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Field theory of the two-dimensional Ising model:
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In this paper we review the critical Ising model by using the properties of conformal invariance.
We use the known mapping of the Ising model to a theory of Majorana fermions and recognize that
the self-duality property appears as a double degeneracy of the periodic ground state. The Ising
model is doubled obtaining an Ashkin-Teller model (two Ising models coupled with a four-spin cou-
pling) at the decoupling point. Using the bosonization technique this model is mapped onto the
Gaussian model at a particular value of the temperature (K =1/~). This allows us to give the ex-
pressions for products of order, disarder, and energy operators of both Ising models in terms of
operators in the Gaussian model. We compute several correlation functions of order, disorder, en-

ergy and spinor operators and show that they reproduce the operator product expansions predicted
by conformal invariance. We explicitly discuss the physics by which the correlation functions ob-
tained from the Gaussian model (a theory with conformal anomaly c= 1) reproduce those of the Is-
ing model (c =

2
). This provides a proof of Kadanoff and Brown's equivalences and conjectures.

We provide a simple prescription to compute all n-point correlation functions at criticality, includ-

ing mixed correlations of order, disorder, energy, and spinor operators. A bosonized form of the
continuum limit of the transfer matrix for the critical Ising model is constructed. It is nonlocal and
contains both spin-wave and vortex operators of the Gaussian model.

I. INTRODUCTION AND MOTIVATIONS

The Ising model is perhaps one of the best-known ex-
amples of statistical mechanical systems that undergo a
second-order phase transition. Its appeal stems from the
fact that it is very simple to formulate and its exact solu-
tion for zero external magnetic field was given by On-
sager' over 40 years ago. For all its beauty, however,
Onsager's solution involves a highly sophisticated
method. The solution was first simplified by the intro-
duction of fermionic variables by Kaufman. Later,
Schultz, Mattis, and Lieb in a remarkable paper used this
method of introducing fermions to cast the solution in a
very elegant and simplified manner.

The formidable work of McCoy and Wu is to this day
perhaps the most thorough treatise on the Ising model.
One of the problems that is first realized is that the solu-
tion is easily cast in terms of fermionic variables, but the
correlation functions of order and disorder operators in-
volve some formidable algebra involving the calculation
of Toeplitz determinants. It is this mathematical intrac-
tability that prevents the computation of n-point func-
tions of order and disorder operators. Field theoretical
approaches succeeded in computi'ng the two-point func-
tion of order operators. ' Luther and Peschel used the
equivalence of two decoupled Ising models to an S =

—,
'

XY quantum chain and computed some correlation func-
tions by using bosonization.

From the operator algebra, Kadanoff and Ceva were
able to compute some correlation functions of order and
disorder operator on a line. Later, Zuber and Itzykson,
by doubling the Ising model and using bosonization, com-

puted the two- and four-point-functions of the order
operators by taking the "square roots" in the doubled Is-
ing model. This procedure was also advocated by
Schroer and Truong. ' Kadanoff and Brown, " by using
the result of Zuber and Itzykson and building upon
universality arguments and the operator product expan-
sion, give an identification between products of operators
of the two Ising models at the decoupling point of the
Ashkin-Teller model, and spin-wave and vortex operators
in a Gaussian model at a particular value of the tempera-
ture. Currently most of the relevant information on the
correlation functions of the Ising model is fairly well
known but a great deal of mathematical sophistication is
required to obtain these correlation functions (see Ref. 4).

More recently, the remarkable work of Friedan, Qiu,
and Shenker' (FQS) and Belavin, Polyakov, and Zamo-
lodchikov' pointed out that conformal invariance severe-
ly restricts the operator content and completely deter-
mines the operator product expansion (OPE) of a large
number of critical systems in two dimensions. The Ising
model is perhaps the simplest theory in the classification
of FQS. ' In this series of theories, the correlation func-
tions of scaling operators are completely determined from
the knowledge of the "degenerate" or "null states" in the
representations of the Virasoro (conformal) algebra. ' '
From these states a set of differential equations can be ob-
tained that the correlation functions of scaling operators
must satisfy. The solution to these differential equations
determines completely the OPE of the theory. Needless
to say, the difficulty for solving these equations grows
with the order of the correlation functions. Recently
some efforts to solve these complicated equations have
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been reported. '

The purpose of this paper is to reconcile some aspects
of what is known about the Ising model from the confor-
mal invariance' ' point of view and the "doubling" of
the Ising model to compute the correlation functions by
taking square roots. In particular, the doubled (critical)
Ising model is equivalent to the Gaussian model, "which
is a theory with conformal anomaly c= 1 and an infinite
number of primary scaling operators, ' ' whereas the Is-
ing model has c =

—,
' and a finite number of scaling opera-

tors (energy, order and disorder, and spinor). The spec-
trum of these theories is radically different. It certainly is
not clear why or whether the correlation functions ob-
tained from the doubling procedure should yield the
operator product expansions of the Ising model.

This question cannot be answered with the correlation
functions computed in Refs. 9 and 10. Mixed correlation
functions are needed to obtain the full OPE, and these
have not yet been obtained by these techniques. Further-
more, we remark that the seminal work of Kadanoff and
Brown combined results from doubling and bosonization
with the OPE of the Ising model known previously. The
missing link is of course whether the doubling approach
leads to the correct OPE. Understanding these points is
clearly interesting since it may point to a possible con-
struction of theories with C& 1 by suitable conditions on
a C=1 theory.

Section II is a brief review of the transfer matrix ap-
proach to the field-theoretical description.

Section III studies the conformal properties (Virasoro
algebra) and analyzes the ground states in the periodic
and antiperiodic sectors. By resorting to a doubling of
the Ising model, it is shown that the ground state in the
periodic sector is double degenerate (with conformal
weight h =

—,
' ), this degeneracy being a consequence of

the order and disorder duality that is hidden in the fer-
mionic representation of the model. Part of this section
is fairly standard and most of its material is known, but is
included to reach the nonexperts.

Section IV represents the bulk of the results. Here, we
construct the correlation functions at criticality by dou-
bling the Ising model and using bosonization. We corn-
pute many mixed correlation functions and show that
they lead to the correct OPE of the Ising model. We ex-
plain why physically this must be the case when only part
of the full spectrum of the Gaussian model is "projected"
by taking square roots when the underlying field satisfies
particular boundary conditions. This provides a proof of
the conjectures and identifications of Kadanoff and
Brown. A brief discussion is given of the "twisted" sec-
tor of the Ashkin-Teller model and boundary conditions.
In this section we also construct a bosonic Hamiltonian
for the Ising model by bosonization of one Majorana fer-
mion providing an example of a recently proposed con-
struction in conformal field theory. ' '

The results are summarized at the end of the paper.
Two appendixes are devoted to technical details.

