PHYSICAL REVIEW B

VOLUME 39, NUMBER 10

1 APRIL 1989

Dynamics of diluted antiferromagnetic Ising spin systems on the fcc lattice

Marta Z. Cieplak*
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

Tomasz R. Gawron

¥

Department of Theoretical Physics, University of Lund, S-22362 Lund, Sweden

Marek CieplakT
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 13 September 1988; revised manuscript received 4 November 1988)

We consider Glauber dynamics of Ising spins randomly populating sites of the fcc lattice and cou-
pled by nearest-neighbor antiferromagnetic interaction J. This investigation extends our former
studies of small clusters beyond the percolation threshold and is aimed at modeling semimagnetic
semiconductors. The energy barriers against inversion of local energy minima are found to be in-
teger multiples of 2|J|. If small next-neighbor interactions, Jyy, are taken into account, the distri-
bution of the barriers remains peaked at these values. The spectrum of relaxation times may then
contain gaps at low temperatures, depending on relative strength of Jyy to J. We have studied dy-
namics of the system for Jyy =0 in Monte Carlo simulations. Decays of time delayed single- and
two-spin correlations, above the critical temperature, are found to be consistent with that given by a
sum of distinct exponential terms. We also studied the dynamic spin susceptibility by applying an
oscillatory magnetic field and by monitoring oscillations in the induced magnetization for small fre-
quencies w. The susceptibility is found to show structure as a function of logw.

I. INTRODUCTION

The fcc antiferromagnetic system of N Ising spins cou-
pled by nearest-neighbor forces is known to be fully frus-
trated.!™3 The ground state has an energy of —2N|J|
and its degeneracy is of order eV "2 The first four excit-
ed states have energies 8, 12, 16, and 20 in units of |J].
For classical Heisenberg spins the ground state has ener-
gy also equal to —2N/|J| and it still possesses a large non-
trivial degeneracy.*> For both systems the degeneracy
can be significantly reduced by next-nearest-neighbor
couplings and anisotropies. Thermal fluctuations and
quenched disorder due to spin removal also brake degen-
eracies.” Dilution may even favor noncolinear arrange-
ments of the Heisenberg spins.® Diluting the Ising system
below the occupational probability, x, of 50% or so leads
to a spin-glass (SG) behavior studied in several numerical
simulations.” In the case of isotropic Heisenberg spins
no equilibrium SG phase is expected to exist. ®°

The diluted antiferromagnetic spin systems with
short-range couplings are good models of the so-called
semimagnetic semiconductors!® like Cd;_ Mn, Te and
Hg,_,Mn, Te and systems like MnO,,, (Ref. 11) which
are apparently SG’s in a range of values of x. The spins
in these systems have certainly (quantum) Heisenberg na-
ture but additional anisotropic terms turn the equilibrium
properties to Ising-like. The anisotropy could be due to
the Dzyaloshinski-Moriya coupling!? which is known to
make Ruderman-Kittel-Kasuya-Yosida Heisenberg SG
undergo a phase transition with the Ising critical ex-
ponents. '3

The semimagnetic

semiconductors are possibly
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“cleanest” SG’s to study since their properties in most
cases can be explained in terms of a single-exchange cou-
pling the value of which is well known. In the case of
Cd,_,Mn, Te J =—13.8+0.3, as obtained from suscepti-
bility measurements, 14 6r —13.4+0.2 as obtained from
neutron scattering experiments.!> The next-nearest-
neighbor coupling is antiferromagnetic and is of order
0.1-0.2 of that value. !¢

The static magnetic properties of the ‘“semimagnetic”
SG’s appear to be similar to that of metallic SG’s. This is
not surprising for the following reason. The Ising spins
on the fcc lattice experience local exchange fields similar
to those felt by Ising spins on an fcc lattice but coupled
by +J or —J exchange constants, each with probability
of 1. In three dimensions an effective block coupling en-
ergy of this bimodal SG grows with the size of the system
and the corresponding exponent is equal to that found for
the Gaussian probability of the couplings.® Since the
effective coupling grows to infinity, the discretization in
units of the microscopic exchange coupling ceases to be
noticeable and thus the bimodal SG should be no
different from the Gaussian one.

