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Ferroelastic phase transition and phonons in a diatomic-molecular monolayer
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Using a constant-pressure molecular-dynamics simulation, we have investigated the thermo-
dynamics and the dynamics of a two-dimensional diatomic-molecular monolayer undergoing a fer-
roelastic phase transition. This system closely resembles the 6 phase of oxygen molecules adsorbed
on a graphite surface. For Lennard-Jones parameters appropriate for the oxygen molecules, we find
a first-order transition from an orientationally ordered distorted triangular structure (ferro-
elastic phase) to an orientationally disordered equilateral triangular structure (paraelastic phase).
The transition temperature is 20. 1 K compared with 26 K for oxygen on graphite [coverage =8

0
molecules (100 A )] and the entropy associated with this transition is 0.88ks. The orientational
diffusion constant increases by a factor of 30 at the transition. In addition, there is a strong soften-
ing of the elastic constants near the transition, particularly in the paraelastic phase; this can be un-
derstood in terms of translation-rotation coupling. Comparison between phonon frequencies for
certain symmetry directions obtained by using quasiharmonic approximation and molecular-
dynamics simulation clearly shows the presence of large anharmonicity effects in the paraelastic
phase. A rapid quench from the high-temperature phase to very low temperatures indicates the
presence of small clusters (consisting of 6—12 molecules) with both ferroelastic and herringbone or-
dering. In addition, we find a large density of equilateral triangular plaquettes. These give rise to a
three-peak structure in the center-of-mass radial distribution function.

I. INTRODUCTION

Structural phase transitions (SPT's) and dynamics of
three-dimensional (3D) molecular solids have been widely
studied. ' Typical systems are solid nitrogen (Nz), solid
oxygen (02), alkali cyanides (CN ), alkali superoxides
(Oz ), and alkali nitrates (NO2 ). These systems gen-
erally exhibit SPT's in conjunction with orientationa1
order-disorder transitions where both translational and
rotational degrees of freedom are involved. The SPT's
associated with elastic (strain) deformation are called fer-
roelastic. For example, in three-dimensional KCN, at
low temperatures, the solid has an orthorhombic struc-
ture in which all the CN molecules are oriented in one
direction. When temperature is raised, it transforms into
a cubic structure in which the CN molecules are orien-
tationally disordered.

A molecular overlayer adsorbed on a smooth crystal-
line surface can form a two-dimensional (2D) molecular
solid. Molecular nitrogen (N2) or oxygen (02) phy-
sisorbed on graphite surface serve as typical examples of
such a 2D system. ' One of the important characteristics
of molecular solids is the competition between direct and
indirect (lattice mediated) intermolecular interactions
which leads to different types of orientational order-

ing. "' Since the effect of this competition is pro-
nounced in two dimensions due to enhanced fluctua-
tions, ' one may see multiple stage phase transitions'
and in some cases, fluctuation-driven first-order phase
transition. '

Physisorbed oxygen molecule on graphite exhibits a
number of different phases depending on the coverage
and temperature. ' There are extensive experimental in-
vestigations of this system. X-ray diffraction, ' magnetic
susceptibility, ' heat capacity, ' neutron diffraction, and
low-energy electron diffraction ' (LEED) measurements
have discovered a diverse phase structure. In particular,
there is a low-coverage low-temperature phase (6 phase)
in which the molecular axes are collinear and parallel to
the substrate surface. The oxygen lattice in this 5 phase
has a centered rectangular [or isosceles triangular (IT)]
structure which is incommensurate with the substrate
graphite hexagon. This phase was predicted by Etters et
al. by pattern search energy minimization. The zero-
temperature energy minimization calculation which ig-
nored the substrate corrugation predicted the IT lattice
structure of this low-coverage 5 phase. Experimentally,
this phase was first found by Heiney et aI. ' and later
careful LEED work ' gave a great deal of information
about this phase.
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Finite-temperature properties of the 6 phase have been
studied by using Monte Carlo simulations. ' In partic-
ular, Pan et al. ' have investigated the melting properties
of finite-size clusters. Molecular-dynamics (MD) simula-
tion is another direct method to study the structure and
phase transitions and in addition it gives information
about the real time dynamics. In particular, the
constant-pressure molecular dynamics is an excellent
method for systems exhibiting structural change with
temperature or pressure. We have previously studied
the properties of a diatomic molecular monolayer sys-
tem which closely resembles this 5 phase of 02 on
graphite. We found a first-order phase transition from an
orientationally ordered ferroelastic phase to an orienta-
tionally disordered paraelastic phase at temperature
T, =20. 1 K. This order-disorder transition is accom-
panied by a lattice structure change where the oxygen lat-
tice transforms from an IT structure to an equilateral tri-
angular (ET) structure. This result is in reasonable agree-
ment with a recent LEED experiment. In addition, we

have studied the dynamical properties in this system and
the behavior of sound velocity across the ferroelastic
phase transition for certain symmetry directions.

