoids the use of the perturbation
and/or square-gradient expansions previously used to describe both the crystal and the interface.
Applying the approach to the model hard-sphere system (diameter o), the (100) and (111) fcc-liquid
interfaces are found to be four atomic layers in width and nearly isotropic in surface free energy 7,
with ¥(100)=0.66kT /02 and y(111)=0.63kT /0> These results and the general interfacial struc-
ture are in qualitative agreement with simulation studies on the similar soft-sphere (» ~'?) potential
system. Using a simple hard-sphere perturbation theory, the crystal-liquid phase coexistence and
(111) interface of the Lennard-Jones system are also examined. Both the freezing transition and the
interfacial properties are dominated by the hard-core interactions, and the predicted value of
¥(111)=0.43e /07 near the triple point is in reasonable agreement with the recent simulation result
of 0.35e/02. A brief comparison of the present “liquid” and the usual self-consistent phonon ap-
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proaches to the crystal thermodynamics brings out some previously unrecognized similarities.

I. INTRODUCTION

The properties of the interface between a crystal and
its melt are crucial to the understanding of many growth
phenomena. For example, the interfacial free energy and
its dependence on crystal orientation determine the equi-
librium crystal shape' and the stability of a flat growing
interface with respect to perturbations such as dendrite
formation.? The interfacial free energy also governs the
homogeneous nucleation of crystals in their melt and vice
versa.” The atomic structure of the interface, either
sharp or diffuse, can indicate the nature of some kinetic
aspects of crystal growth.* Despite the importance of
crystal-melt interfaces, experimental studies are difficult
because the interface is confined between two dense
phases and is not easily probed. The determination of the
surface free energy y is thus often made by rather in-
direct methods. Turnbull measured the maximum super-
cooling in small particles and then used the results of
homogeneous nucleation theory to obtain values of y for
a wide variety of materials.® Aside from being an orien-
tationally averaged value of ¥y, this approach depends
crucially on purity and homogeneity in addition to the
validity of the nucleation theory and its attendant limita-
tions. More recent studies have relied on observing
crystal-liquid-grain boundary intersection angles. The
seminal work by Glicksman and Vold using this tech-
nique indicated that bismuth has a nearly isotropic y, but
the accuracy is in general limited to a few percent.® Crys-
tal faceting during growth is not sufficient to guarantee
anisotropy in ¥y because of the possibility of anisotropic
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growth kinetics, which has recently been observed in
molecular dynamics studies of the nominally isotropic
Lennard-Jones system.® Present theories of dendritic
growth require that some anisotropy in y be present;
however, even anisotropy of less than 5% (smaller than
can be deduced experimentally) between close-packed
faces is sufficient because of a strong dependence of the
theory on ¥ (Ref. 7). The atomistic structure of any
crystal-melt interfaces has not, to our knowledge, been
tackled experimentally.

As a result of the limited experimental data available,
computer simulation studies have been an important part
of the effort to understand crystal-melt interfaces. Early
work involved using a static (" =0) crystalline solid as a
wall against which a liquid phase was placed.® The ex-
pected induced structure of the liquid was observed but
actual crystal-melt interface properties could not, of
course, be obtained. Subsequent simulations of the inter-
faces between dynamic, coexisting crystal and liquid
phases have been made but obtaining “true” equilibrium
is subtle, and rather large 3D systems are required to ob-
tain sufficiently large surface areas. In addition, the in-
terface can wander from its initial position as the simula-
tion progresses and this should tend to broaden out the
observed interface structure, although not have too much
of an effect on calculated thermodynamic quantities such
as Y. Monitoring these potential difficulties carefully, the
simulation studies of (i) the Lennard-Jones fcc (111),
(100), and (110) interfaces by Broughton and Gilmer,’ (ii)
the » ~ 12 fcc (100) interface by Cape and Woodcock,'!® and

- (iii) the » ~'? fcc (111) interface by Tallon,!! have yielded
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interesting results. Namely, the interfacial regions are
not atomically sharp but nonetheless are only about 6 or
7 layers in width, with the interfacial structure and in-
plane correlations intermediate between those of the
coexisting phases. Some features such as an expansion of
the (100) lattice plane distance through the interface are
particularly notable. The surface free energy, which is
much more difficult to obtain accurately than are
structural details, is nearly isotropic for the LJ system,
with y(111) =¢(110)=0.35e /02 and y(100)=0.34¢ /0
all within £0.02¢ /02 (Ref. 9). For the r ~'2 (100) inter-
face, a surface stress of ¥(100)=0.46+0.1(kT/
e)/%kT /0 was obtained.!® These values are rather
different than earlier simulation estimates, which is indi-
cative of the general difficulty of obtaining surface ener-
gies from what are really bulk 3D simulations. A quanti-

tative comparison of our theory with these results is one

of the primary goals of this work.

A variety of theoretical approaches to this problem
have been made over the years, and the monograph by
Woodruff provides a comprehensive review.!? Until re-
cently, theories focused on either the structure of the in-
terface or on its surface (free) energy but rarely on both
simultaneously. The main debate in the 1950’s and
1960’s regarded the structure of the interface and the
resultant growth morphology. For atomically smooth, or
sharp, interfaces growth is thought to be limited to an ac-
tivated layer-by-layer mechanism whereas for rough, or
diffuse, interfaces growth can proceed in a continuous
manner since many types of “surface” sites are available
for liquid atoms impinging onto the solid surface. To
predict which of these occurs for a particular material,
the theory of Jackson assumed a lattice model with atoms
on each site designated as either solid or liquid.* The in-
terplay between the energy associated with the higher
binding energy of a (nearly) full layer of solid particles
and the entropy associated with the disorder of a partial-
ly solid, partially liquid layer at the interface determines
the preferred morphology. Jackson found that rough in-
terfaces are predicted if the key parameter
a=AHv/kT,.,, where AH is the latent heat of transi-
tion per particle and v a face-dependent geometric factor
less than unity, is smaller than about 2. This result is in
rather remarkable agreement with experimental growth
studies, which show faceted growth for high-a materials
and continuous growth for low-a materials. The success
of this simple theory led to extensions of it to broader in-
terfaces and binary alloys. However, the surface free en-
ergies were not investigated in these studies and, in fact,
attempts to account for the entropy via the Jackson-type
models apparently lead to negative surface tensions.!2
Also, the lattice model could not adequately account for
the true liquid structure.

Generally, early attempts to calculate interfacial ener-
gies were based on ‘“broken-bond” models and used ei-
ther the latent heat or internal energy as a measure of
bond strength, as in Jackson’s model. Entropy contribu-
tions, which we will see shortly to be actually quite large,
were usually neglected. The work of Ewing is a notable
exception.!> Ewing recognized that a liquid in contact
with a static solid or wall would become highly struc-
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tured and that this structure would lower the entropy
of the liquid. To estimate the excess configurational
entropy of the nonuniform system, which can be
expressed in terms of the density profile p(r) as
Swnf=—fdrp(r)ln[p(r)/p,], with p, the asymptotic
liquid density, he assumed the density perpendicular to
the wall to be p(z)=p,g(r =z). Here, g(r) is the radial
distribution function of the bulk liquid and is identical to
the structure induced in the liquid by the introduction of
a fixed test particle at » =0. Applying this procedure to
Au, Ewing found the entropic contribution to ¥ to be
about 1 of the total y, the remainder accounted for by an
additional AH /4 per atom representing the ‘“broken-
bond” internal energy. Another approach to estimating
Yy was based on the “liquidlike” nature of large-angle
grain boundaries; these boundaries were assumed to
be back-to-back crystal-liquid interfaces and hence
YxL =Ycp/2 (Ref. 12). Generally, however, since these
two interfaces are so close together, interaction effects be-
tween them imply that this estimate is an upper limit to
YxL-

The major barrier to further theoretical progress at
this time was the inability to describe both coexisting
equilibrium phases, crystal and melt, accurately and
within a compatible framework. Lattice models of the
liquid were clearly deficient. And, while dislocation
theories,'* Lindemann criteria,'® and self-consistent pho-
non calculations of crystal instabilities'® could provide es-
timates of the melting point, a determination of true
phase coexistence with a realistic liquid phase was not
possible. The recent and rapid development of the theory
of simple liquids finally allowed for fairly accurate calcu-
lations of equilibrium melting curves, as typified by the
work of Stroud and Ashcroft.'” However, the use of
self-consistent phonon theory for the crystal, in which
the crystal periodicity is crucial, and of liquid-state
theory, in which the liquid translational invariance is key,
are incompatible; the crystal-melt interface possesses nei-
ther the crystal nor liquid symmetry and a theory for it
cannot be formulated by combining these two approaches
(which are, nonetheless, highly successful for their ap-
propriate phases).