Can dynamic properties of magnetic semiconductors
be different than those characteristic of the metallic ones?
In this paper we shall argue that they could, provided the
effective Ising nature of the spins also prevails in the
gross dynamical behavior. It should be noted that the
Glauber dynamics of Ising spins is purely relaxational
whereas the Heisenberg systems allow also for spin
waves.!” Spin waves should not matter at long times
relevant for SG’s but this point requires an investigation.
On the other hand, the six-state nature of Mn ions or
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longer-ranged couplings may smooth out sharp features
in relaxation of the two-state Ising model. It still seems
that a good starting point to study dynamics is to find out
what are the predictions of the Ising model and then to
confront them with experiment to judge about the
Heisenberg effects, if any.

Studying Ising spin dynamics on the fcc lattice has ac-
tually been our task in a previous paper,'? which dealt
with the situation found below the (nearest-neighbor) per-
colation threshold, x,=0.195. For such small concentra-
tions, the system consists of finite clusters, the Glauber
dynamics of which could be solved exactly. The major
finding was that, for the dynamics, the discrete nature of
the exchange coupling does play a role since it discretizes
energy barriers and therefore it discretizes possible time
scales of relaxation. For Gaussian SG’s the energy bar-
riers take continuum of values and the relaxation ties
form a smooth spec:trum."9 On the other hand, in our
case the spectrum should develop gaps at sufficiently low
temperatures: The relaxation times are expected to relate
to the barriers via the Arrhenius law. In our former pa-
per we have studied clusters made of up to seven spins.
These allowed for three values of barriers: 0, 2|J|, and
4|J|, and thus for a three-peaked distribution of the relax-
ation times on a logarithmic scale. This in turn resulted
in a structured dynamic susceptibility. Its real part Y’
had three plateaus, and its imaginary part three maxima
when plotted against logw. The maxima are located at
inflection points of }’. The temperature dependence of
the dynamic susceptibility was rather standard and simi-
lar to that found, e.g., by Gunnarsson® in a short-ranged
SG in which ferromagnetic and antiferromagnetic bonds
are mixed (except that the freezing temperature in clus-
ters vanishes).

In this paper we extend our analysis to systems above
the percolation threshold. In Sec. II we study structure
of the density of local energy minima, and in Sec. III we
discuss distribution of barriers required to invert typical
energy minima. In Sec. IV we study time decay of spin
correlations by means of a Monte Carlo simulation and
finally, in Sec. V, we analyze dynamic susceptibility. The
susceptibility is calculated in a simulation in which a
small oscillatory magnetic field is added to the Hamil-
tonian and the oscillations in the induced magnetization
are monitored. Our method limits the studies to small
time periods but is does point to a structured dynamical
susceptibility above the threshold.

II. LOCAL ENERGY MINIMA

The Hamiltonian of the system under consideration is
given by

hj

where §; = =1, and i counts only occupied sites. The ex-
change couplings are equal to J <0 when the sites form a
pair of nearest neighbors and are zero otherwise. The fcc
lattice can be thought of as composed of four L XL XL
interpenetrating simple cubic sublattices. The number of
spins it contains is on average equal to N =4L3 The
periodic boundary conditions are adopted.
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In order to obtain the largest barrier, giving rise to the
longest relaxation time one should first find the ground
state. This barrier is equal to energy required to invert
the spin configuration in this state upside down.?"?? The
only way to find a ground state (for x, <x < 1) for the fcc
lattice appears to be performing extensive Monte Carlo
quenches as in the paper by McMillan.?*> However, reli-
able results even for a 4 X4 X4 bimodal SG require of or-
der 2'® quenches per sample. 2

Clearly, studying the fcc systems would require taking
N larger than 64, but this is prohibitive computationally.
Instead we select random local energy minima as ob-
tained by a gradual decrease of temperature to zero.
Typically, we run the system at 7 =2 (in units of |J| /kp)
and quench the successive configurations by applying
temperature decrements of 0.5 and performing at least
ten Monte Carlo steps per spin at each T <2. For each
concentration x studied, we took into account typically
100 samples and identified 100 local energy minima in
each of them. We then calculated energy barriers against

- inversion of these minima. These barriers are hoped to

be responsible for “typical”, but not the longest, relaxa-
tion times. Our purpose here is qualitative: to demon-
strate a large range of discrete values that energy barriers
may take in the system.

Figure 1 shows histogram of energies per spin of the lo-
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FIG. 1. Distribution of local energies per spin on largest
clusters. Figures (a) through (d) correspond to concentrations
x =0.30, 0.22, 0.18, and 0.08, respectively. At the highest two
concentrations the systems are above the percolation threshold.