In the present paper we report in detail our constant-
pressure molecular-dynamics studies of this 2D ferroelas-
tic phase transition and the phonon dynamics. In addi-
tion to the oxygen monolayer problem, another goal of
our study is to investigate, from a microscopic basis, the
orientational order-disorder and associated ferroelastic
structural phase transitions in a model 2D molecular
solid.

This paper is organized as follows. In Sec. II, we intro-
duce the model and the interaction potential and discuss
the nature of the ground state. In Sec. III, we describe
the constant-pressure molecular-dynamics method that
we have used. In particular, we emphasize the impor-
tance of incorporating rotational contributions to the
internal stress tensor. In Sec. IV, we give our MD results
for the ferroelastic phase transition and also the solid-
liquid melting transition. In Sec. V, we discuss the time-
dependent density-density correlation function and asso-
ciated dynamical structure factor. In addition, we
present phonon dispersion curves for temperatures both
below and above the ferroelastic transition. We also
compare these MD results with those obtained by a
quasiharmonic lattice dynamics (QHLD) calculation and
address the question of phon on softening near the
structural transition. In Sec. VI, we give a brief discus-
sion and present our conclusions.

II. INTERACTION POTENTIAL
AND THE GROUND STATE
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high due to strong bonding between the two atoms, we
can assume the molecule to be rigid. The potential pa-
rameters we have used are appropriate for the oxygen
molecule, ' ' i.e.,

@=54.34k&, o. =3.05 A,
0

with internuclear distance d =1.208 A. For monolayer
density in the neighborhood of 10 molecules/(100 A ),
this system closely resembles the 6 phase of oxygen
molecular monolayer adsorbed on a graphite substrate.
However, more accurate modeling of this 6 phase re-
quires the inclusion of other interactions which may be
rather small. For example, the oxygen molecule has a
nonzero spin (S= 1) which leads to a magnetic exchange
interaction between two molecules. This interaction is
responsible for the low-temperature (below 11 K) antifer-
romagnetic structure in the e phase of the 02 on graphite
system. The corrugation of the substrate potential is
nonzero but small (about 5 K). Both these have been
neglected in the present study. Also, we neglect the out-
of-plane motions of molecules; thus all rnolecules are con-
strained to be parallel to the substrate.

To find the minimum energy configuration at zero tem-
perature, we start from a state near the orientational or-
dered ferroelastic (FE) phase and search for the lowest
energy as a function of the lattice parameters a, b and
orientation of each molecule [see Fig. 1(a)]. At the
minimum energy configuration, the internal stress tensor
f should vanish. The components of P are calculated
through the virial formula, i.e. ,

/„, ,
=—g mx", x,"+g g Ff~x,,

" (3)
i =1 i j()i)

where m =31.990 a.u. is the mass of 02 molecule, 0 is
the area of the system, F, is the force on molecule i by
molecule j, x, is the center-of-mass (c.m. ) of the ith mole-
cule, x, =x; —x, , (p, v)=(x,y) and xP~ is the p com-
ponent of x, , etc. The first summation in Eq. (3) is the

The system we have studied is a homonuclear molecu-
lar monolayer. The molecules interact through an atom-
atom potential of Lennard-Jones (LJ) type, i.e.,

1/2 6

t
—3.332 ~

CENERED RECTANGUULR
E =-828

p =0.693

HERRINGBONE

E = -7.83
p=0.680

V(r ) =4@

where r is the distance between two atoms. Since the
internal vibrational frequency of each molecule is very

FIG. 1. The minimum energy configurations with the ferro-
elastic molecular ordering (left) or the herringbone ordering
(right). The energy is in units of e and the density is in units of
1/o. .
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velocity contribution and it vanishes at zero temperature.
The surface tension (lateral pressure) p is given by

p= —,'(P„+P~~) . (4)

Note that in Eq. (3) only the molecular center-of-mass
coordinates contribute to the stress tensor. We have used
both energy minimization and zero value of the internal
stress tensor with only the c.m. contribution for locating
the ground state. Although this is adequate for the
ground state, for finite temperatures, we shall argue later
that significant contribution to P„can arise from the
orientational degrees of freedom.

The ground-state structure we find from the above cri-
terion is an IT lattice with FE molecular ordering. The

0 0
lattice constants are a =3.332 A and b =8.054 A; mole-
cules are all parallel to the b axis [see Fig. 1(a)]. For a
19X19 lattice with periodic boundary condition, the po-
tential energy per molecule is —8.28' with surface ten-
sion p =0.0064'/o. . These lattice constants are slightly
different from those given by Etters et al.
(a =3.32 A, 5 =8.07 A) obtained by a pattern search
method for the same model. The ground state has a sur-
face coverage p= 1.172po, where po is the coverage of the
+3X +3 structure on the graphite which corresponds to
0.0636 molecules/A . Experimentally, ' it is found
that the ground state of the low-density 5 phase of oxy-
gen monolayer on the graphite has an IT lattice structure
with a =3.25 A and b =7.98 A. The oxygen molecules
lie flat on the substrate surface and are orientationally or-
dered along the b axis. The oxygen molecule has a
nonzero but small electric quadrupole moment. ' For
computational convenience, the quadrupole moment can
be constructed by putting a charge 2Ze at the molecular
center and —Ze at the two atomic positions. The value
we have used is Ze =0.111 esu. It corresponds to a quad-
rupole moment Q = —0.39 X 10 esu cm. If we add the
quadrupole-quadrupole (QQ) interactions, the change in
the lattice constants of the FE state is less than 0.3%, and
the change in energy is less than 2%.