The above impasse was largely broken by the pioneer-
ing work of Ramakrishnan and Youssouff (RY), who for-
mulated a theory for the crystal thermodynamics based
on liquid-state ideas and input.'® In this theory, which
was nicely reformulated into the language of (inhomo-
geneous) liquid theory by Haymet and Oxtoby (HO) (Ref.
19), the crystal is viewed as a highly inhomogeneous
liquid with a spatially varying density p,(r) having the
symmetry of the crystalline lattice. The viability of this
view of the crystalline state is based on the density func-
tional theorems of classical systems,’® which state that
thermodynamic quantities such as the Helmholtz free en-
ergy F are unique functionals of the density p(r),
F=F[p(r)]. Moreover, the equilibrium structure of the
system is that which minimizes the grand potential func-
tional Q[p(r)]=—PV=F[p]—uN. To make this a prac-
tical approach to obtaining the crystal thermodynamics,
RY and HO assumed that a truncated expansion of the
crystalline excess Helmholtz free energy, F.[p,(r)],
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about that of the liquid, F.(p,;), in powers of p.(r)
—p; =Ap(r) was valid,

Folp(1)]1=F(p)—cVp)) [ dr Ap(r)
—1 [drdre®(r' —r;p)Ap(r)Ap(r') . (1)

Here, —c(p,) is the excess chemical potential of the
liquid and ¢‘? is the Ornstein-Zernike direct correlation
function of the liquid. Input to the theory is thus liquid-
state information only and the functional expansion be-
comes exact in the Ap(r) <<1 limit. As such, the theory
is essentially a sophisticated extension of Landau’s theory
of first-order phase transitions with an “order parameter”
p(r) taking on the value p,=constant in the liquid and
the form of p,(r) in the crystal. The predictions of the
theory, embodied by Eq. (1) and a few auxiliary assump-
tions, for coexistence densities, pressure, and latent heat
are generally quite good for a variety of systems where
the liquid-state data is available.?! These successes have
led to applications of basic and modified versions of the
theory to, for example, glasses,?? quasicrystals,® crystal
elastic constants,?* and dislocations.?

Most important for the present discussion of interfaces
is the natural extension of the basic theory made by Hay-
met and Oxtoby to study the interfaces between the two
predicted coexisting phases.!® In the simplest terms, the
interface problem is no more difficult than the crystal
problem, only the density profile p(r) is different: the in-
terface profile takes on the solid profile p (r) and the
liquid profile p, asymptotically on either side of the inter-
face. The functional to be minimized is not =PV but
the excess grand potential

AQ=F[p(r)]—pu [ drp(r)+PV )

subject to the asymptotic density constraints. The inter-
facial free energy 7 is precisely AQ/ A and thus emerges
simultaneously with the interfacial structure and also nat-
urally depends on the crystalline orientation. Haymet
and Oxtoby utilized the truncated expansion Eq. (1) for
the general F.,[p(r)] and made an additional square-
gradient approximation for the variation of p(r) through
the interface. For the (100) and (111) faces of a bcc crys-
tal, they obtained very broad interfaces, 10—-15 atomic
layers in width, validating the use of the square-gradient
approximation. Values for the surface free energy of Na
were about 1 of those measured by Turnbull,® with an an-
isotropy of less than 3%. Subsequent studies of both bcc
and fcc interfaces using slightly modified versions of Eq.
(1) and usually with the auxiliary square-gradient approx-
imation have been made by various workers and we will
discuss these approaches in Sec. V.

In spite of the general success obtained using density-
functional theory, a major problem remains regarding the
expansion of Eq. (1). Namely, Eq. (1) is a truncated func-
tional expansion in powers of p,(r)—p,; and such a per-
turbation theory is naturally suspect in application to
crystals, where p,(r) is extremely rapidly varying (the
crystal particles are highly localized about the lattice
sites) and p,(r)—p; <<1 does not hold. In fact, the only
attempt to include the next higher-order term in the ex-
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pansion of F_, yields rather poor predictions for the
hard-sphere crystal-liquid coexistence conditions.?® Also,
the predicted crystal density peaks are much sharper
than found in simulation studies and the consequences of
such an unrealistic solid structure have an unknown but
potentially large influence on the predicted interfacial
properties. These concerns have motivated several
groups to propose alternative, nonperturbative approxi-
mations to the functional F[p(r)] which include the
higher-order terms neglected in Eq. (1) in an approximate
manner. We will focus here on the weighted-density ap-
proximation (WDA) proposed by Curtin and Ashcroft
that has been used with success to study hard sphere?’
and Lennard-Jones freezing.”® The WDA is not pertur-
bative and yields broader crystal peak widths and better
bulk coexistence conditions than does the RY-HO
theory, suggesting an improved description of the inter-
face over predictions utilizing Eq. (1). The theory of
Baus and co-workers, while quite successfully predicting
bulk-phase coexistence, requires crystal-structure depen-
dent input for the crystal phase.?’ Thus, it cannot be im-
mediately employed to study interfaces, an additional lo-
cal or square-gradientlike approximation for some key
quantities appears necessary in this approach. The WDA
does not suffer from this shortcoming and has, in fact,
been applied to a host of nonfreezing problems involving
liquids in contact with static walls to predict wetting phe-
nomena and layering.*

The other approximation made by HO, the square-
gradient approximation (SGA), is not necessary. The
SGA merely simplifies the Euler-Lagrange equation
which must be solved to obtain the equilibrium interfacial
properties. Furthermore, since the fcc interfaces ob-
served via simulations’ ™ !! are not particularly broad the
SGA is not a priori applicable to crystal-melt interfaces.
An alternative to solving the E-L equation which explic-
itly avoids any assumptions of slow variations of the in-
terface is that of direct numerical minimization of Eq. (2)
with respect to some parameters in an appropriate class
of variational density profiles for the interface. The prac-
tical obstacle to this approach is the actual construction
of realistic density profiles with a modest number of pa-
rameters. A major contribution of the present work is
the description of a two-parameter class of interfacial
density profiles which embodies the key feature expected
in the true physical interface, namely the smooth
broadening of the sharp crystal density peaks into the
uniform liquid as the interface is traversed. The two pa-
rameters control the interface width and rate of broaden-
ing of the density peaks, respectively, and reproduce an
often-used parametrization when no broadening is al-
lowed. The features of this parametrization and general
arguments indicate that even if the full interface is
“broad,” some Fourier components of p(r) must actually
vary much more rapidly and cannot be treated by SGA.

As mentioned in the preceding remarks, in this paper
we apply the weighted-density approximation and a new,
flexible parametrization of the interfacial region to pre-
dict the interfacial structure and surface free energies of
several simple liquid systems. The combination of these
two aspects overcomes most of the major drawbacks of



6778

previous density-functional approaches to the study of
crystal-melt interfaces and yields both structure and ener-
getics in quantitative agreement with the accurate simu-
lation results presently available. We concentrate on the
hard-sphere system which has not been studied via simu-
lation but is closely related to the purely repulsive »
potential system. Both the (100) and (111) fcc-liquid in-
terfaces are found to be four atomic layers wide and the
surface free energy is nearly isotropic, with y(111)
=0.63kT /0? and y(100)=0.66kT /0* (+0.02 kT /o).
In a simple but useful extension to the Lennard-Jones sys-
tem, we find similar widths and y =0.43¢ /o2 near the tri-
ple point. A partial description of the present work
which studied only the hard-sphere (100) interface has
previously been published.>!

The remainder of this paper is organized as follows. In
Sec. II we review density-functional theory and introduce
the WDA as an approximate free energy functional for
inhomogeneous systems. In Sec. III the bulk crystal-
liquid phase coexistence of the hard-sphere system is cal-
culated using the WDA. Then, a simple extension to the
Lennard-Jones crystal is presented and some similarities
between the density-functional approach taken here and
the self-consistent Debye approach to crystal thermo-
dynamics are revealed. The main part of this paper is
Sec. IV, in which our new density parametrization is
presented and the results of interfacial calculations are
given for the hard sphere and Lennard-Jones systems.
Finally, in Sec. V we discuss previous DF treatments of
the interface, the limitations of the present approach, and
extensions of the theory to other interfaces. The Appen-
dix contains a few details on the numerical procedures
employed here.

II. DENSITY-FUNCTIONAL THEORY
AND THE WEIGHTED DENSITY APPROXIMATION

Consider a system of monoatomic particles which in-
teract through pairwise potential ¢(r) and are in an exter-
nal field V., (7). For N atoms in a volume V the micro-
scopic Hamiltonian is thus

H=2P,»2/2M+%2¢(r,-—rj)+2 Vet (r;) . (3)
i istj i
At a temperature T (3=1/kT) and single particle density
p(r) (average of the density operator /'), the grand poten-
tial functional Q[ p] and Helmholtz free energy function-
al F[p] are unique functionals of the density p(r), as
shown by Mermin.?%3?2 Q) and F are related by

Qpl=Flpl—u [drpn)+ [drpnVer), @

where p is the chemical potential. The equilibrium densi-
ty po(r) for the system is found by minimizing the grand
potential functional with respect to variations in p(r),

5Q

=0. (5)
8p(r) |ptri=p,

At the equilibrium density, Q[ py] and F[p,] are the
grand potential (—PV) and Helmholtz free energy, re-
spectively, of the system.
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The Helmholtz free energy functional F consists of two
contributions, (i) an ideal gas part F;y which accounts for
the entropy cost of establishing a nonuniform density
p(r) even in the absence of interparticle interactions, and
(ii) an excess contribution F,, due to interactions. Writ-
ing F as

F[p]:Fid+Fex
=ﬁ_1fdrp(r){ln[p(r)A3]——1}+Fex[p] (6)

(with A the thermal wavelength), the equilibrium density
polr) must then satisfy the self-consistent equation

po(r)=A"exp[Bu+cV(r;po(r)) =BV, (r)] . (7)

Here,
“le(r;p)=—8F,[ pl/8p(r) (8)

is precisely the one-body self-consistent potential created
by the interacting particles in the configuration p(r) and
which therefore determines the equilibrium density
profile. ¢! is the first in a hierarchy of direct correlation
functions ¢, for which F, [p] is the generating func-
tional:

dF [ p]
8p(r,)---8p(r)) ~

The ¢ of the homogeneous liquid [p(r)=p] also satisfy
the sum rule

C(ﬂ)(rn P rl)z—-B

9

o ¢ (n—1)
e, - ryp=2
Because of the relations given by Egs. (8) and (9) and the
uniqueness of F[ p], we may obtain F.,[ p] by functional-
ly integrating Eqgs. (8) and (9) along an arbitrary path
from some reference density p (chose to be uniform) up
to the desired density p(r). Choosing a linear path, we
obtain

Fol pl=Folpr)—B ¢ Mpg) [ drlp(r)—pg]
— 187" [ drdrip(r')—pg llp(r)—pr]
! e @) ot
Xfoda(l a)®(r,r';pla)), (11)

(r,—y- - 1T3p) . (10)

where ¢‘?(r,r';p(@)) is the d.c.f of the inhomogeneous
system of density p(a)=pp +a[p(r)—pg].