39 DYNAMICS OF DILUTED ANTIFERROMAGNETIC ISING SPIN . . .

cal energy minima obtained by our quenching procedure.
For each sample of a given x the largest cluster was
selected. Above the percolation threshold (x =0.3 and
0.22) such clusters are percolating and below (x =0.18
and 0.08) they do not span the system. The local energy
minima shown in Fig. 1 are the minima obtained for the
largest clusters and with L =5. Clearly, the larger the
connectivity the smaller the average energy. For x =1.0
(not shown in the figure) energies of the minima group in
the vicinity of —2, i.e., the exact ground-state energy per
spin. Slower quenching rates generally shift the distribu-
tions towards lower energies. One expects the low-energy
tail to give rise to the larger barriers, and this indeed is
the case. A total energy of the system contains also con-
tributions from all of the smaller sized, i.e., nonpercolat-
ing, clusters (including those consisting of single spins).
These enhance the high-energy tail of the distribution
considerably (not shown in the figure) and the corre-
sponding barriers are small.

III. ENERGY BARRIERS

Our algorithm of search for the barriers is related to
the ‘“landscape exploration” method of Rammal and
Benoit?® and is almost the same as used by Banavar,
Cieplak, and Gawron?® in studies of the Gaussian and bi-
modal SG’s. There are two differences here though: (1)
we deal with randomly selected local energy minima and
not with the ground states, and (2) we restrict our
searches to phase-space trajectories in which each spin is
inverted once. An outline of the algorithm is as follows.

Each reversal trajectory is characterized by an energy
AE .., in excess of the local-energy minimum, corre-
sponding to the highest point on the trajectory. A bar-
rier, B, is defined as the smallest AE,,. We select a first
tentative value, B,, of barrier against reversal of the
whole system and a resolution, R, within which B will be
determined. Here we take R =0.1. We check whether
one can find trajectories of spin reversals that do not re-
quire a supply of more than B, of energy. If no allowed
trajectory is found, we conclude that B, is too small an
estimate of B and we update B, to

B,=B,+R . . %)

If at least one allowed trajectory is found we take note of
AE_,, of the last such trajectory considered and update
B, to

B,=AE,, —R . ®)

We repeat the search with B, replaced by B,. We con-
tinue in this way until after one successful choice of B,
we get to B (v+1) which fails to produce an allowed in-
version. The barrier B is then given by B, within the
resolution R.

Consider first the largest (i.e., percolating above x,)
clusters in the systems. Figure 2 shows distributions of
the barriers obtained for the local-energy minima in the
largest clusters as generated for L =5 and for several
values of x.

The smallest concentration of x =0.08 corresponds to
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FIG. 2. Distribution of energy barriers for largest clusters
generated at five values of x. The system size is. L =5. The bar-
riers here are defined as smallest energies required to invert lo-
cal energy minima. (a)-(e) Concentrations 0.08, 0.18, 0.22, 0.30,
and 0.35, respectively.

the regime considered by us in Ref. 18. As before we find
here only barriers of values 0, 2|J|, and 4|J|. An indivi-
dual cluster may contain minima with one, two, or all of
these barriers. A connection between a barrier, B, and
corresponding relaxation time goes via the Arrhenius law

B/kyT
T,=artge B ) (4)

where 7, is the microscopic Glauber time,?’ usually as-

sumed to be of order 107 !2s. The factor a reflects an ac-
tual geometry of the cluster and is of order unity.?® A
collection of clusters contributing to a given B yields a
collection of different a’s. This leads to some T-
dependent spread around selected values of the allowed
relaxation times, as discussed in Ref. 18. At sufficiently
low T, time scales corresponding to various B’s separate
out and the relaxational spectrum develops gaps.

Increasing x to higher values produces a gradual in-
crease in occurrence of larger barriers. They always
come in multiples of 2|J|. For x =0.18 we have found
barriers up to 10]J]. At this x there is no percolation yet.
The value of 10|J]| derives from small clusters. Above the
percolation threshold still larger barriers are expected to
appear and indeed they do as shown in Fig. 2. At
x =0.35, we get barriers between 0 and 24|J|. It should
be noted that percolating clusters may have local energy
minima which require little energy to overturn. These
give rise to faster processes.