Another 2D diatomic molecular solid is the well stud-
ied nitrogen (N2) physisorbed on graphite. The
ground state of this system has herringbone (HB) order-
ing with ET center-of-mass lattice structure which is
commensurate with the graphite hexagon. To see
whether there is a stable structure with HB ordering for
the oxygen monolayer, we have searched for the energy
minimum by assuming a HB ordering and ET lattice
structure. We have found that the potential energy is
minimized with lattice constants a =3.975 A and
b=&3a [see Fig. 1(b)]. The energy for this state is—7.83@ which is higher than the energy of the FE-IT
structure ( —8.28m ). Recently Joshi and Tildesley used
the same LJ potential parameters as ours to search for
the minimum energy structure. They have found that,
even in the absence of QQ interaction, the energy of the
HB ordering can be lowered further ( —8. 167m) by relax-
ing the constraints of ET center-of-mass structure. This
energy is still higher than that of the FE-IT structure.
Furthermore, inclusion of the QQ interaction to the
molecular potential stabilized the former (HB-IT) struc-
ture (with minimum energy —8.274') compared to the

FE-IT structure. The relative stability of FE-IT and
HB-IT structure is extremely sensitive to the oxygen
quadrupole moment. However, the FE-IT configuration
is the experimentally observed stable ground-state struc-
ture. Therefore, in the absence of a precise value of the
quadrupole moment of an oxygen molecule on the graph-
ite substrate, we have ignored the QQ interaction in our
MD simulations.

III. THE CONSTANT-PRESSURE
MOLECULAR DYNAMICS

In this section we give a brief description of the
constant-pressure molecular-dynamics method which we
have used to study the structural phase transitions in-
volving molecular orientations.

A. Constant-pressure ensemble and stress tensor

A novel simulation method which has proved extreme-
ly powerful in studying phase transitions involving rear-
rangement of crystallographic structure is the constant-
pressure molecular dynamics first proposed by Ander-
son and later elaborated by Par rinello and Rah-
man. ' For a 2D monoatomic system, the main
features of this method can be briefly reviewed as follows.
First, a two-dimensional MD cell characterized by vec-
tors a and b is defined. All the particles are located in-
side this cell and the cell is repeated in space by periodic
boundary conditions. The vectors a, b are allowed to
change in the simulation. Positions of the atoms are ex-
pressed in the basis consisting of a and b. At a given in-
stant, the position x of each atom can be expressed as
x=as"+bs'"'. The components of the scaled coordi-
nate vector s lie in the interval (0, 1). We have

x=hs,
where h is a 2 X 2 matrix given by

a 6

a b

(Sa)

(5b)

In Eq. (Sb), a=a„x+a y, b=b„x+6 y and x, y are two
unit vectors of a Cartesian coordinate system. A mass 8'
is assigned to the MD cell whose dynamics is determined
by the external pressure and the internal stress tensor.

The Lagrangian describing the system is given by
N

m, s;+Gs; —N —p, Q+ —,
' WTrh+h,

i =1
(6)

m's, =h ' g F,"—mG 'Gs,
j(~i)

The EOM's for the cell vectors a and b are given by

8'h = II(P—p, 2)(h+ )

(7)

(8)

where 4 is the interaction potential, G =h+ h ( h+ is
transpose of matrix h), s;+ =(s,",s,I '), A is the area of
the MD cell, i e. , A=det(h), and p, is the external
spreading pressure.

Equation of motions (EOM's) generated from this La-
grangian are
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where P is the internal stress tensor given by Eq. (3) and
J is the 2 X 2 identity matrix. Note that in Eq. (3), we
can formally write x;=hs;, and x;=hs; (neglecting much
smaller hs; terms). Equation (8) shows that change in the
volume and the shape of the MD cell is driven by the im-
balance between the external pressure and the internally
generated stress.

The constant of motion is readily identified as the
enthalpy H given by

P„,=P' —
—,'d g cosO, sinO;(F;, —F;z ), (11a)

P~ = P'™+ —,'d g cosO;sinO, (F, ,
' F,'2—), (11b)

P„='P —
—,
' d g sinO, sinO, (F,', —F, z ), (11c)

and kinetic-energy contributions depending on ~, .
If we ignore all the ~; contributions to the stress ten-

sor, we have

N
H= —,

' g gmx";x";+&&+@,Q .
P =P', + —,'d g. 'cosO, cosO;(F, ,

' F'&"'—), (11d)

Note that a small contribution of 2k& T to H coming from
the four degrees of freedom of the MD cell vectors has
been neglected. As proved by Anderson, the time aver-
age of a physical quantity along the trajectory produced
by the Lagrangian X, is equal to the isoenthalpic-isobaric
ensemble average of that quantity.