Equation (11) is the starting point for a number of ap-
proximations for F,[p].  For example, by selecting
pr=p; (the coexisting liquid density) and expanding
c¢?(r,r';p(a)) about @=0 to O(a®), the RY-HO func-
tional Eq. (1) is obtained.'®?° By Egs. (8) and (9), this is
also simply a functional expansion of F.[p] about
F..(p;) truncated at second order. On the other hand,
selecting pg =0 and rearranging gives the form

Folpl= [drp(r)f[r;pn)], (12)

where
f[r;p('r)]z—%B”lfdr'p(r')
1 o\ (2 g
X [ da(1—a)(r,r’pla)
(13)
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is the free energy contribution at r and is a nonlocal func-
tional of the density p(r). Since (13) involves ¢‘?, which
has a spatial extent comparable to that of ¢(r), f[r;p(r)]
is nonlocal on the same length scale.

The weighted-density approximation?’ (WDA) replaces
flr;p(r)] in (12) by a function of a nonlocal density,
specifically

flrpO]=f(p(r) , (14)

where f(p) is the Helmholtz free energy per particle of a
uniform liquid and p(r) is a nonlocal density. The nonlo-
cal density p(r) is taken to be a self-consistent weighted
average of the real density p(r):

ﬁ(r)=fdr’p(r')w(r’—r;ﬁ(r)) . (15)

The weighting function w in Eq. (15) is then determined
by demanding that the resulting WDA functional

F¥PA pl= [drp(r)f(p(r) e

(i) be exact in the uniform liquid limit p(r)=p, which
simply requires w to be normalized, and (ii) satisfy Eq.
(9) exactly in the uniform liquid limit [Eq. (8) already be-
ing satisfied in this limit if w is normalized]. Thus, equat-
ing the second functional derivative of ForC4 in the liquid
limit to cm(r;p), the liquid direct correlatlon function,
yields the following equation for w(k;p) after Fourier
transformation:

2
B“‘c‘z’z—za—i gf; -2 55 2“’. a”n

Solving for w shows it to have about the same spatial
range as c¢'?, naturally, and hence f(p(r)) is nonlocal on
the same scale as f[r;p] (Ref. 27).

With the above prescription for FWPA[p] several key
aspects are worthy of discussion. First, FxP# is nonper-
turbative and does not assume variations in p(r) to be
small. Second, if a functional expansion of F WDA[p]
about any uniform density p, is performed, the expansion
is exact to second order by construction and higher-order
terms involving approximate liquid higher-order d.c.f.’s
cWhalr, . ..T;p) n>2 appear in the expansion. More-
over, because of the self-consistent determination of p(r)
in Eq. (15), the approximate c\iih, satisfy the sum rule of
Eq. (10) exactly. This latter point means that the WDA
contains all information obtainable from the two-point
function ¢‘? and retains an important relationship be-
tween ¢ and ¢" 1. Any systematic improvements to
the WDA will thus require knowledge of nontrivial three-
and higher-particle correlation functions in the uniform
liquid. In fact the author and Ashcroft’® have recently
compared c{wp, to the detailed simulation data of Barrat
et al’* and find fairly good agreement for the llmlted
geometries studies. Based on this agreement, cWDA has
been used to extend the truncated functional expansion to
third-order approximately, which yields rather poor
hard-sphere coexistence conditions, thereby casting
doubt on the validity of the second-order truncation.?®

The WDA formulation makes no assumption that a
crystalline phase is under investigation; the WDA is a
general functional for inhomogeneous liquids. It has
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been applied in a variety of wetting studies, where the
Tarazona formulation is used to obtain w approximately
and the approach has been coined the smoothed-density
approximation (SDA) (Ref. 30). The successful applica-
tion of the WDA to the highly inhomogeneous crystalline
phase, as discussed in the next section, suggests that it is
capable of handling the interface problem where the den-
sity variations are necessarily less drastic. And, no addi-
tional approximations are required.

III. CRYSTAL-LIQUID COEXISTENCE:
HARD-SPHERES AND LENNARD-JONES LIQUIDS

The crystalline state corresponds to a solution of the
Euler-Lagrange equation, Eq. (7), with V=0 and p(r)
possessing the crystalline symmetry, which must be as-
sumed a priori. Using the WDA functional, the one-
body potential ¢'!(r;p(r)) is, unfortunately, a rather
unwieldy functional for the inhomogeneous system.
Thus, we make use of the variational principle, formally
exact for the true functional, and minimize the free ener-
gy with respect to variations in p,(r). Since the WDA is
an approximation for F, it is most convenient to fix the
average density p,=1/V f drp (r) and minimize F with
respect to spatial variations in p,(r). The chemical po-
tential 4 and pressure P are then obtained by the stan-
dard Legendre transformation

3 _(r/m),

=5 P=p,u—F/V . (18)

Finally, crystal-liquid coexistence is found by simultane-
ously equating u, P, and T in the two phases.

For coexistence to occur, the Helmholtz free energies
of the crystal and liquid must cross at some density. The
stability of the crystal phase at higher densities (for ma-
terials which expand on melting) is accomplished by a
trade-off between ‘““ideal” and “excess” free energy contri-
butions as follows. With increasing localization, the ideal
contribution F;y is monotonically increasing. However,
the excess contribution F., can be decreasing with in-
creasing localization if the localized particles are less in-
teracting, meaning that the coupling constant integral in
Eq. (13) acts like a mean-field, structure-dependent pair
potential which can favor highly localized particles. This
competition between F,y and F, can yield a local
minimum in F at finite localization, a phase we identify as
the stable or metastable crystal phase. Once a local
minimum appears, it becomes deeper (the crystal be-
comes more stable relative to the isochoric liquid) with
increasing average density.

For the calculations to follow, the variational class of
crystal densities is restricted to the now common form of
isotropic Gaussian peaks centered on the lattice sites R,
3/2

Ee——a(r--R)Z , (19)

R

ps(r)=

with the single variational parameter a determining the
peak widths. Equation (19) includes a wide range of
profiles, including the liquid state (¢=0) and the zero-
temperature crystal (¢= ). a is inversely proportional
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to the mean-square displacement of the solid particles
and at phase coexistence is thus related to the Lindemann
parameter L by L =(3/ac?)!’? for the fcc lattice. The
form of Eq. (19) is identical to that assumed in a self-
consistent Debye model of the crystal (see Sec. III C), in
which the Debye temperature @, is the single variational
parameter and is related to our a by ®p/T=(3a/
m)”2A. A more general parametrization in which the
magnitudes of the reciprocal lattice vector Fourier com-
ponents p; are variational parameters,

py(r)=p,+ 3 pge'Sr (20)
G40

has been used in other DF theories with only minor devi-
ations compared to Eq. (19) [which corresponds to
pc=psexp(—G?/4a)]. In practice, the sum in Eq. (20)
must be truncated at some level. Early workers using Eq.
(1) included only the smallest one or two sets!®!® of
symmetry-related G vectors in bulk and interface calcula-
tions and subsequent work included an insufficient num-
ber of G vectors,>® but the more recent efforts have in-
sured that the level of truncation does not affect the bulk
coexistence conditions.?®

The procedure for finding F is now simply to fix p, and
search for local minima in Fyy +F2PA with respect to a.
For calculating the weighted densities p(r) via Eq. (15),
the form of Eq. (20) is most convenient since w is most
easily obtained in Fourier space. Thus, we have

pir)=p,+ 3 psw(G;p(r))ecT, (21)
G+#0

and for all the results reported below the sum includes all
G vectors satisfying |G| <(72)'/227/a, where a is the cu-
bic lattice spacing. Self-consistency is rapidly obtained
by a simple iterative process. As an aside, using Eq. (19)
the ideal gas contribution F}4 is accurately approximated
for large @ (@0 2 50) by the simple expression

BF;y /N =21In —In(p,A*)— 3%, 22)

which shows the monotonic increase in “ideal” free ener-
gy due to increasing localization mentioned earlier.

A. The hard-sphere system

We now present results for the fcc hard-sphere crystal
thermodynamics because the original calculations in Ref.
27 contain some minor numerical errors which have been

TABLE I. Hard-sphere fcc crystal free energy per partlcle
BF /N and pressure BP vs average density p;.