II. THE FIELD THEORY

The equivalence between the two-dimensional Ising
model and a (1+1)-dimensional quantum field theory is

better exposed in the transfer-matrix approach. In the
extreme anisotropic limit, when the lattice spacing in the
"time" direction approaches zero and the coupling along
this direction (K, ) and the perpendicular direction (K )

are properly adjusted, the transfer matrix can be written
as

T=e ' —1 —~H,
with H the quantum spin-chain Hamiltonian

H A, Qo; QcT;o(+i

with cr, o.~, and 0' the S =
—,
' Pauli matrices and

'=sinh(2', )sinh(2E ) . (2)

The critical curve corresponds to X=. 1, and in the ex-
treme anisotropic limit K,—+ ~.

Introducing the operators

,'(o —+io~)=a

,'(o io—~)=a—, ,

o.'=2a a —1 .J J J

(3)

The Hamiltonian H in Eq. (3) is written as a quadratic
form in terms of the above operators. However, this
Hamiltonian cannot be diagonalized because the a and a
obey mixed commutation relations

[a;,a;] =1, [a, ,aJ]=[a;,a~]=[a;,aJ]=0, i&j (4)

As usual this situation is remedied by introducing the
Jordan-Wigner transformation and defining

c = exp impar, ak.
/c =0

j—1

c =a exp im g—aktak
k=0

(5b)

From Eqs. (4), (5a), and (Sb) it is straightforward to show
that

cc=aaJ J J J

Ia.= exp im g ckt—ck
k=0

j—1

a =c, exp im g ckck
k=0

(6b)

(6c)

(6d)

where we have dropped a constant term and a surface
contribution since we are ultimately interested in the lim-
it N~ ~ (X is the number of lattice sites). Defining the
real spinors

The Hamiltonian in Eq. (3) written in terms of these fer-
mionic variables reads

X N
H = —2A, g c,"c;—g (c; —c, )( c,t+, +c, +, ),
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—inl4+ einl4)( —1)J
L ~2 J J

(
~

) (
't i 1rl4+ —i 7rl4)( —1)'

R ~2 J (8b)

point A, = 1 [see Eq. (2) and the discussion following it] the
theory is massless and conformally invariant. The spi-
nors fR and gL are the right- and left-handed com-
ponents (eigenvalue of y =+1, respectively). In this case
the equations of motion (10a) and (10b) imply

with a the lattice spacing, these spinors satisfy the an-
ticommutation relations

QL(x, t) =QL(x +t),
PR(x, t)=JR(x t) . —

(14a)

(14b)

(itJ (j), i)'J (i)I=0.

(9a)

(9b)

By using Eqs. (3), (5a), and (5b), the order operator (mag-
netization) is written as

The fermions pR and gL are the Kaulfmann-Onsager '

fermions. Rescaling the Hamiltonian as H~(1/2a)H
(the 1/a restores units of energy and the —,

' is necessary
for a relativistic dispersion relation), a short calculation
yields the equations of motion in the limit a ~0 (ja ~x)

i itiR (x)= —[H, gR (x )]=i PL i—

o;= c;exp induc. kci, +c, exp in—g ci, ck
1 1

or, alternatively,

i —1

o";=(c;+c;)exp +ingci, .
ck

k=1

(15a)

(15b)

(10a)

. W ( )
[H~WL(x)]= i JR+ia Bx

L/28 =
—,
' J dx f(x) iy —g(x) +mg(x)y P(x)—L/2 Bx

with

(1 la)

(lob)

In the continuum (a ~0) limit these are the equations of
motion obtained from (L =Na, N is the number of sites)

Equation (15b) follows from (15a) by using (ckci, ) =ci,ci, ',

this is also rejected in the sign ambiquity in (15b). The
dual of the order operator is the disorder operator '

j—1

iJ,(j)= n. o'„=(—l)J 'exp +n. g c„c„. (16)k(j k=1

The duality transformation

~;=i (i)i (j +1» o,"~,"+i=i.(i» (17)

changes A, ~A, in the Hamiltonian (1) (and rescales it
by a factor A. ). At the critical point (J(.= 1), the theory is
self-dual. In terms of the spinors gR and gL that diago-
nalize the continuum Hamiltonian Eq. (11) at the critical
point, the order and disorder operators are written as

(itJR (x )

g(x) =

where the anticommutation relations (9a) become

IPR(x»AU')] =
I PL(x) PL(3 )] ~(x 3 )

(1 lb)
o "(j)=v a (+i)J '[iI( (j)+p (j)]

j—1

Xexp +ing[iag. R(k)QL(k)]
k=1

(18)

j—1

i4(j) =(+i )J 'exp +i ng[ia gR (k. )QL (k)] . (19)
k=1

(12)

and the Dirac y matrices are in a Majorana representa-
tion in which y and y' are imaginary, then

0 —i
0

0 i

i 0 (13)

1 0
0 —1

We therefore see that p is a self-conjugate Majorana
fermion, real in the representation (13). At the critical

From expressions (18) and (19) we see that the order and
disorder operators are nonlocal in terms of the fermion
fields. Also, we notice from the above equations that 0"
and p will be the product of functions of x —t and x + t.

III. THE CONTINUUM LIMIT: VIRASORO
ALGEBRA

At the critical point A, = 1, the continuum theory is de-
scribed by a free massless Majorana spinor with the
Hamiltonian (11) for m=0. In terms of the right- and
left-handed components gR and pL the Hamiltonian den-
sity becomes

&=—,
'
gR (x) i fR (x) —

—,'QL—(x) i gL(x)—
(20)
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T(x ) = —,
' (&+P),

T(x +
) = —,

' (&—P),
(21a)

(21b)

with & and P being the Hamiltonian and momentum
density, respectively, and x*=t+x. From now on, we
will concentrate on the right component T(x ). T(x+ )

will have a similar expression in terms of the left spinors
From the equation of motion (loa), we can expand

the right-handed spinors in normal modes as

p~(x )= g bexp —2mi —(t —x)1

n = —oo

(22)

where we quantize in a finite interval L/2 —x ~L/2.
The factor 1/&L restores the canonical dimension to the
field P. The reality condition on Pt implies

b„=b „, Ib„,b I =5 + (23)

In order to define the theory properly we must define
the boundary conditions on the field fz. Since g is a real
field, the boundary conditions can be of two types giving
two independent sectors of the theory (inequivalent Hil-
bert spaces).