Above x,, the system consists of the percolating cluster
and of many small clusters. All these clusters can be
overturned individually. Thus a distribution of barriers
required to invert the whole system looks very much like
in Fig. 2 except for an increased weight at small B’s,
mainly at B =0 and 2|J|. For the purpose of the discus-
sion of our Monte Carlo results in the next two sections,
note that at x =0.22, i.e., just above x_, the percolating
cluster has a sizable portion of minima with small bar-
riers.

The distribution of the barriers, P(B), depends on the
class of the local energy minima one gets during quench-
ing. We have compared P(B) obtained by two different
quenching schemes. Both schemes start from a Monte
Carlo trajectory at T=2. In one scheme a gradual de-
crease in T occurs in 50 Monte Carlo steps per spin and
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in the other one in 2500 such steps. For a system with
L =5 and x =0.22 fast colling yields an average B, (B ),
of 6.2|J]. The slower cooling, on the other hand, gives
(B) of 7.5|J|, extending P(B) towards larger values of
B. Overall features, however, remain the same.

It is interesting to find out, what is the size dependence
of the average barriers obtained. Fisher and Huse?® pos-
tulate that largest B’s should grow as a power law of the
linear size of the system. The exponent of this power law
should not exceed D —1, where D is the spatial dimen-
sionality. In D =2 models, with single spin-flip phase-
space trajectories we get the limiting linear-law depen-
dence.!® 1In the case of the fcc model, however, the lack
of availability of the true ground states makes meaningful
studies of the L dependence impossible: (B ) depends on
the cooling rate. All we can see is that { B ) grows with
L. For instance for x =0.22 and the faster cooling rate
we get (B) of 3.9, 5.0, 5.7, and 6.6 for L =3, 4, 5, and 6,
respectively. This suggests a linear growth, but we be-
lieve this to be an artifact of selecting minima which are
not sufficiently close to the true ground state to produce
low-T scaling laws.

We can determine, however, that (B ) depends mainly
on the connectivity. If we take ensembles of percolating
clusters at two concentrations and adjust values of L so
that on average the two ensembles have similar numbers
of spins, then the bigger x, the bigger (B ). For instance
for x =0.22 and L =6 percolating clusters have on aver-
age 136 spins and a mean barrier of 6.6 (with the faster
cooling rate). For x =0.40 and L =4, such clusters con-
tain on average 101 spins but { B ) =10.1.

Despite the qualitative nature of our studies of the bar-
riers, it is clear that both largest clusters and whole sys-
tems have states in which the barriers range from 2|J| to
many multiples of 2|J|. The bigger x and the bigger L,
then the more weight is carried by the large barriers. In
the vicinity of x, though, the smaller barriers do have
substantial weight. The discreteness of barriers leads to a
geometrical sequence of the relevant time scales. Take,
for instance, T =0.3 and use Eq. (4). Then for B =2, 4,
6, 8, 10, and 12|J] the relaxation times, in seconds, are of
order of the following powers of 10: —9, —6, —4, —1,
2, and 5, which makes a considerable range. The separa-
tion of various time scales decreases significantly with 7;
e.g., for twice as high T, B of 12|J| gives 7 of order 10™*s
and is about 20 times longer than 7 corresponding to
B =10|J|. At still higher T the differences between the
various time scales become less and less significant. The
question we shall ponder now is whether the discrete
structure of time scales predicted for low 7T”s can be seen
in quantities one measures.

IV. TIME-DELAYED SPIN CORRELATIONS

One common way to characterize dynamical behavior
of a magnetic system is to specify the single-spin time-
delayed correlation function. This function is defined as

N
G(n= 3 (S(05,(1)) , )

i=1

where the angular brackets denote the thermal average.
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We calculate G (¢) by the Monte Carlo method. We first
check its effectiveness by determining G (T) for the six-
spin cluster in which an open chain of four spins attaches
one spin to the second site and one spin to the third site.
This is one of the 137 clusters studied exactly in Ref.
(18). This cluster has B =4|J|. For each T we started
from random initial configuration and averaged the data
over 1000 different time trajectories (i.e., different strings
of random numbers). G (¢) was then plotted versus ¢ as
measured in Monte Carlo steps per spin. Except for
some transient effects at short times, the decay was given
by a single exponential law

G(t)=Ggexp(—t/7) . (6)

The relaxation time was found for six temperatures and
its T dependence is well described by the Arrhenius law,
Eq. (4), where B =4|J| and a =0.29, which agrees with
Ref. (18). This sets our confidence in the method.