BF/N BP
pa’ WDA Sim. WDA Sim.
1.00 4.449 4.661 8.83 10.26
1.025 4.674 4.868 9.64 11.11
1.05 4.908 5.099 10.60 12.12
1.075 5.155 5.354 11.89 13.20
1.10 5.422 5.663
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TABLE II. Hard-sphere fcc-liquid coexistence data.

Ps pi As/k, L BP /p;
WDA 1.02 0.881 1.46 0.101 9.28
Sim. 1.04 0.94 1.16 0.126 10.9

corrected. As in Ref. 27 we use the Percus-Yevick ap-
proximation for ¢‘? of the liquid and the liquid equation
of state and excess free energy f which are generated by
the compressibility route to the liquid thermodynamics.?’
Thus, both ¢?' and f are available in simple analytic
form.

The fcc crystal Helmholtz free energy per particle,
BF /N and pressure BP are given in Table I over a wide
range of densities. As shown previously, agreement with
Monte Carlo simulation data is quite good, with devia-
tions in the primary calculated quantity BF /N being less
than 5%. The derivative quantity BP shows slightly
larger deviations. Nonetheless, the crystal-liquid coex-
istence properties, presented in Table II, are generally
quite good. In particular, the closeness of the Lindemann
parameter to its simulated value indicates that the pre-
dicted variations in F¥P* with a are roughly correct.
So, the good agreement is not a fortuitous consequence of
canceling errors being minimized by the variational pro-
cedure.

B. The Lennard-Jones system

In this section we consider the Lennard-Jones system
by developing a very simple hard-sphere perturbation
theory. The present approach is a simplification of a more
refined theory®® previously used to accurately calculate
the full LY phase diagram but makes the computational
problem trivial if the hard-sphere crystal data is in hand.

For the general inhomogeneous liquid, we expand the
free energy of the LJ potential system about that of refer-
ence hard-sphere (hs) system of diameter d as

F[p]=Fial p1+F3lp]
+1 [drdr'g(r' —r)p(r)p(r' gy (v, 55p,d)
(23a)

where g, (r',1;p,d) is the pair-correlation function of the
inhomogeneous hs reference system. By a simple change
of variables in the last term of (23a) we may rewrite this
as

F[p]zFid[p]+Fex[P]+ fdl' ghs ,P,d) >

(23b)

where we have defined
R 1 , plr)p(r’) '
ghs(r;p,d)=mfd0dr B—;ﬁ———ghs(r+r ,;5p,d)

(23c¢)

which is clearly a spherical average of the integrated
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FIG. 1. Comparison of the liquid pair-correlation function g
and the spherically averaged, integrated two-particle distribu-
tion function g [see Eq. (23c)] of the fcc crystal for the hard-
sphere system of density po®=1.0.

two-particle distribution function. Now for studying the
crystal-liquid transition, two points are important to
recognize. First, since freezing is dominated by the pack-
ing constraints governed by the short range, strongly
repulsive interactions, the hs reference free energy con-
tains most of the important physics. Second, the internal
energy difference between equal density crystal and liquid
phases is quite small, since both dense phases have neigh-
boring particles near the minimum of the LJ potential
well. These points motivate the simple approximation of
replacing £,(r;p,d) in Eq. (23b) by the liquid g,,(r;p,d) at
the same average density p (Ref. 38). The similarity be-
tween the liquid gy, and the crystal g, is shown in Fig. 1
for hard spheres at the density pa3= 1.0, and the major
difference is in the oscillations of g}, at long distances
(where ¢ is small) (Ref. 39). With this Ansatz, the ap-
proximate free energy then becomes

FLpI=Ful p1+FRIp1+ 2 p [ dr s(rigyutrip.d)

(24)

In the liquid limit, Eq. (24) is the standard hs perturba-
tion expression. For the crystal, we have simply left out
any structure-dependent internal energy contributions,
which are expected to be small. Our previous work in-
clu;iges structural corrections to the crystal internal ener-
gy.

To calculate the LJ fcc crystal free energy using Eq.
(24), we make several auxiliary approximations. As in
the hard-sphere case, we parametrize the density by Eq.
(19). Then, since only Fy[p] depends on p,(r), the
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minimization with respect to a has already been per-
formed and the hs crystal free energies given in Table I
are appropriate to the LJ crystal of density po®/d>.
Next, we use the Percus-Yevick solution for g, and ap-
proximate ¢;y(r) by an extremely accurate fit using the
Double Yukawa potential ¢y, the combination of which
allows the internal energy term in Eq. (24) to be calculat-
ed analytically.*® Finally, we choose the diameter d in
the simple manner suggested by Ashcroft and Langreth,*!

¢Dy(d)=%kT—8 s (25)

where ¢ is the potential well depth.

Crystal-liquid coexistence calculated using Eqgs. (24)
and (25) at several temperatures is presented in Table III
along with the simulation results.***} The triple point
lies in the range 0.55<kT,/e<0.60, a bit lower than
simulation values. For reference, the liquid-vapor critical
point, which only depends on the liquid limit of Eq. (24),
is found to be at kT, /e=1.35 and p.0>=0.29, compared
to the values k7,/e=1.35 and p.0°=0.36 found in
simulation studies. Given the simplicity of this ap-
proach, the agreement is rather good, which indicates
that the main approximation of neglecting the structure-
dependent internal energy contributions is not unreason-
able. Naturally, the agreement here is not as good as ob-
tained earlier with the more sophisticated approach, but
the present simplifications will allow for a rather easy as-
sessment of the importance of attractive interactions in
determining the interfacial free energy.

C. A comparison of liquid and phonon theories of the crystal

Now that we have extended the liquid-based theory of
crystalline thermodynamics to non-hs systems, we may
compare it to the self-consistent phonon theory of the
crystal.** Although the phonon theory is not generally
applicable to inhomogeneous liquids, it is a good ap-
proach to the crystal and it is of considerable interest to
relate the apparently very different liquid-based approach
to it. Our comparison is limited to comparing the density
functional view of the crystal within a one-parameter (a)
theory to a self-consistent Debye model, which is the
one-parameter (@) theory for dynamic crystals starting
from the usual phonon viewpoint.*> The Debye model is
obtained from the more general self-consistent phonon
theory by assuming that the phonon frequency spectrum
is w=cq, g <qp, where g is related to the Debye tem-
perature by k®, =hcq, and c is the sound velocity. The
liquid-based theory is inherently a high-temperature
theory and so we consider this regime only, which is

TABLE III. Lennard-Jones fcc-liquid coexistence data at various temperatures (simulation results in

parentheses).

kT /e d/o Ps P L P

0.67 1.000 1.015 0.882 0.102 1.27

0.75 0.995 1.025(0.973) 0.898(0.875) 0.103(0.145) 2.41(0.67)
1.15 0.976 1.059(1.024) 0.946(0.936) 0.112(0.139) 7.62(5.68)
1.35 0.969 1.085(1.053) 0.970(0.964) 0.122(0.137) 10.8(9.00)
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characterized by ®, /T <<1, so that quantum effects are
negligible. Then, in both one-parameter theories, the
crystal density is assumed to be Gaussian around each
lattice site and a and ®p are related by ®,/T
=(3a/m)'?A.

Now the crystal free energy consists quite generally of
kinetic energy E, entropy S (both ideal and excess), and
internal energy U. We consider these contributions in
two parts. First, the kinetic energy and phonon entropy
per particle in the polarization-independent Debye model
are given by, in the notation of Ref. 17,

E=90®,/16+3kTI(®L /T)

and

—-0,/T

— TS =kT[3In(1—e )—4I(®,/T)],

where I (x) is the Debye integral
1x)=3/x% [ e'—1)"1dr .
0

At high temperatures, we may expand the Debye integral
in powers of ®, /T. Making use of the relation between
‘®p and a, the sum of the kinetic energy and phonon en-
tropy terms for a crystal of density p is

B(E —TS)=3In(a/m)+In(pA*)—$+3In(3) ,

plus small corrections of order (@, /T)*. This expression
is nearly identical to the large a limit of the ideal gas free
energy BF,4 /N [see Eq. (22)], differing only by a constant
($)In(3). The constant does not affect the subsequent
minimization of the free energy nor the value of the pres-
sure. This close relationship is reasonable: At high tem-
perature, the phonons in the Debye model are a collec-
tion of independent, classical oscillators while the ideal
gas entropy of the inhomogeneous liquid is due to nonin-
teracting (i.e., independent) particles in the presence of a
harmonic one-body potential. The Debye model contains
no excess entropy, however, and anharmonic effects are
only included to the extent that the self-consistency as-
pect yields an effective harmonic system. In a system
such as hard spheres, for which the free energy is entirely
entropic, the anharmonic contributions are absolutely
necessary to obtain a stable crystal phase. The liquid-
based theory we have presented includes the anharmonic
effects nonpertubatively via the use of the WDA, and
near melting is expected to be superior to the more gen-
eral self-consistent phonon theory, which includes anhar-
monic effects perturbatively. At lower temperatures, the
excess entropy is less important and the self-consistent
phonon theory should be better than the liquid-based
theory. )

The other contribution to the free energy in both
theories is the internal energy, which may be expressed
quite generally by

U/N=(p/2) [ dr¢(r)g(r;p) .