(a) Antiperiodic boundary conditions (BC's)

L L
(24)

with

n =(2m+1)/2, m =0, kl, +2, . . . (25)

in the mode expansion in (22). This is known as the
Neveu-Schwartz (NS) sector. '

(b) Periodic BC's

L L
R (26)

with

n=0, +1, +2, . . . (27)

in the expansion (22). This BC defines the Ramond (R)
sector. ' Using the mode expansion (22) we find

At the critical point A, = 1 (m=o) the theory is confor-
mally invariant. In two dimensions the conformal group
is infinite dimensional, the generators are the moments of
the light-cone components of the energy-momentum ten-
sor12, 13

b„. The vacuum lo) is defined as

b„lo) =0 for n &0,

annihilation for n & 0

(30a)

[Lg, LM ]=(N M)L~+~+ N (N 1)5~+Ip (31)

with c =
—,
' corresponding to a free Majorana fermion. '

The last term (central charge) in (31) arises from the
normal-ordering prescription in (29). There is a similar
expression for T(x +

) in terms of L~ obeying the algebra
(31) with the same c =

—,'.
Boundary sectors

We now study in detail both sectors (NS and R) of the
theory.

(a) NS sector This s.ector is defined by the BC's [Eq.
(24)] with n in (22) being given by (25), n =6—,', +—,', . . . .
Let us consider the state

I-,' & =bi/210& (32)

with the vacuum state lo) defined in Eqs. (30a) and (30b).
By using the expression of the Virasoro generators given

by (29) it is straightforward to show that

Lplo& =L„,lo& =0, (33a)

(33b)

L~l —,') =0 for N &0. (33c)

Equation (33a) indicates that the vacuum in this sector
is invariant under the (SL) (2,C) subgroup of the full con-
formal group, generated by Lo and L+» for which the
central extension in the Virasoro algebra [Eq. (31)] van-
ishes. ' '

Equations (33b) and (33c) show that the state
l —,

' ) is a
highest-weight state (HWS) with conformal weight & =

—,
'

of the Virasoro algebra [Eq. (31)] with c =
—,'. From the

expression for Lz given in Eqs. (29), (33a), and (33b) it
follows that

(34a)

(30b)creation for n &0,
I

where, as usual for a fermionic theory, all states with neg-
ative energies are filled. The operators Lz in Eq. (28) are
known as the Virasoro generators; these are the genera-
tors of the infinite dimensional conformal group in two
dimensions. ' ' They obey the Virasoro algebra' '

Bt
:T(x ):=—':@g

I.', l-,'&=2b „,lo&=2I-,'&, (34b)

(34c)

( —2miXx /L)L~e
N= —&x

(28) Therefore, from Eqs. (34b) and (34c) we find the null vec-
tor12, 13

with
l
null ) = (L —,'L, ) l —,

' )—:0 . — (35)

Liv =
—,
' Q n:b~ „b„:, (29)

where the dots in (28) and (29) represent normal ordering
with respect to the creation and annihilation operators

This is a null vector that makes the Kac determinant van-
ish at second level as shown in Refs. 12 and 13. This null
vector is very useful since it gives rise to a series of partial
(second-order) difFerential equations for the correlation
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functions of scaling (primary) operators as suggested in
the above references. ' " Using the expansion (22) for
antiperiodic BC's we find the correlation function

that the state Icr ) is annihilated by Lo. However, we now
see that this conclusion is too hurried.

A straightforward calculation yields

&0ly, (x -)y, (y-) I0& =—1 1

L 2i sin[@(x —y i e—)/L]
(36)

L~Io(+)) =0 for N )0,
) Io.(+) &

= ,'b—ob—)Io—(+) & .

(43a)

(43b)

where the term @~0+ is a convergence factor. It is more
convenient to work on the plane where the conformal
transformations are more transparent and they corre-
spond to the analytic or antianalytic mappings of the
complex plane. ' '

To achieve this, perform first the Euclidean continua-
tion

i (t+x)~w =(r ix—), w =(r+ix) (37)

and then map the strip 0 « IRewl «ao, —(L /2)
« Imw «(L/2) onto the full complex plane by using the
mapping'

&2~m/L Z &2n.R/L (38)

Because g is a conformal field of dimension —,', its correla-
tion function transforms under this transformation as

,&0lg, (z)g, (z') I0&,
' 1/2 1/2

a~ am'

Bz , &ol& ( )P„( ')IO), , (39)

with IO) p and IO), the vacuum of the theory quantized
on the plane and on the strip, respectively. A short cal-
culation yields

p & 0
I gg ( )zg& ( z) I 0 )p

== 1 1

Zm z-z' (40)

g2
0 (41)

This equation suggests the interpretation that this zero
mode is an equal mixture of "particle" and "hole" (this
will become clear in the next section}. Now the vacuum
state has a difFerent character, Eqs. (30a) and (30b) for the
b„still hold, but also

bo l~ & =-,' l~ &, (42a)

where we have called Io ) the vacuum state in the Ra-
mond sector. In fact, the above equation rejects the fact
that the vacuum state is double degenerate [this will be-
come clear later when the Dirac case is discussed —see
Eq. (65) and discussion thereafter], and we choose [see
discussion after Eq. (86)]

(+)&=+ —
I (+)&, &o(+)I ( —)&=0.

2
(42b)

If we naively take Lz as given by (29), we would conclude

(b) R sector. The field now obeys periodic BC's, and
Eqs. (26) and (27) apply. In this situation, there is a
subtlety since now there is a zero mode (n=0) in the ex-
pansion (22) corresponding to bo.

The anticommutation relation (23) now implies

Therefore, the norm [from now on we will generally call
lo(+) &

= l~ &]

IIL )l~&ll'=&~l[L), L i]l~&=2&~ILOI~&=-,', (44)

where we have used Eqs. (43a) and (43b) and the Virasoro
algebra [Eq. (31)]. Hence, Eq. (44) implies

L, l~(+)&= —,', l~(+)& . (45)

Therefore, 1.0 is shifted by the constant —,', from its ex-
pression in the NS sector.

Equations (43a) and (45) imply that Io ) is an HWS
with conformal weight A ]g To find the corresponding
null vector we proceed as in the NS case

I, ', l~) =-,'b, b, l~ &,

L 21~&=b,b, l~&,

(L,—
—,'L', )I &=I. 11&=0.

(46a)

(46b)

(47)

Again (47) is the vector that makes the Kac determinant
vanish at the second level. ' '

On the plane, the operators Lz generate the (analytic)
conformal transformations

Z ~Z +E'~Z (48)

1 1 1

2m Z —Z'2
z

1

1/2 '1/2-
1

+
z

(49)

Hence, correlation functions in the vacuum of the Ra-
mond sector are double valued, there is a branch cut in
the complex plane.