We chose the following systems for a detailed analysis:
(a) L =14, x =0.08, consisting of 878 spins (b) L =12,
x =0.12, with 829 spins, and (¢c) L =10, x =0.22, con-
sisting of 880 spins (out of which 580 are in the percolat-
ing cluster). We do not perform any averages over sam-
ples here.

The idea here is to study systems containing similar
numbers of spins and, in the case of system (c), to discuss
the situation very close to the threshold, where the small
barriers are more abundant than for larger x. The corre-
sponding time scales become then accessible in the simu-
lation. System a is chosen to make direct comparisons
with Ref. 18. In each case the sample was cooled to
T =0.5|J|/ky and the correlations were studied at this
T. This choice is a compromise between a desire to take
T sufficiently low to separate the time scales and a neces-
sity to take it high enough to avoid numerical inaccura-
cies and to make the calculations reasonably fast. In Ref.
18 we were able to study 7" =0.2 and 0.3|J] /kg. We ex-
pect that in the case of system c¢ the temperature of
0.5|J|/ky is above the critical temperature for the SG
paramagnet transition because this system is just above
the percolation threshold.

In order to allow for proper equilibration, we skip the
first 5000 Monte Carlo steps per spin (MCS/S) before we
start monitoring G (¢). The correlation function was then
calculated through 4000 MCS/S in the case of systems a
and b and 10000 MCS/S in the case of system c. In each
case G(t) is averaged over about 400 starting config-
urations. These were selected to be the last spin
configurations obtained in a previous run.

We expect to identify at least four following distinct
time scales: (a) of order of a few MCS/S and related to
B =0, (b) of order 5-30 MCS/S coming from states with
B =2|J], (c) of order 300-1500 MCS/S corresponding to
B =4|J], (d) of order 2500-10000 MCS/S corresponding
to B =6|J|. In Ref. 18 the up to seven-spin clusters we
considered did not have any barriers equal to 6|J|. At
x =0.08 larger clusters, however, are present and they
contribute to the larger barriers. The numbers of MCS/S
listed previously were chosen in fact a posteriori, in the
interpretation process, and they reflect selfconsistency of
various data presented herein. They also reflect the fact
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that effective average a factors associated with groups of
relaxation times having same barriers tend to be smaller
than 1 (e.g., in the six-spin cluster discussed before,
a =0.29).

Figure 3 shows G(t) for the two systems in which
x <x.. The decomposition of the decay into separate ex-
ponentials is a bit arbitrary, particularly at this moderate
T. Nevertheless by plotting InG (¢) versus ¢ we can iden-
tify three different slopes (which are measures of 1/7)
corresponding to the three regimes B, C, and D as indi-
cated by the straight lines. It should be noted that sys-
tems a and b behave similarly.

The existence of separate exponentials in the decays of
G(T) above the threshold is less compelling but, as
shown in Fig. 4, we can easily identify region D, corre-
sponding to the barriers equal to 6|J|. In the same figure
we compare G (t) as obtained by considering spins which
belong to the percolating cluster to that obtained for the
whole system. It is clear that the two decays are quite
similar and thus the contribution of the percolating clus-
ter is dominating.

Figure 4 is shown in the scale of 10000 MCS/S. If we
concentrate on the initial time behavior, demonstrated in
Fig. 5, then we can also identify regions 4 and B. We
failed, however, to locate region C above the percolation
threshold uniquely. This may be due to a possible over-
lap of B with C at this 7. Figure 5 compares relaxation
times of the region B in the three systems studied. In re-
gion B these times are all of the same order. They de-
pend on x due to variations in the a factors.

In[S(0)*S(t)]

In[S(0)*S(t)]

4000

o 2000
Monte Carlo steps/spin

FIG. 3. Time dependence of InG () x <x,. Straight sections
correspond to decays dominated by a single exponential. (a)
x =0.08 and (b) x =0.12. Region A4 cannot be shown in this
scale of the figure. In the case of system (a) In7 /7 is effectively
4.0, 6.99, and 9.64 for regions B, C, and D, respectively. In the
case of system (b) these numbers are correspondingly 4.4, 6.75,
and 9.55.
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FIG. 4. Time dependence of InG(?) just above the percola-
tion threshold, x =0.22. The top line refers to the percolating
cluster and the bottom line to decays averaged over all spins in
the system. In both cases the effective relaxation times in the
region D have logarithms close to 10.0,