The difference between the theories arises in the
specification of g. In the Debye model, the pair-
correlation function is'’
g(r;p)=(1/p) [dQ 3 I*exp[—T(r—R)*/2] .
R0
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Hefe, I'=a(1—A,) ! and A, is given in the one phonon
approximation by!’

‘IDR .
AL(R)=(1/gpR) [ " sin(y)/y dy

which describes the correlations between a particle at the
origin and a particle at the site R and it approaches zero
at large R. In the liquid-based approach, we have
motivated an approximation for the internal energy based
on the similarity of the liquid g to the crystal §: we as-
sume the correlations to be mainly liquidlike. The Debye
phonon model certainly provides a better estimate of the
crystal correlation function, but at temperatures near
melting the crystal and liquid internal energies are not all
that different and the liquid approximation is adequate.
Of course, the liquid-based approach could use the Debye
form for g to study the crystal, but this loses its appeal
when considering any noncrystalline inhomogeneous
liquids (such as the crystal-liquid interface), and it is
preferable to introduce structure-dependent corrections
to U/N in the manner of Ref. 28.

Clearly, there are more similarities between the liquid-
based and phonon theories of the crystal than first meets
the eye. The ideal gas entropy and internal energy are
basically common to both theories, although calculated
within slightly different approximations. In the inclusion
of excess entropy, or anharmonic effects, the theories
differ considerably, so that the phonon theory is most ap-
propriate at moderate temperatures while the liquid-
based theory is probably more appropriate at melting.

IV. CRYSTAL-MELT INTERFACES

With the bulk-phase coexistence data as obtained in
the previous section, we may now proceed to analyze the
interfacial structure and energetics. The application of
density-functional theory is straightforward, with interfa-
cial thermodynamic quantities now of interest. The in-
terfacial region takes on the density profile p(r) which
minimizes the excess Grand potential AQ),

A9=F[p(r)]—,ufdrp(r)+PV (26)

subject to the constraints p(r)=p, and p(r)=p,(r)
asymptotically on either side of the interface and at the
coexisting (u,P,T). As noted in the Introduction, the
surface free energy is then AQ/ A, A being the surface
area, evaluated at the minimizing density p(r).

A caveat to the application of density-functional
theory to not only this but all liquid problems is that
DFT is a mean-field theory. The density p(r) is an aver-
age of the density operator § and no fluctuation correc-
tions are included into the theory. For the strongly first-
order freezing transition such fluctuations are likely
negligible. But in studying interfacial problems, fluctua-

tions can be important due to the existence of long-

wavelength capillary waves, roughening transitions, etc.
Such effects are completely neglected here, where we con-
sider infinite planar interfaces only, and so we proceed in
the manner of many earlier workers who have used DFT
to study liquid-vapor interfaces.*®

In analogy with the bulk-phase problem, the minimum
of Eq. (26) may be found by solving the Euler-Lagrange



equation. For some of the less sophisticated approxima-
tions to F,, used, an additional square-ingredient approx-
imation allows for an analytic solution in which the den-
sity profile takes on the standard tanh form. For the
WDA functional, and other approaches, the E-L equa-
tion does not simplify and the variational principle must
again be utilized by parametrizing p(r) and minimizing
Eq. (26). Direct minimization has the advantage that the
SGA is not invoked but the disadvantage that realistic
and flexible parametrizations have not been available un-
til now. So, in the remainder of this section we will first
motivate and describe in some detail our parametrization
of the interfacial density. We will then use it in a direct
minimization of Eq. (26) with the WDA to analyze the
(100) and (111) hard-sphere interfaces. Finally, we will
consider the Lennard-Jones interface in the same frame-
work.

A. Parametrization of the Crystal-Melt Interfacial Profile

In the crystal, each sharp density peak is maintained
by the self-consistent potential generated by neighboring
particles. If the averaged density or averaged order
across a plane of particles is reduced, the self-consistent
potential is naturally broadened relative to the full, per-
fect lattice. Conversely, structure is induced in an other-
wise uniform dense liquid in the proximity of any type of
external field (or wall) or, equivalently, the wall potential
and interparticle potentials yield a self-consistent poten-
tial with minima near the wall. In the crystal-liquid in-
terfacial region, the ultimate presence of the liquid on one
side of the interface must serve to disorder or broaden the
crystalline layers while the ultimate presence of the crys-
tal lattice planes on the other side of the interface must
induce some structure in the dense liquid. Thus, as the
interface is traversed from crystal to liquid the very sharp
density peaks characteristic of the crystal are expected to
broaden in a smooth manner and ultimately strongly
overlap and resemble the perturbed liquid. Of course, the
number of atomic layers over which such a transition is
expected to occur is unknown and could be quite few for
a “sharp” interface. How the peaks broaden through the
interface is also unknown. A useful parametrization of
the interface should incorporate these general physical
features as well as allow for possible lattice plane expan-
sion or contraction and anisotropic features.

A simple, appealing possibility is to generalize the pa-
rameter « in Eq. (19), allowing it to vary as a function of
distance z perpendicular to the interface, a =a(z). At the
same time, however, the average density must change
from p; to p; while maintaining p(r) =0 everywhere. The
latter constraint makes such an approach somewhat com-
plicated. A choice which -does guarantee p(r)=0 is
p(r)=p,+ f(z) [p;(r)—p,;] with 0= f(z) =1 but this does
not allow for any broadening of the solid peaks.

A more general starting point is to take Eq. (20) and al-
low the “‘order parameters” p; to vary with z (Ref. 19),

p(O)=p,+(p;—p)f oD+ Zpcfe(z)e’®T,  (27)
G

where we have introduced an additional variation f(z)
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for the average density change. The interface is now
characterized by the manner in which the f;(z) functions
vary from unity deep in the crystal phase to zero in the
liquid phase. Quite generally, the f;(z) of the larger G’s
(more rapidly varying Fourier components) must decay
to zero over a shorter distance than the f;(z) associated
with smaller G’s since the crystal density is expected to
broaden out in the interface. To maintain a positive den-
sity is also likely to require that the large G f; ‘“‘end”
their decay closer to the crystal than those of the smaller
G. These features are incorporated by the following scal-
ing form for the “decay length” Az of the order parame-
ter fg(z):

Azg=|z5—2,|=(G,/G)*Az, 0<v<1, G=G,, (28)

where G, is the magnitude of the smallest nonzero r.Lv.,
the parameter Az is the width of the interface, and the
parameter v controls the rate of broadening of the solid
density peaks. We then also take Azy,=Az. The order
parameters all begin their decay at the same point z,, al-
though this is another potential variational parameter.
Finally, we assume a very convenient shape function for
the fg(2),

fel2)=1, |zl <z,
Z—"ZO
=3 1+cos |7 Az , zo<lzl<zg
=O, ZG<iZl (29)

for a two-interface slab geometry with the solid phase in
|z| <zq, the liquid phase in |z| >z,+ Az, and the interfa-
cial variations completely contained in z, < |z| <z,+Az.
Figure 2 shows schematically the behavior of the f;(z)
functions described by Egs. (28) and (29).

Some particular features of the above parametrization
are notable. First, as evident in Eq. (28), the decay
lengths Az; are all proportional to the full interface
width Az, which is a key aspect in limiting the number of
variational parameters. The algebraic scaling in Eq. (28)
is motivated by considering the near-crystal region. If
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FIG. 2. Schematic of the spatial variations of the f;(z) order
parameters describing the interfacial density profile for an inter-
face of width Az.
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this region were described by simply an a(z) as men-
tioned earlier, then ps f; would have behaved as
PGfG(Z)zPse TGZ/4a(z) X

Equating this p; f;(2z) to an expansion about z =z, of the
pcfc(2z) in Eq. (29), one finds the scaling Azg~G 1, i.e.,
Eq. (28) with v=1. Algebraic scaling of the Az thus ap-
pears appropriate, with a parameter v monitoring the
rate of broadening. Note that v=0 yields the no-
broadening parametrization mentioned earlier. There are
several reasons for the choice of the cosine shape func-
tions in Eq. (29). Foremost among them is that these
f(z) are easily Fourier transformed, which simplifies the
subsequent WDA calculations of p(r) immensely. Also,
the interface has a distinct beginning, at |z,|, and end, at
|zo+ Az|, which simplifies computations and ensures that
the two interfaces do not interact even if z,
is fairly short. In comparison to the usual form of
[1+tanhB(z —z,)]/2, the [1+sinB(z—2z,)]/2 form
[equivalent to Eq. (29) with z,=z,+ Az /2] has exactly
the same value and slope at z=z, and has a 10-90 width
only about 20% shorter. So, for the most important re-
gion of the interface, the center where the variations are
most rapid, Eq. (29) and the ‘“‘usual” tanh form are very
similar. Figures 3 and 4 show the planar-averaged inter-
facial profiles

1
p(z)=—A—fdx dyp(r)

generated by Egs. (27)-(29) for a variety of (Az,v) choices
for the fcc (111) interface, with z, fixed midway between
lattice planes perpendicular to the surface. Values of
v 2 0.8 show negative densities, and hence 0<v<0.75 is

(111 v = 1/4

10 XTAL=~———— INTERFACE f~—LIQ—

PLANAR-AVERAGED DENSITY p(Z)

Z/(al(3)

FIG. 3. Planar-averaged interfacial density p(z) for the (111)
fcc-liquid interface for varying interfacial width Az at fixed
broadening parameter v=0.25, as generated by the parametriz-
ation of Egs. (27)-(29).
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FIG. 4. Planar-averaged interfacial density p(z) for the (111)
fcc-liquid interface for varying broadening parameter v at fixed
interfacial width Az=four layers, as generated by the parame-
trization of Egs. (27)-(29).

a practical restriction. In general the parametrization
spans a range of physically appealing profiles. Aside
from changes in lattice plane spacing and a real particle
density, the (100) interfaces are very similar (see Fig. 5,
for example).

