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Langevin and Fokker-Planck equation with nonconventional boundary conditions
for the description of domain-wall dynamics in ferromagnetic systems
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It is shown that domain-wall dynamics in ferromagnetic systems can be described in terms of a
Langevin equation for the domain-wall velocity U. A detailed analysis is given of the complex struc-
ture of this equation around U=O, consequent to the peculiar role played by the domain-wall coer-
cive field, which represents, on the one hand, a threshold for domain-wall movement and exhibits,
on the other hand, stochastic fluctuations when the domain wall is in motion. By this analysis, a
Fokker-Planck equation with specific boundary conditions is derived and solved in terms of a com-
plete, orthogonal set of eigenfunctions. On this basis, the amplitude probability distribution and au-
tocorrelation function of the v process are calculated and discussed, and their relationship with the
Barkhausen e6ect observed in ferromagnetic materials is considered.

INTRODUCTION

k, du /dt +kz( U
—( v }) = dH, /dt—(3)

turns out to be precisely a Langevin equation for u.
The specific role played by the coercive field H„and in

particular the fact that it represents a threshold for DW
motion, takes however this description away from con-
ventional Langevin models. In fact, the linear relation

Domain-wall (DW) dynamics in ferromagnetic systems
exhibits intrinsic stochastic properties, consequent to the
random nature of the perturbations encountered by a
DW in its motion. The author has recently shown,
through a critical reconsideration of literature results on
this subject, that this stochastic behavior can be con-
veniently described by a Langevin equation. ' This
equation derives in a natural way from the well-known
linear relationship, confirmed by many experiments,
between DW velocity u and magnetic field H in metallic
systems,

k&u =H —H, =EH,
where ki is a known coe%cient describing eddy-current
damping and H, is the coercive field experienced by the
DW. The internal field H, which includes the applied
field H, and a counterfield of magnetostatic origin H
can be expressed, when H, increases at a constant rate, as

dH/dt =dH, /dt dH /dt =k~(—(u ) —U),

where ( U ) is the DW average velocity and k2 is another
known constant. ' On the other hand, the random DW
interaction processes with the surrounding medium (lat-
tice defects, other DW's) result in stochastic fluctuations
of H, which, as shown by several experiments, are a,p-
proximately describable in terms of a Wiener-Levy sto-
chastic process 'dH, /d.t is consequently a white Gauss-
ian noise and the time derivative of Eq. (1),

between U and b,H expressed by Eq. (1), and consequently
Eq. (3), hold only as long as b,H &0. When b,H &0, the
coercive field interaction locks the DW in its position and
u=0. In these conditions, H and H, do not change in
time and, in the place of Eq. (3), we have

dbH/dt =dH, /dt =k2(v ), bH &0 . (4)

Equations (3) and (4) show that a drastic change in the
behavior of the system is implied, passing from hH )0 to
AH &0, by the presence of the coercive field threshold.

Despite these nontrivial complications, the problem is
still amenable to an analytic treatment, when specific as-
sumptions on the stochastic process dH, /dt are made.
In this connection, a case of relevant physical interest—
discussed in Ref. 3—is obtained assuming that H, is a
Wiener-Levy process with respect to the DW position, X.
This assumption, which is supported by the results of
specific measurements on a single moving DW, ' is ex-
pressed by the equation

(dH, ) =0, ( ~dH, ~'& =2Adx =2»dt,
where dH, is the random increment of H, corresponding
to the small displacement dx, and A is an unknown con-
stant. According to this model, the intensity of H, time
Auctuations is proportional, at each instant, to u. Owing
to this fact, the point b.H =0 (i.e., U =0) behaves as an
impenetrable barrier for the process, which remains
confined in the region bH & 0 (U & 0) and is here fully
characterized by Eqs. (3) and (5), Eq. (4) playing no
significant role. The Fokker-Planck equation associated
with these equations can be analytically solved and a
complete statistical characterization of the process is ob-
tained.