The fact that Io (+) ) are eigenstates of Lo with eigen-
value —,', can be seen as follows.

On the plane, the holomorphic component of the ener-

gy momentum tensor is

T (z) = —
—,
' Q(z)8,P(z),

and in terms of the virasoro generators

T(z) == 1

2~ ~

(50)

(51)

[The factor I/2m differs from the normalization given in
the references above, and it arises from the normalization

Hence, the fact that I. 1 does not annihilate the vacuum
states lo.(+) ) by (43b) implies that correlation functions
in the vacuum

I
o ) are not translationally invariant on

the plane.
By using Eqs. (22), (27), (30a}, (30b), and (41) and fol-

lowing the same steps as for the NS correlation function
[Eq. (40)], we find for the R sector

& ~(+)ly, (z)y„(z') l~(+) &,
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1 1

2m (z —z')z (52)

2~/L on the strip, Eq. (28)]. Defining the normal-
ordered expectation value

&olT(z)l~&= »m, —
—,
'

z~z'

Dirac and Majorana fermions

Dirac fermions obey the same equations of motion as
in Eqs. (loa) and (lob), but they are complex; therefore,
they have two degrees of freedom. When the mass van-
ishes, the right- and left-handed components are decou-
pled. The right-handed component of a Dirac spinor is
expanded as in (22),

by using the correlation function (49), we find

&crlT(z)lo &= 1 1

2~ 16z2
(53)

with

(x
—

)
— g a e

—2nin(x /L)1

v'L „

showing the Lolcr(+) &
=

—,', Io(+) &. Repeating the calcu-
lation for the NS sector using Eq. (40) we see that Lo an-
nihilates the vacuum in the NS sector. Proceeding in the
same way as in Refs. 12 and 13 the states Icr( + ) & are con-
structed as

lcr(+) &
= lim o+(z)lo&,

z~0
(54)

with o+(z) being primary-field operator of dimension —„,
and Io& is the vacuum of the NS sector (annihilated by
Lo).

Therefore we see that there are two operators of the
same dimension ( —„)corresponding to a linear combina-
tion of order and disorder operators to be found later.
Since, in general, scaling operators are products of
primary-field functions of z and z,

o +(z,z ) =o ~(z)cr+(z ), (55)

with physical scaling dimension —,. [The field o (z) corre-
sponds to the mapping on the plane of the field o(x+)].
The order and disorder operators of the Ising model will
be shown to be linear combinations of the above o.+. Our
aim is to understand these operators better.

Going back to Eqs. (18) and (19), we see that the order
and disorder operators are nonlocal in terms of the fer-
mionic fields. This situation is in the sense similar to the
case of a free massless Dirac fermion. This theory has
conformal anomaly c= 1 and an infinite number of
primary-field operators that can be constructed as nonlo-
cal functions of bilinears of the Dirac fields. ' This con-
struction is better understood by using the bosonization
mapping. ' ' ' In terms of the associated bosonic fields
these primary-field operators are easy to construct and
are local. This bosonization procedure has been used in
Refs. 7, 9, and 10 to compute correlation functions in the
doubled (Askhin-Teller) Ising model as mentioned in the
Introduction.

Since a Majorana fermion can be written as a combina-
tion of a Dirac fermion and its charge conjugate, and a
Dirac fermion can be bosonized, we now review the prop-
erties of massless Dirac fermions and the construction of
the Majorana counterpart. Another fundamental reason
for doubling the number of Majorana fermions is that the
double degeneracy of the ground state in the Ramond
sector cannot be resolved since there is no other quantum
number available. A Dirac fermion has a fermion charge
associated to it that may be used to identify degenerate
states.

Ia„,a„.I =5„„, ta„,a„.I = Ia„,a„ I =0 (56)

and a„&a „. With the spinor y we can construct two
Majorana spinors as

—(x+1»1

2
(57a)

l
42 ~- (x—x (57b)

where in the Majorana representation (13) y is the
charge-conjugate of y. Identifying 1', with the Ising spi-
nor P in Eqs. (10) and (11) (of course this choice is
arbitrary —we could have chosen gz, but these choices
are equivalent) and comparing (55) and (22),

b„= —(a„+a „) .
1

2
(58)

Dirac fermions have a charge degree of freedom. This
charge is conserved, and it is given by the normal-ordered
expression (equivalent to the usual:g g:)

Qit = ,' f —[pit(x),y„(x)]dx . (59)

Since we are interested in Majorana fermions with
periodic and antiperiodic BC s let us study Dirac fer-
mions in both cases.

(a) Antiperiodic BC (NS). The expansion in (55) is in
terms of n =+—,', +—,', . . . . The spectrum is symmetric
around zero energy, the ground state of the right-handed
sector has, as usual, all negative energy levels (n (0) filled
up. Therefore,

&olg, lo&=-,' g &ol( .' .—. .")Io&=0, (60)

(ol g„ lo & =-,'(ol(a', a, —a,a,') lo &, (6 la)

because the spectrum is symmetric and n is a half-odd in-
teger (no n =0 mode). A short calculation shows that the
correlation function (olyz(x )yz(y )IO& is given by
Eq. (36) (on the strip L/2 ~x L~/2) —and Eq. (40) on
the plane.

(b) Periodic BC (R). Now the expansion in Eq. (55) is
in terms of n =0, +1, +2, . . . . Again, the spectrum is
symmetric but now there is a state with zero energy. The
ground state is double degenerate, since all n(0 are
filled, but the n =0 state may be empty or occupied with
the same energy.

In this situation with a zero mode we have
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+—,
' if n =0 is occupied

&oig. Io& = (61b)—
—,
' if n =0 is empty,

where again the n&0 modes cancel in the expectation
value since the spectrum is symmetric.

The correlation function can be computed as before,
and mapping to the plane by using Eqs. (38) and (39) we
find

+ 1/2

&+ Iy', (z)y, (z ') I+ ) =o .

Constructing the states

—,(I+ &+I —&)v'2

and using P, in Eq. (57a) as the Ising spinor with periodic
BC, it is straightforward to show that the correlation
function

&+I~'. (z)~.(")I+ &
= (62)

2~ z —z' z'

with I+ ) the ground state with charge +—,', i.e., the n =0
mode is occupied (+) or empt~ (

—), respectively. Be-
cause

I

+ ) =ao —) and a„=(ao ) =0, we observe that

&+I+ ) =o,

&0+-Iq, (z)q, (z')Io+-&„

is given by Eq. (49). (The same expression is obtained for
Pz. ) Hence, we reproduce al/ the properties and correla-
tion functions of the Majorana fermions in both sectors
by this procedure of writing a Majorana as a linear com-
bination of Dirac. The advantages of going through the
Dirac fermions, however, are many.