For polyatomic molecular system, Nose et al. gen-
eralized the above method by adding a term —,

' g, co; Ice;
to the Lagrangian L &, i.e.,

N
&2

=
—, g m s;+Gs; N —p, fl—,

N
+ —,

' WTrh+h+ —,
' g co; Icy;, (10)

where I is the molecular moment of inertia tensor and co;
is the angular velocity of the ith molecule. In the La-
grangian, the term g, s; Gs; couples the molecular c.m.
motion to the MD cell vectors. There is no such term
which couples the rotational motion (co; ) of the mole-
cules to these vectors. Since only the center-of-mass
coordinates are scaled by the MD cell vectors, only the
c.m. coordinates appear explicitly in the stress tensor P
[see Eq. (3)].

For our diatomic molecular system, the orientational
dynamics is expected to play a crucial role in the
structural phase transition involving a shape change. To
properly account for the effect of the rotational motion
on the structural transition, we have developed a pro-
cedure to include the rotational contribution to the stress
tensor. To obtain the above-mentioned contribution to
the stress tensor, one has to scale the coordinates of indi-
vidual atoms x;i,. by the tensor h [i.e., x;& =hs;&, instead
of Eq. 5(a)]. This will modify both the potential and
kinetic-energy contributions to P. For the former, one
has to know the total force acting on individual atoms of
every molecule. The total force acting on a particular
atom of a given molecule F,I, can be divided into two
parts; one exerted by the atoms belonging to other mole-
cules and the other a constraint force, which keeps the
molecule rigid. The constraint force can be obtained
from the rigid rotor conditions. In addition to modifying
the potential-energy contribution, the above scaling also
changes the kinetic-energy contribution. Besides the
center-of-mass velocity-dependent terms, there are also

(=0, , where 0, is the angle that the ith molecule
makes with the x axis, see Fig. 1) dependent terms. In
fact, there is a partial cancellation between the potential

where P' "' is defined in Eq. (3). Clearly, the symmetric
component of P, i.e. , p [ = , (P +P—~ )] depends only onP'™.On the other hand, the antisymmetric component
of the stress tensor A =

—,'(P —P~, ) has an important
O,--dependent term which has to be kept to conserve the
total angular momentum. This term was not included in
earlier MD simulations of molecular systems and this
may have led to difficulties in keeping the total angular
momentum conserved. The cu, -dependent terms which
we have not written down here do not contribute to p and
A. In the present MD simulation we have not included
these contributions to P. These contributions may how-
ever be important for phase transitions under uniaxial
external stress.
B. Conservations of energy, momentum, and angular momentum

We have used a fifth-order predictor-corrector algo-
rithrn ' to integrate the EOM's and have found that in
10" MD time steps, the deviation of energy is less than
0.3%. The simulation was performed with N =400 parti-
cles with periodic boundary conditions. The MD cell
mass was chosen as 8'=m&X. When the stress tensor
is calculated by Eqs. (11), the antisymmetric component
of the stress tensor A is zero for a system with zero ini-
tial total angular momentum. We found that typically in
10" MD time steps, standard deviation in,A is of the or-
der 10

It is important to ensure that the total momentum p of
the system is zero since a nonzero p will give every mole-
cule an additional velocity and increase the pressure cal-
culated by the virial formula, thereby making the system
artificially soft. To make p zero, we shift all the velocities
v, , i.e.,

1
V, V;

cV

the velocity v; is then multiplied by a factor

g Vie+i

to make the total angular momentum zero. The adjusted
velocities are then used to calculate the temperature T of
the system by the formula

2Nk~T= —,
' g m(U, '„—+U,'+ —,'O'O, ') .

All the velocities are then multiplied by a factor +To /T
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to force the system to have the required temperature To.
In our simulations, we found that scaling all the

derivatives of x;, y, , and 9, by a factor of Q To /T
helped the system approach equilibrium much faster.
Usually (except for quick quench studies), we give
500—1000 steps for the purpose of raising the ternpera-
ture. These steps are divided into 10—20 segments, the
temperature difference is uniformly distributed among
these segments so that the heating (cooling) process is
smooth. In the equilibrium stage, fluctuation of tempera-
ture is small. We adjust the instantaneous temperature to
the desired value To and record the information needed
for the calculations of the isobaric-isothermal ensemble
averages. Usually, the average is calculated over
2000 —3000 time steps. When close to the transition re-
gion, 1 ~ 0—1.5 X 10 time steps have been used.

melts to an isotropic 2D liquid phase. Various physical
quantities such as the internal energy, the density, the ra-
dial distribution function and order parameters were cal-
culated. When the system is heated from T*=0.36 to
0.38, all these quantities change drastically in about 8000
MD time steps (corresponding to a real time of 160 psec).
After that, the system has the ET structure and the orien-
tational order disappears. The system is then allowed to
run for 1.2X10 time steps over which thermal averages
for the higher temperature paraelastic phase are comput-
ed.