So far we were concerned with decays of the single-spin
correlations, related to the dynamic susceptibility. As
pointed out in Ref. 30, decays of two-spin correlations re-
late to the energy fluctuations and hence to the dynamic
specific heat. In the absence of a static magnetic field the
relaxation spectrum of the two-spin correlations is ex-
pected to be similar to that of the single-spin ones expect
for the lack of the very longest time.*° As a measure of
the two-spin correlations we took

1

N 12

i=1 | "j=1

H(t)=

In this definition, » denotes the local number of coupled
nearest neighbors (n <12). The function H (?) tends to a
constant value, H,, which needs first to be approximately
determined. To this end we took the last 1000 time steps
(out of 10000) in the case of x =0.22, or 100 steps (out of
4000) for x =0.08, to average out and get H,. We sub-
tract H, from H (¢) and get a function which now decays
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FIG. 5. Time dependence of InG (¢) for all the three systems
studied, shown in the region of small time scales. The line
representing the steeper slope indicates region 4. All other
slopes mark off region B. The corresponding effective relaxa-
tion times are shown, in units of 7.
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to zero. We have found that these correlations decay
much more rapidly and region D is already in the noise
level. Nevertheless, the relaxation times corresponding
to regions B and C are consistent with those found for the
single-spin correlations. This supports the idea of simi-
larity of the single- and two-spin spectra also in our sys-
tem.

V. DYNAMICAL MAGNETIC SUSCEPTIBILITY

The time-dependent correlations discussed in the previ-
ous section are quantities that can be determined in an
equilibrium. Another way of characterizing the dynam-
ics is to perturb the system by ac magnetic field and to
monitor oscillations in the induced magnetization, m (t).
In this experiment the system is displaced slightly away
from equilibrium. In order to determine the resulting dy-
namic susceptibility one should switch on a small ampli-
tude field,

h =hgsin(wt) , (8)

at t =0 and then start monitoring the magnetization after
some time t;, chosen so that all transient exponentials
can be considered extinct.

Getting beyond ¢, in a Monte Carlo simulation is often
impossible and as far as we know nobody has attempted
to determine a dynamical susceptibility in this way. Our
purpose, however, is rather modest: We want to find out
whether the discrete nature of the relaxation spectrum is
capable of building a frequency-dependent structure. We
then adopt the following approximate procedure. First of
all, we choose T =0.5 and focus on the high-frequency,
i.e, short-time, domain. We choose ¢, to be 50000
MCS/S so that the responses in regions A4 through D
should be fairly well defined. We select a range of periods
of oscillations, T,=2m/w, between 10 and 40000
MCS/S. In this way, region A is ruled out: too rapid
variations in the field make it hard to maintain the sys-
tem close to equilibrium. We take h; to be equal to
0.1}J].

Once we pass the point ¢ =t,, we average m (t) over
many periods and extract the real and imaginary parts of
the susceptibility through

m (t)=hy[x'sin(wt)—x''cos(wt)] . 9)

For periods T, less than 200 MCS/S we monitor m (¢t) for
10000 MCS/S which yields between 50 and 1000 periods,
depending on T,. For T, between 200 and 3000, we
needed about 150 periods. For still larger periods (up to
40000), we had to limit our averages to 30 periods. The
error bars then increase with T,. Certainly, the longer-
lived transients still keep decaying throughout the full
Monte Carlo evolution, but this appears to make no more
than a small perturbation to the susceptibility in the fre-
quency domain considered.

The results of our calculations are presented in Fig. 6.
Consider first the system at x =0.08. It is seen that the
plots of ¥’ and x"’ versus log;o(w) show the same struc-
ture as predicted in Ref. 18 by more precise means: Y’
displays a sequence of maxima where Y’ crosses over
from one plateau to another. These occur, roughly, at
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0.04

logio(wTo)

FIG. 6. Frequency dependence of the dynamical susceptibili-
ty per spin: (a) the real part and (b) the imaginary part. The sus-
ceptibility is in units of 1/|J]. The solid squares refer to the sys-
tem below the percolation threshold and the open circles to the
system just above it. The capital letters and the arrows identify
typical values of relaxation times in regions corresponding to
the consecutive values of the discrete barriers. The temperature
is equal to 0.5|J].

inverses of the typical relaxation times corresponding to
the regions B, C, D, and so on. It should be noted that
this structure is less pronounced than that shown in Ref.
18 simply because we study the susceptibility at T =0.5
and not at 0.2. The structure in the susceptibility reflects
the physics of some processes being frozen and other un-
dergoing relaxation in the time domain under study. The
identification of the relevant time scales is consistent with
the one made when discussing the time dependent corre-
lations. The A region is too short lived to be seen.