A number of modifications to this parametrization, at
the expense of more parameters, are possible. As noted,
the quantity z, is another parameter and could also be
generalized to z$ with some scaling form. The variations
of fo(z) and f;,(z) need not be equal since the average
density could decay over a width different than Az. Also,
the scaling form of Eq. (28) does not possess anisotropy
since r.l.v.’s of the same magnitude decay at the same
rate independent of their G, components. To account for
this, Eq. (28) could be generalized to depend on both G
and G, independently. It is important to point out, how-
ever, that the lack of anisotropy in the parametrization
does not at all preclude anisotropic interfacial properties
in a nonlocal density functional theory. Some of the
above options may, however, lead to persistent negative
density regions and thus be unphysical.

A distinct short-coming of the above parametrization
associated with the basic Ansatz of Eq. (27) is that the G
vectors are fixed at their bulk crystal values and no spa-
tial fluctuations on other length scales are allowed. This
prohibits the inclusion of lattice expansion or contraction
into the parametrization. A possible solution to this
problem is to allow the lattice parameter a to vary
through the interface, although it is not clear how to do
this properly. As evident upon careful inspection of some
of the profiles in Figs. 3 and 4, the peaks in the densities
are slightly shifted toward the crystal. This apparent con-
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o(2)
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Z (L to interface)

FIG. 5. Equilibrium planar-averaged interfacial density p(z)
of the (100) fcc-liquid interface. Solid line: present theory for
hard spheres, four nonbulk layers. Dashed line: simulation re-
sult for soft spheres, six and seven nonbulk layers. The centers
of the predicted and simulated profiles have been approximately
aligned.

traction, which increases with increasing v, is basically
the consequence of multiplying a symmetric function by
an asymmetric one, thereby introducing a slight asym-
metry which in this case favors the crystalline side of the
broadened peaks. Aside from allowing for an expansion
of a, we know of no way to rectify this situation.

B. Hard-sphere interface results

For a chosen crystal face in contact with the coexisting
liquid, the interfacial properties are obtained straightfor-
wardly by minimizing Eq. (26), using the WDA for
F_[p], with respect to Az and v, the two variational pa-
rameters describing p(r). For the hard-sphere system, we
use the Percus-Yevick approximation throughout so that
the coexistence conditions are those given in Table II.
Some calculational details are provided in the Appendix.

The equilibrium (100) planar-averaged interface is
shown in Fig. 5 and has a width of four atomic layers
(each layer of width a /2), i.e., four layers of neither bulk
crystal nor bulk liquid density, with an exponent of
v~0.25 and a surface free energy of y=(0.66
+0.02)kT /02 As evident in Fig. 6, which shows
BAQ/ A for a variety of (Az /v) values, the five-layer in-
terface is only slightly higher in energy and is within the
estimated errors of the calculation. Generally, we find
the v=0 (no broadening) density profiles to be
significantly higher in free energy than the v=0.25
profiles, while the broader v=0.5 profiles are only slight-
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ly higher than the v=0.25 profiles. The variations in
BAQ/ A with interface width are similar for the different
v values so that the effects of broadening rate and width

- are weakly coupled. Since the peaks in the density profile

contract slightly with increasing v, with no contraction at
v=0, the interface seems to prefer some broadening
despite the associated expense of the contraction (not
seen in simulations). This suggests that if a lattice expan-
sion could be incorporated into the parametrization then
equilibrium interfaces with larger v would be predicted.

The equilibrium (111) planar-averaged interface is also
found to consist of four layers (each layer of width a /V'3)
with an exponent of v=0.25 but a slightly lower surface
free energy of ¥ =(0.6310.02)kT /o%. The general varia-
tions of BAQ /A with varying Az and v are similar to
those found for the (100) interface [compare Figs. 6(a)
and 6(b)], with the exception that it is the (111) three-
layer interface which is very close in energy to the (111)
four-layer interface. Layer-by-layer contributions to the
surface free energy of the (111) interface are presented in
Fig. 7. The largest contributions to ¥ occur in the middle
of the interface where the profile is varying most rapidly
as expected. However, the contributions are not sym-
metric about the center of the interface, the near-crystal
region costing more free energy than the near-liquid re-
gion. In addition, small but non-negligible contributions
to BAQ/ A come from the “bulk” layers adjacent to the
interface on each side. These contributions are a conse-
quence of the nonlocal functional, which has a range ~o
that is larger than the interlayer spacings of both the
(111) and (100) interfaces.

The interfaces studied here show very little anisotropy
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FIG. 6. Surface free energy Byc? vs number of interfacial
layers for various values of the broadening parameter v for the
hard-sphere (100) and (111) fcc-liquid interfaces.
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(111) at Equilibrium (4 layers, v=0.25)
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FIG. 7. Layer-by-layer contributions to the surface free ener-
gy Byo? of the equilibrium hard-sphere (111) fcc-liquid inter-
face, with the interface located in layers 16—19.

in y, with y(111) less than ¢(100) by only about 5%, and
some of the difference may reflect uncertainty in the cal-
culated results. In addition, the observed expansion of
the (100) planes in the LJ system suggests that if such an
expansion could be accomplished here, ¥(100) would de-
crease slightly and thereby diminish or even reverse the
present trend in anisotropy. Structural differences be-
tween the interfaces are also quite small since both have
four atomic layers and v~0.25. Finally, since both (100)
and (111) interfaces are fairly narrow, the full 3D varia-
tions in the density are not small even in the near-liquid
layers. Also, with the scaling of Eq. (28) and v=0.25, the
larger G vectors decay over only about two layers. These
observations suggest that the SGA is not applicable and
that the use of a nonperturbative, non-SGA functional
such as the WDA is necessary to study these interfaces
appropriately.

Although simulations on hard-sphere interfaces are not
available, we can make some qualitative and quantitative
comparisons to the simulations on » ~'? and LJ potential
systems because the steeply repulsive nature of all these
potentials is expected to dominate the structures of the
crystal, liquid and interface. The r ~12 interfaces studied
by Cape and Woodcock!® (100) and Tallon!! (111) and the
(100) and (111) LJ interfaces examined by Broughton and
Gilmer® consist of approximately six or seven atomic lay-
ers, with some small density variations apparently ex-
tending further into the bulk phases. In direct compar-
ison, our results showing only four layers are thus a bit
too narrow. Better agreement with the simulations
would likely be found if our shape functions f;(z) exhib-
ited tails into the ‘“bulk” phases. As noted earlier, the
cosine and hyperbolic tangent shape functions are identi-
cal near the middle of the interface and only differ
significantly near the ends of the interface, where the
cosine form terminates abruptly. Since the contributions
to y from the ends of the interface are rather small (see
Fig. 7), we expect that profiles with longer tails, but with
the same rate of change through the center of the inter-
face, would yield broader width estimates and rather
similar values of ¥ to the results obtained here. For
reference, the number of “nonbulk” (densities differing by
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more than 2% from either bulk phase) layers expected for
a tanh-like profile is two more than for the cosine -profile
for these widths; hence, using the more gradual profile
form we might expect “widths” of six layers. In any case,
the four-layer width obtained here is still in reasonable
agreement. By approximately aligning the centers of the
(100) interface profile calculated here with that of the
r~'2 (100) simulations'® (see Fig. 5), it appears that the
basic structural details of the interfaces are quite similar.
In particular, our assumption that f(z)=f;,(z) appears
to be reasonable.

A quantitative comparison of the ™ '“ simulation re-
sults with our calculational results is also warranted be-
cause of the close similarity of soft and hard spheres.
The soft spheres show As=1.0, L =0.14, and a com-
paratively small energy of fusion, indicating again that
entropy and short-range repulsion dominate the freezing
of this system. To compare our value of ¥ to the surface
stress of the r 12 system (which, however, is not identical
to ¥ since the crystal can sustain finite shear stresses) of
(0.4610. 1)(kT /€)' %kt /0%,'° we assume that the thermo-
dynamics of a hs sphere system of effective diameter
d/o=(e/kT)""(1+B /n) (B =0.5772) can approximate
that of the e(r /o) ™" potential system.*’ Scaling our hs
results, we then find y =0.60(kT /¢)!/S%(kT /5?) in fair
agreement with the simulation result. In addition, the ra-
tio of Byo? to As, an empirical invariant for a wide range
of materials,? is found to be 0.46 for the soft spheres and
0.45 for the hard spheres.