A. Lattice anisotropy and orientational ordering

To measure the distortion of the lattice from a perfect
ET structure (0, =90 ), we define a parameter y by

C. Simulation of the Lennard-Jones system
by= . —1.

(3)1/2&
(16)

V(r) —V(ro)+f(ro)r f(ro)ro if—r (ro,
V(r)= '

0 otherwise, (14)

so that the potential and the force are both continuous at
the cutoff. The function f(r ) is given by

f( )
BV(r)

0r
(15)

Since f(ro) = —0.000 31(e/o ), the term linear in r in Eq.
(14) does not aff'ect the calculation significantly. In fact,
this effect is expected to be smaller than our statistical er-
ror, but the continuous nature of the potential and its
derivative are helpful for the accuracy of numerical in-
tegration. The large cutoff' also gives more information
about the radial distribution function (RDF) of the c.m.
molecules, because for computational convenience the
RDF is calculated along with the potential and the force.

IV. THE FERROELASTIC PHASE TRANSITION

Under zero external pressure, starting from tempera-
ture T*=kz T /e =0. 12, the system was gradually heated
with a temperature step 0.06 and two phase transitions
were found. The first one is at T*=0.37 (20. 1 K) where
the system undergoes a ferroelastic transition, the orien-
tational long-range order (OLRO) is lost and the lattice
transforms to the ET structure. The second one is at
T*=0.70 (38.0 K) where the paraelastic (plastic) phase

For computational convenience, we use dimension-
less units for length, time, temperature, etc. The length,
energy, temperature, pressure, and mass are expressed in
units of o, e, e/kz, e/o. , and m. These choices lead to a
time unit cream/e, which is 1.8148X10 ' sec for this
diatomic molecular system. The high accuracy of the al-
gorithm that we have used and the large cutoff' distance
50. for the interaction potential enable us to use a rela-
tively large time step, At =0.01102, corresponding to
0.02 psec.

The Lennard-Jones potential V(r ) is cut off' at r„=5cr
and then modified to be of the form

In the ground state, a =3.332 A and b =8.054 A, y has
a value 0.396. Just before the ferroelastic transition,
a =3.462 A, b =8.055 A, and y is as high as 0.343. The
small reduction in y as T increases indicates that the sys-

0
tern is rather stiff. At T'=0. 38, a increases to 4.006 A
and b decreases to 7.066 A; these values correspond to an
ET lattice. An interesting observation is that the lattice
spacing of 4.006 A is very close to that of the HB-ET
structure as shown in Fig. 1(b).

For a measure of the orientational order we take

N

cos(20, —20)
N, .

(17)

as the order parameter, where 8=(1/A') g, 8, . Our
simulation indicates that g2 has a large decrease at
T =0.38. The orientational order parameter appears to
change discontinuously at temperature 0.38 and does not
show a slow decaying tail above this temperature. It is
well known that such a tail is always present after the
transition as a finite size effect in computer simulations of
second-order phase transitions. Our observations suggest
that the transition is first order (see below). The true
transition temperature is somewhere between 0.36 and
0.38. We estimate T,*=0.37 which corresponds to 20. 1

K. This value of T, is about 6 K lower than the recent
experimental value of 26 K.

B. Energy and density

The energy per molecule E and the monolayer density

p are given in Fig. 2 as functions of temperature. Both E
and p show discontinuities at T*=0.37. The change of
the entropy can be calculated by using the formula
b,S=b,E/T, and it is 0.88 (in units of k~). Since for a
free rotor the total entropy is In(2n) =1.838, the above
change in the entropy at the transition suggests that the
rotors are undergoing hindered motion in the disordered
phase. The latent heat associated with the transition cou-
pled with the discontinuities in the energy, density, and
the order parameter strongly suggests that the transition
is first order.
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FIG. 2. Total energy and monolayer density. The lines are
guide to the eye. Both energy and density are discontinuous at
T*=0.37 and T =0.70.
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FIG. 3. Radial distribution function (as a function of r') of
molecular center of mass for three di6'erent temperatures. All
are averaged over 3000 MD time steps (60 psec).

C. Radial distribution function

Because the ground-state structure is an IT lattice, the
RDF of molecular center-of-mass can be viewed as if
every peak in a set characterizing the ET lattice is split
into a doublet structure. In particular, the peak arising
from the six nearest neighbors in an ET lattice will split
into two separate peaks, one coming from the two neigh-
bors at a distance a, the other from the four neighbors
with a distance (a +b /4)' When w.e heat the system
from T =0.36 to T*=0.38, in the first 8000 time steps
(160 psec), the splitting between the above two peaks be-
comes smaller as time increases. Finally this splitting
disappears and the RDF shows a set of peaks appropriate
for an ET lattice. The explicit form of the radial distribu-
tion function g(r) is

g(r)= (n(r, r +(br) ))
tr(b, r )

(18)

D. Orientational dift'usion coefficient

In the ferroelastic phase, due to the symmetry of the
diatomic molecule, there are two degenerate orientational

where ( n ( r 2, r + ( b r ) ) ) is the average number of mole-
cules in a ring with area m(Ar ) and at a distan. ce r from a
given molecule. g(r ) will approach the value of the den-
sity as r goes to infinity.