First, we recognize that the "cut" in the plane in the
correlation function (49) is now understood as arising
from the presence of a "fractional" charge (Q =+—,') at
the origin. The "vacuum" with this charge is not SL
(2,C) invariant (in particular, it is not translational invari-
ant on the plane). The second advantage resides in the
fact that Dirac fermions can be bosonized. ' '

As was argued in the discussion preceding Eq. (54) the
ground state in the Ramond sector is obtained by apply-
ing a primary-field operator to the ground state in the NS
sector. In the language of Dirac fermions, this operator
has to change the charge of the vacuum by +—,', i.e.,
change the BC s on the strip from antiperiodic to period-
ic. We are interested in the Ising (Majorana) fermions,
not the Dirac fermions. To understand the relation be-
tween the vacua of the two theories, we notice that

r

L/2 8 L/2
—,':X~ «)( —i~. )Xg(x):dx .—L/2 X ax —L/2

(63)

That is, the sum of the Hamiltonian for the two Majora-
na fermions constructed from y and y [Eqs. (57a) and
(57b)] is the normal-ordered Hamiltonian for the Dirac
fermion g. Therefore, as long as the boundary conditions
on y do not mix P, and Pz, the Hilbert space for the
Dirac problem is a tensor product corresponding to the
two Majoranas.

Certainly, periodic or antiperiodic BC s on y keep g,
and gz as independent fields [see discussion of BC's after
Eq. (86)]. It is also straightforward to show that

I

before, primary-field operators creating these vacuum
states in the Rarnond sector out of the Neveu-Schwartz
vacuum have conformal weight 5= —,'„hence, scaling di-
mension 6+6,=—', , (5—b, =0). These operators are
called "spin fields" in the literature. '

These operators are the square root of the operators
that create the I+) states out of the NS vacuum for a
Dirac field, since this vacuum is a tensor product of two
Majoranas. These spin fields in the Dirac case can be
constructed by bosonization as shown below.

—,
' [y (x),y(x)] =i P, (x)$2(x);

therefore, in the R sector [see Eq. (59)]

&+
I gl+ &

= &+lib.d. l+ & =+-,',

(64)

(65)

with bo (do) the zero mode of g, (g2) in the R sector
Since the vacuum states I+ ) are tensor products of the
vacuum states for P& and $2, the two possible values of
the vacuum charge in (65) lead to the conclusions that the
vacuum states for P& and gz are doubly degenerate
Ia, 2(+)) as proposed in Eq. (42b) and that the states
I+ ) are tensor products of combinations of

I
cT(+ ) ) .

This degeneracy of the Ising (Majorana) cannot be
resolved since there is no "charge" associated to one Ma-
jorana fermion. We suggest that this degeneracy corre-
sponds to the order and disorder self-duality property of
the Ising model at the critical point, this will be clearly
seen later [see discussion after Eqs. (86)]. As we argued

IV. BOSONIZATION CORRELATION FUNCTIONS
AND THE GAUSSIAN MODEL

The bosonization technique used in Refs. 9 and 10 are
based upon those of Mandelstarn and Coleman. ' How-
ever, this approach has many drawbacks. In particular,
line integrals are i11-defined and do not allow a natural
splitting into holomorphic and antiholornorphic contri-
butions to correlation functions precisely because of the
surface terms in the line integrals. More importantly,
this bozonization procedure does not lend itself to an un-
derstanding of the boundary conditions of the Fermi
fields neglecting completely the relation between the
boundary conditions and the charge quantum numbers of
the vacuum discussed in the preceding section. In partic-
ular, it misses altogether the charge-raising operator.
Here we use the more appropriate scheme of Banks
et al. that departs significantly from that used in Refs.
9 and 10.
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In Appendix we have summarized the bosonization re-
lations that are relevant to our treatment. There are in
the literature a number of references that the reader may
consult for a more thorough treatment. ' '

As discussed in Appendix A, the bosonization is car-
ried out in terms of a free massless bosonic field; there-
fore, all the operators in the interaction picture. It is
precisely the zero mode of this field that is the charge-
raising operator.

As shown in Appendix A, the normal-ordered density
for Dirac fermions (with normalization 1) is

1
:XR «)XR «}:=

dx
(66)

and a similar relation holds for the left-handed density in
teinls of QL .

The normal-ordered Hamiltonian density is

t
'XR I XR '+ XI. I 'XL

Bx IIX

2

ax

I+ ) — 0R
I(}) (68)

with Io) the NS vacuum (see Appendix A). Therefore,
the states

Io-& =
—,(I+)+I—) )v'2

'
(67)

Equation (67) is the well-known result that a free massless
Dirac fermion is equivalent to a free massless boson in
one space dimension, both theories having conformal
anomaly c=1. But, in fact, this simple equivalence in
conjunction with Eq. (63) (and its counterpart for the
left-handed component) also implies that two decoupled
Ising models (each with c =

—,') are equivalent to the
Gaussian model at a particular value of the temperature
(K = I/m. in the notation of Kadanoff and Brown, " see
normalization 2 in Appendix A}. But, two decoupled Is-
ing models also correspond to the Ashkin-Teller model at
the point where the four-spin coupling (that couples the
two Ising models) vanishes.

From the commutation relations (A4) in appendix A,
we see that the state with charge QR =+—,

' in Eq. (62) is

given by Eq. (49). And, if we take the expectation value
of the component T(z) for the Ising model 1 (in terms of
P, ) in this state, clearly we obtain Eq. (53) showing that
S—(z) has conformal weight 5= —,', , and certainly the
same result arises if we take QI, since S—are products of
the order and disorder operators of both. Since the
energy-momentum tensor in the Dirac case is T1+T2
(the sum of the one for f, and $2), S—have conformal
weight 6=—,

' in the Dirac theory. The results of Appen-
dix A and the relations (57a) and (57b) allow us to write
(see Appendix A for the notation)

f,R
=v 2/L cos[v'n(P+P)],

QIR =v 2/L sin[&'m(P+P)] .

(70a)

(70b)

(The left-handed fermions have a similar expression in
terms of P —P. ) These are the expressions obtained by
Kadanoff and Brown (in their convention, the above spi-
nors correspond to the c + with K = I /m ).

Although we know that the operators S—in Eq. (69b)
correspond to a linear combination of products of order
and disorder of the two Ising models, we would like to
know the expression for the product of order (o,o 2) and
disorder (p,pz} in terms of S—.