12

C. Lennard-Jones interface results

In this brief section, we extend our simple calculation
of Lennard-Jones bulk-phase coexistence to the the inter-
face. Our main goal is to assess the importance of the ad-
ditional attractive interactions on the interfacial free en-
ergy and to compare our results to the simulation values
of Broughton and Gilmer.® We have already seen in Sec.
ITII B that the structural dependence of the crystal inter-
nal energy is not crucial to obtaining reasonable phase
boundaries. Since the average density change at the tran-
sition is fairly small and is expected to occur over several
atomic layers, we modify the attractive contribution to
F,, the third term in Eq. (24), to essentially a local densi-
ty form. Defining the attractive contribution to the free
energy per unit volume as

Fou(p)
—t—tVPLZ%pzf dr §()gy(rip,d) (30)

we take the approximate free energy to be
1
Flp]=Filpl+FRlpl+ - [, dz Fulp2)) 3D
z z

where p(z)=p;+(p, —p;)fo(2). An alternative and near-
ly equivalent approximation is that of the SGA applied to
F,,.(p), which is expected to be acceptable since the f(z)
order parameter is fairly slowly varying. The local form
in Eq. (31) leads to a preference for narrower interfaces
than predicted by Fy[p] alone, but narrower interfaces
only result if the attractive terms are large enough to
counteract the hs contributions to y. Note also that hav-



ing suppressed any structural dependence to F,,, this
contribution is isotropic.

We consider kT /e=0.666 (d /o =1) which is close to
the triple point conditions found by Broughton and Gil-
mer (kT /£=0.617). The bulk-phase coexistence condi-
tions at this point are given in Table III. The attractive
contribution to Eq. (26), vy, is easily calculated from the
last term in (31) and the surface free energy is
YLI=7Vhs T Yaw From our previous hard-sphere results,
we can estimate the hard-sphere contribution as about
0.42e /o>. The attractive contribution, on the other
hand, is only about +0.016¢ /o2 per layer, and hence is
considerably smaller in magnitude. So, while the precise
result requires the full minimization of y, to be carried
out at the appropriate LJ coexistence conditions, we re-
strict the parameter space to v=0.25 only, since v, is
small and v independent. We find the hard-sphere contri-
butions to be y,,=0.37¢/0? for the four-layer (111) in-
terface and 7,,=0.38¢/0? for the three-layer (111)
interface. Comparing to the results at hard-sphere-
coexistence, ¥y, is clearly fairly sensitive to the precise
coexistence conditions but the ordering is quite similar.
Combining these 7y, results with y,,, which slightly
favors the narrower interface, we find the three- and
four-layer (111) LJ interfaces to have essentially the same
surface free energy of v;,;(111)=0.43e /0. The interfa-
cial structure is narrower than observed in the simulation
studies but the surface free energies are quite close: The
simulation value® is y1;(111)=0.35¢ /0 so that, as in the
scaled r !? case, our predicted results are only about
25% too large. From the above discussion, y;;(100) is
expected to be very nearly equal to y,(111).

D. Additional comments

Our results for both hs and LJ interfaces are generally
in agreement with simulation studies, with the y values
found here larger than the simulation values. While part
of the deviation inevitably lies in our use of the WDA,
improved parametrizations will necessarily lower the cal-
culated y values, by virtue of the variational nature of the
calculation, and bring them closer to the simulation
values. It is interesting to compare our y values to
Turnbull’s empirical relation between ¥y and the latent
heat AH of closed-packed metallic elements,? ’

y=0.45AHp?"3 . (32)

The hs values of y obey this quite closely, with
y(111)/AHp?3=0.43 and y(100)/AHp?/*=0.45. For
the LJ system at kT /e=0.666, AH=0.94¢ and
y(111)/p?3AH=0.45. This agreement is primarily a
consequence of the domination of the hard-sphere part of
the free energy and of the close adherence of our hs re-
sults to Eq. (32). The agreement of our results with Eq.
(32) is fortuitously good, of course, but still interesting
and rather remarkable.

V. DISCUSSION

The interfacial properties calculated within the present
framework may be compared to a variety of other DFT
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calculations of crystal-melt interfaces. The most com-
plete study, aside from the present one, is that of McMul-
len and Oxtoby (MO) (Ref. 47). MO employed the RY-
HO truncated expansion combined with several parame-
trizations without any peak broadening to study the fcc
hard-sphere interfaces. While they found narrow, isotro-
pic interfaces of about 3¢ in width, their values for y
were rather large, ¥=~1.66kT /0?. MO attributed the
large y values to the large latent heat predicted by the
RY-HO functional. However, the equilibrium crystal
phase in this theory is also much more highly localized
(@o?=373 vs ao?=~90 in simulations), which may be
deleterious to y. Surprisingly, when MO considered a
parametrization that did allow for peak broadening
through the interface they found y values twice again as
large. This behavior is radically different from that found
here, when some broadening (v>0) does lower y, and
over a wide range of v the variations in ¥y are not large
compared to the equilibrium value (see Fig. 6). It would
be of considerable interest to employ the present parame-
trization in an RY-HO functional, which would allow for
a better assessment of the importance of the functional
(although this is still convoluted with the possibly impor-
tant differences in bulk-phase coexistence predicted by
the two functionals). Finally, McMullen and Oxtoby
compared their full functional results to those obtained
with the additional SGA and found the SGA to be unsa-
tisfactory in detail but acceptable for obtaining approxi-
mate results.

Moore and Raveche used a functional similar to the
RY-HO functional and a no-broadening parametrization
with the SGA to study the fcc LJ interfaces.*® Their
theory was not used to calculate the bulk-phase coex-
istence, instead they used simulation values as imput to
their calculation so that the theory is not entirely self-
consistent. Moore and Raveche predicted very broad in-
terfaces of 15 layers with a factor of 3 anisotropy in v, in
clear contrast to simulation results. They did, however,
use their formal theory to analyze the planer ‘“‘capillary-
wave” correlations in the interface and found a close
analogy to the case of the liquid-vapor interface correla-
tions. ;

Shih et al. started from a Landau-like expansion of
F[p] to fourth order in p; (Ref. 49). Limiting G to the
{110} set for a bcc lattice (and a few related G’s), they
used (i) the experimentally obtained density change and
heat of fusion to set the expansion parameters, and (ii) a
square-gradient approximation for the interface, and pre-
dicted a reasonable ¥ for Na. They also found only small
anisotropy and narrow interfaces. Despite its simplicity
and very approximate representation of the crystal densi-
ty, the use of experimental input appears to make this ap-
proach useful for easy estimates of ¢ for a wide variety of
systems. In addition, Shih et al. were able to derive a re-
lation between Yy and AH analogous to Turnbull’s rela-
tion (although for bce materials) from their theory.

A completely different liquid-based approach to the
freezing and crystal-melt interface has been presented by
Klupsch.’® Here, a Percus-Yevick closure equation is
used in combination with the general Ornstein-Zernike
equation to obtain the pair and direct correlation func-
tions of an inhomogeneous liquid. Applying the theory to



6788

the Lennard-Jones system, with an additional hard-core
perturbation theory and a ‘‘strong localization” condi-
tion, reasonable coexistence densities are obtained slight-
ly above the triple point (kT /¢=0.752) but with very
strong localization (large a). For the interfacial region, a
no-broadening parametrization is used and an interfacial
width of about 3.50 and surface energy of 0.968¢ /02 are
obtained, the latter being somewhat higher than the simu-
lation values at lower temperatures. While this approach
is novel and appears useful, the strong localization condi-
tion required to solve the coupled integral equations
essentially cuts off the tails of the Gaussian densities so
that the particles on different lattice sites do not interact
with the hard cores of their neighboring particles. Freez-
ing is thus apparently controlled by the ideal gas free en-
ergy and the internal energy contributions (similar to the
contributions in the Debye theory), and the structure of
the crystal-melt interface is controlled mainly by the at-
tractive part of the potential, in contrast to our results.
Finally, with the apparent absence of any appreciable ex-
cess entropy due to the strong localization condition,
hard spheres might not freeze using this approach.

The limitations of all of the density functional theories
discussed above, including mainly the truncated function-
al expansion and very limited density parametrizations,
are overcome by the approach taken in the present work.
The equilibrium bulk-phase coexistence and crystal p,(r)
are in good agreement with simulation, an SGA is un-
necessary, and the density parametrization allows for
peak broadening in a controlled manner. Our generally
good agreement with simulation data indicates that some,
if not all, of these aspects are important in studying
crystal-melt interfaces. The parametrization presented
here does have its limitations as noted earlier but
nonetheless it provides a foundation for even more so-
phisticated representations of the interfacial profile. The
WDA also has limitations; it is primarily useful as an ex-
cess entropy functional, which is why hard-sphere pertur-
bation theory was utilized to study the LJ potential. This
poses some problem in extending the WDA theory to
simple metal interfaces. Namely, in metallic systems the
effective pair potential is density dependent, because of
the density-dependent electron screening of the ion cores,
and since there is an average density change through the
crystal-liquid interface there is a corresponding potential
variation and an effective hard-sphere diameter variation.
Fortunately, the electronic contributions to the free ener-
gy cause the density change to be much smaller than in
the LJ and hs liquids, and hence a density-independent
diameter may not be a poor approximation, but this has
yet to be tested. The problem of density-dependent po-
tentials actually also exists in application of the usual
RY-HO functional but is implicit, and thus hidden, in the
theory: The liquid ¢‘® corresponding to the liquid-
density potential ¢(p,;) is assumed an adequate approxi-
mation to the crystal with its different potential ¢(p;).
This issue has not been addressed even though many of
the applications of the RY-HO theory are ostensibly to
metallic systems. !’