Figure 3 shows g(r ) for three temperatures, T*=0.36,
0.38, and 0.70. At T*=0.36 which is just below the fer-
roelastic transition point, g(r) shows clearly two peaks;
while at T*=0.38 which is just above the transition,
these two peaks merge into a single peak corresponding
to the six nearest neighbors in the ET structure. Note
that there is a gap [g(r)=0] between the first six neigh-
bors and the other neighbors in the solid phases. Howev-
er, at T' =0.70, there is no such gap and the RDF shows
a liquidlike structure. This indicates that the solid melts
at T*=0.70.

lD&= lim f(t)—
t ~ t

(19a)

where

f(t) =([O(t)—e(0)]') (19b)

is the orientational autocorrelation function. In the MD
simulation, the average of orientational autocorrelation
function is computed as

I'

f(t)= g g [B,(t+kr) i9, (k—r)]'—
~=0

where ~ is a constant determined by the correlation time
of the dynamics of the molecules and M& is the number
of MD configurations. Dz can be obtained from f(t ) us-
ing a linear regression method.

Figure 4 shows f(t) for temperatures T*=0.36 and
T*=0.38. We see that the high-temperature autocorre-
lation function is 2 orders of magnitude larger than the
low-temperature one. When T is 0.30, in a time interval
as large as 3200 time steps (64 psec) there is no evidence
of orientational diffusion. After heating it to T*=0.36,
we found D&=4.9+0.4X10 rad /sec for t &2000 time

states separated by an angle m for every molecule. As the
temperature increases, so does the probability for the
molecules to overcome the energy barrier and shuttle be-
tween these two states. Before the rotors become free,
one expects them to behave like hindered rotors and have
small orientational self-diffusion coefficient D&. On the
other hand, if the rotors are nearly free, then even in a
relatively short time scale, the system will have a consid-
erably large Dz.

The orientational self-diffusion coefficient Dz can be
calculated from the relation
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in the slope of logD& versus 1/T* by a factor of 3 in go-
ing from the paraelastic phase to the liquid phase is an in-
teresting observation and needs more further careful in-
vestigation.

E. Strain fluctuation and elastic constant

The gauge matrix Cx appearing in Eq. (10) reflects the
change in the volume and the shape of the MD cell and
contains information about the strain in the system. The
relation between Cx and the strain tensor c can be ex-
pressed as

(et)= —,'[(ho ) 'Crho ' —J],

FIG. 4. Orientational autocorrelation functions at tempera-
tures below and above the ferroelastic phase transition tempera-
ture. MD time steps are from 2800 to 4600.

steps. At T*=0.38, Dz is 1.49+0.08X10" rad /sec.
The increase in Dz by a factor of 30 strongly suggests
that the ferroelastic phase transition is first order. Figure
5 gives logD& versus the inverse temperature. The in-
crease in Dz at the solid-liquid transition temperature
T'=0.70 is only about 1.5 suggesting that there may be
considerable rotational diffusion in the paraelastic phase
below the solid-liquid melting temperature. The increase

1P12

(22)

and the elastic constants C; &&
can be obtained from the

inverse of I, &&. The 4X4 matrix I, &&
is singular due to

the permutation symmetry for the Cartesian index. Us-
ing the Voigt convention

I,,q, if k =1 (o. (2),
21;, , if k&1 (o )2), (23)

where ho characterizes the MD cell of the reference state
in which the strain is zero. In MD simulation ho is gen-
erally replaced by the average of h(t). The compliances
I, I,| are related to the strin fluctuations by the rela-
tion,

vI
lh

CV

lO

I
~~
V

~~
I0
O
c0

~~
lh

O
tgc0

~~
05

I
~~
0

1P11

1P10

~aa ~~O a

one can get a 3X3 regular matrix and its inverse can be
calculated. To obtain symmetric C, -&&, one then inverts
the transformation of Eq. (23).

To get accurate values of C, -kI using the above pro-
cedure is rather dificult due to the large Auctuations of
strains near the transition and due to the small size of the
system in the simulation. However, the qualitative
features of the elastic constants can be seen by comparing
the values at T*=0.36 and at T*=0.38 calculated by
the above method and given in Table I. Clearly, before
the ferroelastic transition the system is highly an-
isotropic but after the transition it is isotropic, i.e.,
C» =Cz2, and the ratios C44/C» and (C&1 —C,z)/C»
drop sharply near the transition.

F. Quench study

In Fig. 6 we give the RDF and a configuration of the
system quenched from T =0.38 to T*=0.01 in 500 MD
time steps. We see there are only tiny domains with three
equivalent distortion directions. Also we find hexagons
with local herringbone structure. The radial distribution

1p9

(Units of kB/E)
1
T"

C22 C„ C44

TABLE I. Elastic constants (in units of e/o. ) calculated
from the molecular dynamics at temperatures T*=0.36 and
T*=0.38.