To resolve this question, however, we must go back to
the theory defined on the lattice and, in particular, Eqs.
(15)—(19). We now follow the steps of Zuber and Itzyk-
son. Using the anticommutation relation (9a) it is easy
to show that (the label I refers to one Ising model)

j —1

pi(j)= g [—2iapR(k)QL(k)];
k=1

(7 la)

therefore,

j—1 j—1

pi( j)p2( j)= + [2agR(k)QR(k)] g [2agL(k)PI (k)]

(72)

using the fact that (g) =1/2a for f' and f the above
equation can be written as

j—1

pi(j)p2(j)=exp im g [iafR(k)Q—R'(k)]
Ic =0

can be written as
j—1

X exp i mg—[iaf. i (k)QL (k)]
k=0

(73)

and

Io
+—) = lim —[s+(z)+s (z)]Io)

z o v'2

+i &nPR (z).

(69a)

(69b)

with P(z) the boson field on the plane' (see Appendix A).
As we argued above, the operators S*(z) are a com-

bination of products of order and disorder operators of
the two Ising models associated to the two Majorana spi-
nors f, and gI, since the state IO

—) is a tensor product of
the ground states of these two Ising models in the R sec-
tor. It is straightforward to check once again that the
correlation functions of g, and gz in the states Io—) is

At this stage we would like to take the continuum limit,
but we notice that the above expression is real, and the
sign in the exponential can either be positive or negative
with the same result, arising from the ambiguity in Eqs.
(15) and (16). We want to ensure that the reality of pi@2
survives in the continuum limit, and for this reason we
symmetrize with respect to both signs in (73). The reason
for this seemingly artificial procedure is simple. In taking
the continuum limit and normal ordering the correspond-
ing operators in order to remove the short-distance singu-
larities, we cannot guarantee that the result is real. Sym-
metrization ensures this property. Taking the continuum
limit, using Eqs. (64) and (66) and the results of Appendix



6752 DANIEL BOYANOVSKY 39

A with the normalization 2 conventions defined there, we
find

f g iaPgPg~ ,' f—2 « =[/]](x —a) —P]](0)] .
k =0 0 dX

(M] (x ))M~(x ) =:cosP(x —a ):, (75)

with /=/~ +PL (see Appendix A). In (75) we have nor-
mal ordered the exponential and dropped short- and
long-distance cutoff constants multiplying (75).

We are now in position to obtain the results of Refs.
9—11. Using the result of the appendixes and the lattice
expressions of Sec. II, it is a matter of straightforward
algebra to find the correspondence between products of
order and disorder operators of the two Ising models and
operators in the Gaussian model (at K = I /m),

r c( ])xpz( )x= lim v'a [g]](x)+f1(x)]p](x)(Mz(x)
a~O

=:cos)I)(x):, (76)

cr](x)cr~(x) = lim i v'a [yg —(x)+]tJL (x)]cr](x)JM~(x)
a~O

=:sing(x): . (77)

[The factor (
—i) in (77) is to render o]oz Hermitian. ]

These results, in conjunction with Eqs. (57a), (57b), and
(74), are in agreement with the results and tentative
identifications of Ref. 11. The above results differ from
those of Kadanoff and Brown by a trivial shift
P~P+~/2, P~P, which is certainly a symmetry of the
Gaussian model.

The energy operators are conjugate to T —T, ; from the
continuum Hamiltonian [Eq. (1 la)] we read

]q(a)q(a) (78)

where +=1 or 2 refers to the Ising model 1 or 2.
Using the results of the appendix, we find

(74)

Dropping the P(0) term, since we are interested in the x
dependence, the continuum limit of the symmetrized ex-
pression for p,p2 is

P(x) =P]](x)+/I( x),

P(x) =)t]]](x ) —PL (x),

the duality transformations are for the Ising models

0 ]~P1,' (1) (1)

~(2) ~(2)

and for the Gaussian fields ct)L ~—PL, (()]]~ PI(
—m/2—. .

The transformations in the second-set are certainly
symmetries of the Gaussian model, applying these trans-
formations to one of the Ising models (e.g. , number two)
reproduces the relations between Eqs. (76) and (77) and
Eqs. (80) and (81). This is a slight modification of the rule
proposed by Kadanoff and Brown (differing from theirs
by the factors +~/2), but essentially with the same phys-
ical consequences. The exponentials of P and P create
spin waves and vortex excitations (see Appendix A).
Therefore, again bosonization provides a substantive
proof of Kadanoff and Brown's conjectures. " We are
now in a position to compute the correlation functions of
the p]p2, o. ,o.2, etc. In the Gaussian theory, these are in
fact very simple, being correlation functions of spin
waves or vortex operators. But now we assert that since
the vacuum of the Dirac theory is a direct tensor product
of the vacua of the two uncoupled Majorana theories, and
the Dirac Hamiltonian and spectrum map one to one
onto those of the Gaussian model, we can now obtain the
correlations of o.„p1, etc. , by simply taking the square
roots of those of o. ,o.

2 and p,p2 above. In fact, this hap-
pens only because in the vacuum sector of the Dirac
theory, the boundary conditions are independent for both
Majoranas (antiperiodic); therefore, the Hilbert space is a
tensor product of those of both Ising models. Notice that
this feature, a priori very intuitive, cannot be appreciated
with the bosonization prescription used in Refs. 9 and 10,
since there the issue of boundary conditions cannot be
studied.

This is, however, a crucial but unnoticed point in the
above references. We now proceed to take the square
roots on the plane,

& 0
I
cr ]( r) cr ]( r ') 10 ) =

& 0
I p] ( r )(Lcz( r ') 10 &

&(])&(2)—g yg)ly (79) 1 1 (82a)

&(1)+~(2)

2
=:cos[2$(x)]:, (80) &Olo. ](r] )o ](rz)o', (r3)o ](r4)l0)

E(1) E(2)

2
= —:cos[2$(x)]:. (81)

' 1/2
~13~24

~ 12~23 1'34I"14

1/2

+2~3+1~4 (82b)

Notice that e' "+e' ' is the energy operator of the
Ashkin-Teller model at the decoupling point (E = 1/m ).
The above results agree with those proposed in refer-
ences. From Eqs. (75)—(81) we infer the relation be-
tween the duality transformations in the Ising models and
those of the Gaussian model.

Writing

where r, =lr, r~ l=[(Z, —Z, )(Z., —ZJ)—]'.
We have chosen the positive sign of the square root;

this arbitrary choice reAects the overall normalization of
the fields. We define the fields to be real. It is straight-
forward to check that this choice does not introduce any
ambiguities in higher-order correlation functions.