The structure in the frequency dependence of the sus-
ceptibility is less sharp in the system generated at
x =0.22, but it is still noticeable. At this temperature we
can identify two maxima in }’’. One of these corresponds
to the D region (or D mixed with C) and the other to the
B region (or, more likely to B overlapping with C). Like
in the discussion of the time delayed correlations, region
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FIG. 7. The Argand plots of ¥’ vs x": (a) is for x =0.08 and
(b) is for x =0.22.

C is hard to identify. It is possible that this could be en-
abled by considering still smaller T (which was beyond
our reach). The structure in the susceptibility is also seen
on the so called Argand plots shown in Fig. 7. For a con-
tinuous spectrum of relaxation times the Argand plots
reduce to an ellipse, but Fig. 7 shows sections of several
different elliptic curves which are joined together. This
indicates gaps in the spectrum. Note also that for
x =0.08 we do see three elliptic pieces, but regions C and
D (the smallest piece) overlap. We conclude that the sus-
ceptibility x > x, exhibits a structure which seems to mir-
ror the discrete structure of barriers.

VI. INFLUENCE OF THE NEXT-NEAREST NEIGHBORS

We now come back to the question of the observability
of the predicted structure in the dynamic susceptibility.
Within the framework of the Ising model there is at least
one mechanism which may smooth the structure out and
this is the presence of the next-neighbor couplings.
Whether these couplings have such a ‘destructive”
influence on the relaxation spectrum seems to depend on
the ratio, a, of these couplings, Jyy, to J as shown in Fig.
8. In this figure we show a distribution of the barriers for
three values of a. The barriers were calculated for local
energy minima generated in the system of x =0.20 and
L =4. If a is equal to 0.5, then the distribution of the
barriers still has a discrete nature, but the barriers now
come in multiples of |J| and not 2|J|. Thus one would
need much lower temperatures to observe a structure in
the susceptibility (if any). On the other hand, if a is very
small, then the barriers group in the immediate vicinities
of the values which are multiples of 2|J| and the gaps in
the spectrum should still be present. Finally, for an inter-
mediate value of a of, say, 0.1, the spectrum becomes
quasicontinuous with no expectations for the spectrum of
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FIG. 8. Distribution of energy barriers for the energy mini-
ma generated in systems with the next-neighbor interactions
present. The ratio, a, of the antiferromagnetic next-neighbor
coupling Jyn to the nearest-neighbor coupling J is indicated.
Here L =4 and x =0.20.

relaxation times to contain gaps. This probably dooms
Cd,_,Mn,Te as candidate for a system in which the
structure could be observed. Note, however, that it is not
clear how to “translate” experimental data on the ex-
change couplings into the effective ones to be used in an
Ising model. Second, it is not clear how next-neighbor
couplings affect the very largest barriers due to the lowest
states. ,

In a recent paper, Rigaux et a report on measure-
ments of the dynamical susceptibility of a sister com-
pound Hg,_,Mn, Te at several values of frequency (be-
tween 600 and 3000 Hz and x =0.35, T=9 and 10K. It
appears that no structure is present3? but the frequency
window is too narrow to set the issue. On the other
hand, Geschwind et al.** consider Cd,_,Mn, Te in a
highly concentrated regime of x =0.65. In this regime
the system is an antiferromagnet of the third kind. Due
to high connectivity at this x, the barriers probably take
only high values and the relaxation times should be stud-
ied at long time scales. The focus of the paper, however,
does not relate to a possible frequency structure in y. Re-
cently, Klosowski et al.3* have studied another class of
fcc compounds: Zn,_,Co,S and Zn,_,Co,Se in which
|J] is about 96 K. If the next-neighbor couplings are
small there, then these might be candidates to look for
the frequency structures.

We conclude by suggesting a necessity of further exper-
imental and theoretical studies on this subject. A pri-
mary goal of such studies should be the isolation of
Heisenberg features from Ising ones in the dynamics of
spin glasses.

13
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