FIG. 5. Orientational dift'usion coefficient. The horizontal
axis represents the inverse of temperature. The lines are guide
to the eye.
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FIG. 6. Radial distribution function for a state quenched to
T*=0.01 from the paraelastic phase at T*=0.38 in 10 psec.
The inset gives the quenched configuration.

tomatically included in these calculations.
We have used both QHLD and MD simulation to ex-

plore the dynamics of the molecular monolayer at
diA'erent temperatures. In the QHLD, the phonon and
libron frequencies are related to the eigenvalues of the dy-
namic matrix. We consider small displacements of
molecular c.m. 's and small angle deviations of molecular
orientations from their FE ordered state. The coupling
between the c.m. translational motion and the librational
motion is included in the leading order. This method
therefore is good only at low temperatures when the mol-
ecules undergo small amplitude librations. As will be
shown later, the QHLD works reasonably well up to the
ferroelastic transition temperature if proper allowance of
the lattice expansion is made. But in the high tempera-
ture orientationally disordered phase where molecules
undergo orientational diffusion and large amplitude dis-
placements, the weak coupling assumption is not ade-
quate and a proper treatment is more complicated. ' '

Molecular dynamics is perhaps the only viable method
available at the present time to understand strongly cou-
pled translational-rotational dynamics.

Dynamical properties can be studied by the time-
dependent correlation functions. We have calculated
the density-density correlation function defined by

F(q, t)=(pq(t)p q(0)), (24)

function shows a three-sharp-peak structure for small r.
These three peaks are narrow due to the absence of pho-
nons at this low temperature. Among the first three
peaks, the middle one rejects the local ET structure
while the other two reAect the local IT structure. This
can be seen from the insert configuration plot where both
local HB and FE orderings can be seen.

V. TRANSLATIONAL DYNAMICS AND PHONONS

In the previous sections we discussed MD results of
mostly the thermodynamic properties. In this section we
explore the effects of ferroelastic phase transition on the
dynamical properties of the system. A brief version of
our results has been given before, where we have ad-
dressed the questions of phonon dispersion in one sym-
metry direction in the ferroelastic phase, elastic softening
near the phase transition, and the low temperature heat
capacity. Here we present additional results.

The dynamics of a molecular crystal in the orientation-
ally disordered phase is a rather difficult problem. Furth-
ermore, experimentally, only limited data are available.
Neutron scattering which is widely used to study phonon
dynamics and dispersions in 3D molecular crystals has
not been carried out extensively for 2D systems. From
the theoretical side, one can study the phonon dynamics
using the QHLD. However, this method is only ap-
propriate for the low temperature orientationally ordered
phase where the phonons and librons are well defined and
weakly coupled excitations. MD simulation is a direct
probe of the dynamical properties and in particular, it is
quite useful in understanding the dynamics in the orienta-
tionally disordered phase as the effects of strong
translation-rotation coupling and anharmonicity are au-

where

—iq x,.(t)N

pq (~ )1/2
(t)= K e (25)

M, —1k

F(q t): g p (t+kr)p q(kr)M
(27)

where M& is the total number of configurations of the sys-
tem used in the calculation; ~ is the time between two
successive recorded configurations, ~= n At with
At =0.02 (psec) is the (real) time between each integra-
tion step and n =5. The total MD steps used is nM&
(corresponding to T = nMk b t in real time). To avoid rap-
id oscillations in S(q, co) due to finite T, we average

is the space Fourier transform of the density; q is wave
vector, x, (t ) is the c.m. position of ith molecule at time t.
The ( ) in Eq. (24) refers to an ensemble average (which
equals to the time average in MD). In scattering experi-
ments, F(q, t ) is not measured directly, but its time
Fourier transform, S(q, co) is related to the neutron
scattering cross section,

S(q, ~)= I e' 'F(q, t)dt . (26)

Since F(q, t ) is an even function of time, S(q, cu) is a real
quantity. Longitudinal phonons show up directly in the
function F(q, t ). To obtain transverse phonons from
F(q, t ), a reciprocal lattice vector K which is perpendicu-
lar to q should be added to q. Other types of collective
excitations such as librons will affect the correlation func-
tion F(q, t ) through their coupling with the phonons.

Using the trajectories of molecules generated by the
MD simulation, we computed F(q, t ) by



39 FERROELASTIC PHASE TRANSITION AND PHONONS IN A. . . 685

S(q, co) with a Gaussian weight function. This is
equivalent to multiplying a Gaussian smoothing function
to F(q, t ) while carrying out the Fourier transform, i.e.,

T
S(q, co)= lim e' 'F(q, t)e "~ ' dt

P~ 00 . 7

T" = 0.12 q IIN

Thus the frequency resolution Ace becomes

2&+
T (29)

We usually choose u between 2 and 6.
The unit vectors of a general two-dimensional IT lat-

tice are [Fig. 7(a)]

a&=ax,

a2 =—(x+ tang y ),
(30)

and the corresponding reciprocal lattice vectors are
U'

LT

b, =b *
( —,

' tang x —
—,
'
y ),

b2=b*y, (3 I)

where

4~
a tang

(32)

The first Brillouin zone (BZ) is shown in Fig. 7(b) along
with high symmetry points.