The above results are certainly not new, they coincide
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with those of Refs. 7, 9, and 10. However, identification
[Eq. (75)] allows us to compute the two- and four-point
correlation functions of disorder operators; a short calcu-
lation yields Eqs. (82a) and (82b), respectively, showing
explicitly the self-duality property. However, the
machinery that we set up allows us to do more than just
reproduce the above results; in fact, we can compute any
mixed correlation functions. For example, we note that

(83)

&Olo &(r& )crz(r, )e, (r 2)o, (»3) oz( »3 }10&

=,&Olo &(r& )e&(rz)cr, (r3)10&,

xz&0loz(», )oz(»3) 10&,

with 10&, 2 the vacua (in the NS sector) of the indepen-
dent Ising models (and 10& =10&,10&2). Using Eqs. (77),
(78), (57), and (82a), and the results of the appendixes, we
find

13/4

)&ol~)(») )e)(rz)o](»3)lo&) =

&0lo((r) }oz(» / )/zan(rz)o](»3)pz(»3) 10& 2&0loz(rf )fz(rz)pz(»3) 10&2 )&0lo)(r) }o)(»3}10&), (84)

+ —lr) —»31
/ e, (»3)+3/4

2 2
(86a)

1/2

o 2(r3 )+1 1
4( 2 }P2( 3 }

Z23

(Z )3/8

oz(r, )pz(r, ) ——,$2(»2)+ ' '

( Z )1/8

Equations (86) are part of the main results of this paper.
In fact, these equations prove that correlation functions
computed in the Gaussian theory and "projected" to one
Ising model in the way shown above lead to the correct
OPE of the Ising model. ' ' This, in fact, guarantees
that the correlation functions constructed in this way do
satisfy the differential equations obtained from the null
vectors. ' ' We would like to stress that in order to ar-
rive at Eqs. (86) we need all the correlations [Eqs.
(82)—(85)], and Eq. (85), for example cannot be obtained
with the bosonization approach used in Refs. 9 and 10.

We are now in a position to determine the operator
content of the ground state in the Ramond sector. First,
we realize that if we generically call Io. & this state (it is
double degenerate) by applying clustering decomposition
to (49) when Z))Z', we find

&o(+)lbolo(+) &=+ —,
2

'

as proposed in Eq. (42b). In the above expression, bo is

the zero mode of the Majorana fermion in the Ramond
I

(86b)

(86c)

hence,

(Z )3/8
z&01c»z(r& )/zan(rz)pz(r3)10&2 =—

(Z Z )1/2 (Z )1/8

(85)

From Eqs. (82a), (84), and (85) we can read the operator
product expansions

1 1
cr, (r, )c», (»3 )

r( r3 v 2 Ir) »3

I

sector. From the OPE [Eqs. (86b) and (86c)], we find
that

& plat(r)lp &
=

& plbolp& =0
with

Ip&= lim p(z, z)10&,
z, z~O

and similarly for o., with p and o. the order and disorder
operators. Therefore, from (86b) we find

I o (+ ) &
= —( I p &+

I
o & ) .

2
A duality transformation changes

I p &+-&
I
o &, or

lo(+)& I ( —)&.
The next question that we must address is that of the

boundary conditions. Combining two Majorana spinors
(g„pz) to form a Dirac spinor y yield four possible BC
for y that do not mix the real (p, ) and imaginary ($2)
parts. These are (NS, NS), (R,R), (R,NS}, and (NS,R), re-
spectively. The first two correspond to the NS (transla-
tional invariant) and R for the Dirac fermion. But the
last two imply y(L) =+g ( L); in the b—osonized formu-
lation, this corresponds to the twisted sector of the boson
P(L)= P(L) (a—ntiperiodic BC). This twisted sector is
also a sector of the Ashkin-Teller model, and hence, the
identification of the "twist" fields ' of the Ashkin-
Teller with the "spin" fields ' of the Ising model.

The correlation functions being computed in the
translational invariant vacuum (NS) can always be fac-
tored out since this vacuum is a tensor product of the NS
vacua for both Ising models. Although the simplicity
with which we can compute the n-point correlation func-
tions seems to justify the considerable effort to reach this
simplicity, there certainly is the genuine question of
whether one can write down a bosonic theory for the crit-
ical Ising model without resorting to the doubling of de-
grees of freedom. This can be achieved by bosonizing the
Majorana spinors by using Eq. (57a) and bosonizing the
Dirac spinors using the results of the appendixes.

Using the results of Appendix A (with normalization 1)
we find

:8:=lim
x~y

l l 1

, y, (x)a,y, (&)+—,q, (x)a, lt, (&)—
2'(x —y)

'2

BX C3X

2& .[:c s( o243m/. gz ):—:cos(2V4~PL):];.
L 2 (87)
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ay,
Bx

2

2

'2
1 BP + 1 BP
2 Bx 2 8t

(88)

thus reproducing the Gaussian model. Correlation func-
tions must be computed as described above in the dou-
bled Ising model, appropriately projecting the results for
one Ising model. Equation (88) also indicates that the
Ashkin-Teller model, at the point where the four-spin
coupling vanishes, is equivalent to the Gaussian model at
K =1/m (see normalization 2 in Appendix A). In partic-
ular, we can say that the procedure of computing the
correlation functions in the doubled Ising model, relating
those to the ones in one Ising model as shown in Eqs.
(82)—(85), efFectively "sums up" the series in terms of the
cosines in (87).

The reader should not be confused: the Hamiltonian in
Eq. (87) is not of the sine-Gordon type, since the relation
between P, and Pz and PL are nonlocal (see Appendix A).

V. SUMMARY AND FURTHER QUESTIQNS

The critical Ising model has been studied with particu-
lar attention given to its operator content, to calculating
in a simple framework the correlation functions of these
operators, and to provide a proof of Kadanoff and
Brown's identifications and conjectures. By looking at
the ground state in both sectors, antiperiodic and period-
ic, we showed that the ground state of the periodic sector
was doubly degenerate and that this degeneracy is a
consequence of the self-duality of the Ising model at the
critical point. In considering two uncoupled Ising mod-
els (free Majorana fermions) the theory was found to be

The expression given by (87) has been recently proposed in
Refs. 15 and 16; however, we showed that, in fact, it nat-
urally arises after bosonization of the Majorana fermion.
The double dots in Eq. (87) refer to normal ordering for
free bosons, hence the above Hamiltonian must be under-
stood in the interaction picture.

Unlike Ref. 17 we have taken into account the dimen-
sional units shown in % as the factor 2m/I. in front of
the cosines. This is in fact arbitrary and can be changed
by a different normal-ordering prescription.

There are no coupling constants in Eq. (87) as is natural,
arising from a free Majorana fermion. We assert that
despite the interaction terms in Eq. (87), the above is a
fixed-point Hamiltonian.