The DFT of the crystal-liquid interface is intrinsically
a theory for the equilibrium interface. As such, it is
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difficult to see precisely how it might be utilized for inves-
tigating growth, i.e., nonequilibrium, phenomena aside
from providing the necessary equilibrium-state informa-
tion such as AH and y required in existing growth
theories. One possible avenue is to use the DFT to esti-
mate the free energy barriers between equilibrium states
by assuming that the free energy functional evaluated at a
density configuration away from the minimum may be in-
terpreted as the free energy of that configuration. For
the crystal-melt interface, equivalent equilibrium states
are related via a translation of the interface by an integral
number of lattice planes perpendicular to the interface.
This corresponds to a translation of z, in our parametriz-
ation, and the surface free energy shows both the minima
associated with equilibrium states and maxima some-
where between these states. The difference between max-
imum and minimum values is taken to represent the free
energy barrier Ay. In Cahn’s model of crystal growth
from the melt, Ay determines a critical undercooling
AT* below which (AT <AT™*) the crystal grows in an ac-
tivated over-the-barrier manner and above which
(AT* <AT) the crystal growth proceeds continuously.’!
This behavior is similar to that of a charge density wave
exhibiting a washboard potential and in the presence of
an electric field: a critical field exists above which the
CDW slides without activation. We have estimated Ay
for the hard-sphere (111) interface by considering z, as a
continuous parameter and have examined two values of
z, at the midpoint between lattice planes and at the lat-
tice planes themselves. We find the midpoint z, to be the
minimum and obtain a value of Ay /y~0.007. If this
value is used to estimate the critical undercooling, we find
AT*=(0.003)T),. Such a small critical undercooling (it
is probably even smaller, given the accuracy of our calcu-
lations) is consistent with the generally observed continu-
ous growth of simple metals and, in Jackson’s language,
low-a materials in general. An alternative to the above
simple translation of the interface during growth is an
“inch-worm” motion. In this case, the four-layer inter-
face first extends to five layers by adding an extra layer in
the liquid side or contracts to three layers by subtracting
the first noncrystalline layer. Subsequently the interface
contracts or extends, respectively, to reestablish a four-
layer interface translated one layer into the liquid. Ay /y
can then be obtained directly from Fig. 4 and we find
Ay /y~0.01—0.02, which is larger than found above
and suggests that uniform translational motion is pre-
ferred. While the critical undercooling AT* predicted is
fairly small, as expected, one must remember that the en-
tire procedure is predicated on the assumption that the
density functionals have a physical interpretation away
from equilibrium. We also neglect other kinetic aspects
of the growth process which have recently been seen in
simulation studies. Specifically, the (100) LJ interface has
been found to grow without activation, as suggested by
the above discussion, but growth of the (111) LJ interface
is apparently activated and a concerted motion of many
atoms is required to advance this interface.® It is unlikely
that any DFT will be capable of predicting such subtle
phenomena.

Surface mielting, on the other hand, is an equilibrium
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phenomenon which could be analyzed by the general
method discussed in this paper. Low index crystal planes
at the crystal-liquid interfaces of Pb have been observed
to melt below the bulk melting point T, with the thick-
ness of the liquid layer diverging as T, is approached™?
and similar behavior for Aluminum has recently been ob-
served in a simulation study.’> For “liquidlike” layers
only a few atomic diameters in width, the proximity of
the crystal-liquid and liquid-vapor interfaces must affect
the thermodynamics of the system. With a suitable den-
sity parametrization, and perhaps hard-sphere perturba-
tion theory, the WDA is capable of analyzing these inho-
mogeneous systems in a straightforward manner. The
simple parametrization given here with v=0.0 and Az
the only parameter (taking on continuous values Az = 0)
should be a useful starting point for estimating the tem-
perature at which the surface first melts. The structure at
temperatures approaching T, is less abrupt and so easier
to describe. We thus expect that the initiation and prop-
agation of surface melting is approachable, albeit still
within mean-field theory, using the WDA.

In summary, the weighted-density functional approxi-
mation to the excess Helmholtz free energy of an inho-
mogenous liquid has been shown to yield good predic-
tions for the structure and surface free energy of simple
crystal-melt interfaces. The accuracy of our results is due
not only to the accuracy of the WDA in predicting the
bulk-phase coexistence but also to the use of a flexible pa-
rametrization of the crystal-melt interfacial density
profile which includes broadening of the crystal density
peaks on entering the interfacial region. Modifications to
the parametrization and to the manner in which attrac-
tive interparticle interactions are included have been sug-
gested, which should lead to even better results than ob-
tained here. With the successful application of the WDA
to both simple?”?® and binary®* liquid freezing, crystal
elastic constants,> wetting and capillary condensation,
submonolayer gas condensation on surfaces,’® and now
the crystal-melt interface, the WDA provides the most
versatile and accurate description of inhomogeneous
liquids at the present time, since no other single function-
al (e.g., the local-density functional or the RY-HO func-
tional) has shown the capability of dealing with such a
broad spectrum of phenomena. Future applications of
the WDA to, for instance, nonspherical molecular fluids,
surface melting, and grain boundary structures, appear to
require only minor generalizations or modifications of the

== [ak w((Gﬁ+k2)”2)l l 3, cos(GR) |cos(kz)
G” {GH]

{Gy}

Here, the sums over G, are over all positive G, which can
be associated with a particular magnitude of G“, the sums
over {G} are over those vectors equivalent by symmetry
and having the same magnitude G, and the sum over G
is over all magnitudes of G|. Notice that for a fixed in-

sin(kz)
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basic theory and flexible parametrizations in the spirit of
the parametrization presented here.
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APPENDIX

In this brief appendix, we discuss the numerical pro-
cedures used to evaluate the self-consistent weighted-
density p(r) and, subsequently, the excess Helmholtz free
energy. For the interface problem, the broken symmetry
relative to the crystalline phase divides each set of re-
ciprocal lattice vectors {G} equivalent by symmetry in
the crystal into subsets {G|, G, }, where 2 is the normal to
the plane of the interface (which is not necessarily along a
cubic axis of the crystal). Thus, the calculation of p is
more complicated than the simple form of Eq. (21) in the
main text. Defining the Fourier transforms of w(r;p(r))
and f;(z) by

w(k;ﬁ(r))=f_ww dre *"w(r;p(r)) (A1)
and
fetk)= [ dze™™fg(2)
P [sin(kzg)+sin(kzy)], (A2)

" k(Bg—K)Bg+K)

where B =7 /(25 —z,), we may express p(r) as

’ —ik_z
ﬁ(r)=p1+(ps—p1)51;fdkze “w(k,)fo(—k,)
iGR_1_
+ %PG‘—’ o
ik

X [ dke "Fw((GHHED)f6k, +G,)

(A3)

with R the component of r perpendicular to 2. Now for
each (G“,GZ), there is a vector (—G”, —G,) and since w
and f are even functions of wave vector, the last term in
(A3) may be rewritten as (changing k, to simply k)

z

S pefolk +G)+fo(k —G,)) ]
G

(A4)
G

z

S pe(folk +G,)—folk —G,)) ] l .

[

terface profile that the two sums over G, in (A4) need
only be calculated once since they are r independent.
Furthermore, only w in (A4) depends on p(r), although
the dependence is not shown explicitly. So, at each point
r the entire term in [ ] is calculated only once. Computa-
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tions are still lengthy, however, since at each r point the

one-dimensional Fourier transform over kX must be per-
formed for each value of G", the results summed togeth-
er, a non-self-consistent value of p(r) calculated and then
the entire procedure iterated to self-consistency. Subse-
quently, the 3D integral over r (r confined to the near-
interface region) must be carried out.

To accomplish the above program efficiently, look-up
tables are generated for the weight function w (k ;p) with
a k mesh of 0.1/0 and a p mesh of 0.02 /03. The integral
over k is performed using Simpson’s rule with a step size
Ok, and the z integral through the interface is also per-
formed using Simpson’s rule with step size 6z. For these
fixed mesh sizes, look-up tables of cos(kz) and sin(kz) are
then calculated. At fixed R, the z integral is evaluated at
successive points z, z+8z so that the initial estimate of
the weighted density at z+8z, p,,;(R,z +62z)=p(R,z), is
close to the correct value. Then, only five iterations are
required to obtain sufficient self-consistency of
p(R,z+8z). For the (100) interface, we obtained good
accuracy for step sizes 8k =2mw/1630 and 6z=a /32,
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with a the cubic cell length. For the (111) interface, we
found equivalent accuracy could be obtained with
8k =6m /1630 and 8z =a /20. In both cases, the subse-
quent R integration was performed using a Chebychev
polynomial integration routine (kindly provided by
C.M.M. Nex of the Cavendish Laboratory, Cambridge
University) with up to 32 points for each of the x and y
integrations. By symmetry, the R domains can be re-
duced to the minimum area regions of (0 <x <a /4, y <x;
a/4<x<a/2; y<a/2—x) for the (100) interface and
O<x <a/2\/2 —x /V3<y <x/V3) for the (111) inter-
face, with the (111) interface axes defined as X

=(—1,1,00/v2, $=(—1,—1,2)/V6 and 2=(1,1,1)/
V'3 relative to the cubic axes.

With this procedure, we calculate free energies for the
coexisting crystal phase that agree with our previous re-
sults, which use Eq. (21) and differént numerical pro-
cedures, to within 1 part in 10°. We thus expect this pro-
cedure to be sufficiently accurate through the interface
since the density variations become less rapid.
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