The MD results for the time-dependent correlation
functions at temperature T*=0.12 and wave vectors
along the I —N direction are given in Fig. 8. This tem-
perature is far below the ferroelastic phase transition
temperature ( T, =0.37). These F(q, t )'s show well-
defined oscillations with periodicities corresponding to
those of longitudinal acoustic (LA) phonons traveling in
the I —N direction. The dynamical structural factor ob-
tained from any one of these correlation functions shows
a single peak at finite frequency corresponding to the
LA-phonon frequency. Figure 9 gives one example of
such S(q, co) for q in the I Ndirection an—d magnitude
equal to 0.3II NI. The phonon width is primarily deter-
mined by the resolution function in Eq. (28). In Fig. 10

0
I I I I I I I I I I I I I I I I I I I

1 2 3
t {psec}

1.5 I I
t I 1

FIG. 8. Time-dependent density-density correlation function
of molecular center of mass for T*=0.12. The wave vector q
increases from the zone center (point I ) to the zone boundary
(point X) Curves from . top to bottom are for q I

=O. I,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (in units of
Irxl).

1.0
= o~lrNI

II rN

0.5
3
U"

(a) (b)

0.0
0

I I I I I I I

5 10
~ (10 Hz)

FIG. 7. (a) Two-dimensional (isosceles) triangular lattice with
lattice vectors a, and a2, (a = Ia, I

). (b) The first Brillouin zone
corresponding to (a) and the symmetry points.

FIG. 9. Dynamic structure factor for T*=0. 12 and for
I ql =o.& Ir~ I.
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FICx. 14. LA phonon dispersion in the orientationally disor-
dered paraelastic phase obtained from molecular dynamics.

VI. DISCUSSION AND SUMMARY

We have carried out a detailed study of the thermo-
dynamics and dynamics of a two-dimensional molecular
monolayer system undergoing a ferroelastic structura1
phase transition. Although the intermolecular interac-
tion parameters are those appropriate for oxygen mole-
cules, there are important differences between the system
we have studied and oxygen molecules adsorbed on

the decaying behavior of the time correlation function
and a broad peak which can be identified as a renormal-
ized LA phonon peak. In addition, there is a low fre-
quency peak whose origin is not clear at present. For q
vectors along the I —iV direction, similar behavior has
also been observed. But the central peak is not present
there. These observations suggest that phonons are
heavily damped in the high-temperature orientationally
disordered phase. This is due to the increased impor-
tance of the intrinsic anharmonic effects ' and the strong
coupling between the translational and rotational degrees
of freedom.

Figure 13 shows the LA phonon dispersion at
T'=0. 12 and 0.36 for the wave vector q along the I —N
direction in the first BZ. It clearly shows an overall pho-
non softening along with additional softening of the long
wavelength (q ~ 0.4~ I N

~
) phonons as T~T, . QHLD

calculations can account for the overall softening but fail
to explain the anomalous softening in the low wave vec-
tor region. In Fig. 14, we give the MD results for the LA
phonons in the I —N direction at high temperatures
(T*=0.40, 0.50). There is a small hardening of the pho-
nons with increasing temperature which can be traced to
the effect of rotation-translation coupling.

graphite. Two significant physical effects not considered
in the present simulation study are (1) orientations of the
molecules away from the graphite plane with a concomi-
tant motion of the center of mass perpendicular to the
graphite substrate, and (2) corrugation of the graphite
substrate. For a detailed comparison between the MD
results and experiments on 02/graphite, the above two
effects must be taken into account.

Our MD simulations can however be used to explore
the physics of ferroelastic phase transition in two-
dimensional molecular solids. The presence of an inter-
mediate plastic phase is clear and the physical properties
of this phase is dominated by strong rotational-
translational coupling. In contrast to 3D systems, where
one of the many transverse elastic constants soften as a
result of the above mentioned coupling, there is only one
transverse elastic constant (C44 =C» —C, z ) for a 2D tri-
angular lattice and this softens (see Table I) as one ap-
proaches the ferroelastic transition temperature from
above. The system therefore behaves almost like a liquid
although the center-of-mass diffusion is absent. In fact,
this is perhaps the reason why in experiments it is not
easy to distinguish this intermediate plastic phase from
the usual liquid phase. In addition, we find that the lon-
gitudinal acoustic phonons also soften as one approaches
the ferroelastic phase transition temperature.

The phonons in the plastic phase are strongly damped
whereas in the low-temperature ferroelastic phase they
are rather well defined and can be understood within a
QHLD theory. A direct experimental observation of the
soft phonons and their behavior as a function of tempera-
ture will be of great help in elucidating the physics of
strongly coupled rotation-translation system in 2D. The
other significant aspect of our study is the possible effect
of hydrostatic or uniaxial stress on the ferroelastic phase
transition. As we have discussed in the text, there are
important orientational coordinate and velocity depen-
dent contributions to the internal stress tensor P (only
the co; independent part of these contributions were in-
cluded in the present study) whose effect on the thermo-
dynamic and dynamic properties will be of interest to ex-
plore.
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