One would hope to compute correlation functions in
the bosonic theory [Eq. (87)] by invoking a perturbative
expansion in terms of the cosines. This is a nontrivial
task, there being no "couplings. " The expansion should
be summed exactly.

In Ref. 15 some correlation functions are computed in
a free bosonic theory; this we find misleading and in-
correct. In fact, we find after some algebra that the addi-
tion of the second Majorana fermion given by Eq. (57b)
yields

equivalent to the Ashkin-Teller model at the point when
the four-spin coupling vanishes. The two Majorana spi-
nors were combined to yield a free Dirac fermion. The
ground state of this free Dirac (massless) theory in the
periodic sector is doubly degenerate with fermionic
charge (fermion number) Q =+—,'. We identified the
operator that raises or lowers the charge of the Dirac
vacuum by —,

' as a combination of products of order and

disorder operators of the two underlying uncoupled Ising
models.

Bosonization of the Dirac fermion allowed us to write
the products of order or disorder operators correspond-
ing to the two Ising models as exponentials of a free
Gaussian boson, and provided the equivalence between
the Ashkin-Teller model at the decoupling point to the
Gaussian model at K = 1/m.

By taking the continuum limit of the original lattice
Hamiltonian, we constructed the product of order, disor-
der, and energy operators and identified all the operators
proposed by Kadanoff ad Brown, proving their conjec-
tures in the identification.

We have shown that the process of doubling the Ising
mode1 and taking square roots does reproduce all the
operator product expansions predicted by conformal in-
variance, thereby ensuring that the correlation functions
obtained from the doubled Ising model by projecting one
of them (taking square roots) do obey the corresponding
differential equations. This was shown to happen because
the translational invariant ground state of the Gaussian
model is a tensor product of the antiperiodic ground
states of the two Ising models. This is the physical
reason that allows the construction of correlation func-
tions of a theory with conformal anomaly c =

—,
' from

those of a theory with c=1. We have extended the
method to allow the computations of mixed correlation
functions of any number of order, disorder, energy, and
spinor operators.

%'e have shown that bosonization of a Majorana fer-
mion gives rise to a bosonic Hamiltonian for the Ising
model in terms of spin waves and vortices of a Gaussian
model. We have not attempted to study the theory away
from the critical point. It would be very interesting to
try to extend the results obtained here for T&T„ in par-
ticular the expectation values for order and disorder
operators for T&T, and duality properties.

Note. After this work was completed we became aware
of a paper by Diprancesco, Saleur, and Zuber where
some of our results have been obtained. I would also like
to thank Y. Goldschmidt for making me aware of the Di-
Francesco, Saleur, and Zuber paper and thank Professor
R. Shankar for making me aware of a paper by M. Ogil-
vie [Ann. Phys. (N.Y.) 136, 273 (1981)] where a similar
version of the bosonized Hamiltonian was proposed.
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APPENDIX A: BOSONIZATION

We follow Ref. 20 and bosonize in terms of a free mass-
less bosonic field P(x, t) satisfying

the currents not to depend on a& we impose
@~a~ =1=o.'~aL. The lowest representation for the a' s
is two dimensional given in terms of two Pauli matrices.
We choose them real with

OP(x, t)=0 . (Al)
&R,L =&~,L~Z =~L =12= 2=

The solutions are right- and left-going waves QR(t —x)
and QL(x +t) with expansions in L/—2~x ~L/2,

4'OR &~QR
X = — Xv'~

Then,

(aRaL) = —l .

a —2@in (x /L)ev'~„o n

PQL V 'trQL(t+x)= ~ + QLx+

2nin(—x /L)

v'~„o n

(A2)

(A3)

Since fermions bilinears of the form yzgL always have
azo, L, we can diagonalize this operators by picking the
eigenvalue +i arbitrarily.

The normal-ordered Dirac Hamiltonian density is

1 1
:~R =XR(x)[—i)' a,XR(y)] —

22m' (x —y)2

with

t —X X —~ [QR ~/OR ] [QL~QOL ]o

2

Bx
(A9)

[a„,a ]=[a„,a ]=n5„+
(A4) and are similar for the left-handed fermions. Expectation

values are given as

the rest of the commutators vanishing.
From pR and pL we can form the linear combinations

ia&4m. pR(x ) ip+4mpg [g(0:e R l0%

P(x, t) =JR (x t)+PL (x + t)—,

P(x, t)=JR(x t) PL(—x+—t) .

P is field dual to P satisfying

(A5)
2i sin ——(x —y +is)

L

ap

ay ay
Bx Bt

(A6)
The "charge neutrality" rule a =P arises from the zero
modes poR in (A2) and the commutation relations (A4)
(the vacuum ~0) is annihilated by QR ). On the plane

From (A5) and (A6) we see that the relation between pR
and p is nonlocal in terms of aJ/at The fact t.hat p and
P are associated with spin waves and vortices can be in-
ferred by writing the expansions (A2) on the plane by us-
ing the mapping Eq. (38) (P is a scalar dimensionless
field). We now give the bosonization rules with two
different normalizations to make it easier for the reader
to compare with the literature.

(a) Normalization 1. Here we follow Ref. 20:

i (t+x)~w (r ix), w =1 +ix

Z e 2m.m/L ~ e 2m' /Le

2

L 5 p

(z —z) i'

the above correlation function reads' ' '

1 t/47TQR

v'L ~ )

—i +4m/&—cxL '.ev'L ~ 7

(A7)

(b) Normalization 2. This is the normalization of Ka-
danoff and Brown"

:xR (
—

& x a. )XR:
1

2&

with aR and aL being Klein factors (cocycles) that ensure
the anticommutation of yz and gL. The charge densities

1
:XR(x»R(x):=XR(x)XR(y)—

2
.

2m.i x —y

(A8)

(and are similar for yL in terms of pL ). Since we want

t+R (x) XR (y) l
=2~~(x —y)

The bosonization is now in terms of a boson field normal-
ized with

[P(x),P(y)] =(xi 5(x —y) ),
1/2

R
~ ~
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2

On the plane (see Ref. 17 for details)

2i tttR (Z)
XR(Z) =:e

(0~X' (Z)X (Z')Io& =

The pR used here is related to that in (Al) by a factor
~n.. Now in terms of ttpR and pL,

~PL'+% +
ax ax
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XRXR 2[X'(+) XR(X)i 1 P1R1 2R

(and similarly for XL ),

XRXL Tl P1R P1L + P2R 42L +1 ( P1R 42L 42R 41L ))

XRXL Tf PIR01L 4R~2L+ (1 1R1 2L+42R P1L )1
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