The aim of the present paper is to show that there is a
further case of interest where the problem can be
rigorously treated, namely, when H, fluctuations depend
on the DW dynamic state not through the instantaneous
DW velocity U, but only through its mean value ( U ),
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(6) eter, a, defined as

so that H, is a Wiener-Levy process directly with respect
to time. In Ref. 2, it is suggested that this model may be
useful to characterize the effect of DW internal degrees of
freedom, not directly describable in terms of the DW po-
sition x. Nonetheless, the behavior of real systems is ex-
pected to lie somewhere midway between the two com-
plementary descriptions expressed by Eqs. (5) and (6), and
the very fact of obtaining analytic solutions for both of
them provides a proper, general basis for a deeper
comprehension of DW dynamics in ferromagnetic sys-
tems. In particular, as will be further discussed later,
these descriptions are expected to clarify the dynamic
connection between DW motion and the Barkhausen
efFqct" ' in ferromagnetic materials.

The model discussed in this paper is worthy of some at-
tention also from a different viewpoint, as an interesting
example of stochastic process which can be rigorously
given an analytic description, despite the fact that non-
conventional boundary conditions and singular terms in
the solutions are obtained as a consequence of the pecu-
liar behavior of the process around AH=0. We will
show that this fact has its root in the existence of a varia-
tional principle for our problem, which is but a natural
generalization of the principle governing the solutions of
the Sturm-Liouville problem in the theory of ordinary
differential equations. '

k, /k2, a=k, &(u)/Ar .

We obtain

(S)

dh/dt —1/v=0 when h &0,
dh/dt+(h —1)/r=dh, /dt when h &0,

(dh, ) =0, ( Idh, I') =(2/a')dt/r .

(9)

(10)

We recall that, in this description, u=(u)he(h) [e(h) is
the Heaviside step function] so that h is a normalized
DW velocity. h(t) is a stationary Markov process and, as
such, its statistical properties are fully controlled by the
conditional probability density P(h, t ycho), where h =he
represents the initial condition at t =0. Our basic objec-
tive is to derive a Fokker-Planck equation for P, and, to
this end, we have Qrst to clarify the behavior of the pro-
cess around h =0. This is conveniently done by discretiz-
ing our problem in time, i.e., considering h (t) at times
separated by short steps bt, with e=b.tlat «1, and by
investigating the dependence on e of the probability Aow
across h =0 implied by Eqs. (9)-(11).

Let us thus consider the transition density M, (h ~h')
from h' to h in a step e. Standard considerations on the
properties of Markov processes'o show that Eqs. (9)—(11)
are equivalent to the limit for a~0 of a Markov chain
characterized by

THE MGDEL h'&0: M, (h ih')=5(h —h' —e), (12a)

Let us rewrite Eqs. (3), (4), and (6) in terms of the di-
mensionless variables

h =bH/ki(u), h, = H, /k&( )u—
and of the time constant, r, and the dimensionless param-

h'&0: M, (h ~h')=(a/v'4ne)exp( —a bh, /4e), (12b)

hh, =h —h' —e(1—h') . (12c)

Using Eqs. (12) in the Chapman-Kolmogorov equation
for P(h, t ~ho), we can write (the dependence on ho is un-
derstood)

P(h, t+b t ) —P(h, t ) =erdP/dt =P(h e, t )e—(e —h ) P(h, t )+(a—/v'4m@) f dh'exp( ash, 4/e)P(h', t—),
0

(13)

with hh, expressed by Eq. (12c). The basic implications
of this equation on the structure of P around h=0 are
schematically shown in Fig. 1, and can be pointed out by
simple order-of-magnitude considerations. Let us as-
sume, as a starting point, that P is different from zero
only for h &0, and let C be the limit value of P for
h «0 . Equation (13) shows that this condition is
strongly nonstationary. The integral in Eq. (13} implies
in fact that, after a time step 4t, P acquires a value —C
(where —means "of the order of") inside h &0, up to
h — v'e/a Thi—s corr.esponds to a probabilit~
flow, from h & 0 into h & 0, -C(&e/a )/b t —C/a v'e,
which therefore would become divergent in the limit
e~O. This cannot be the case and an opposite How of
the same order of magnitude must be present. In fact,
the previous considerations show that P must be assumed
to be difFerent from zero also in a region -&e/a inside
h (0. If C' is the limit value of P in this region for
h «0, the terms before the integral in Eq. (13) imply

the existence of a probability Aow, from h (0 into
h & 0, —C'e/b t —C', which can balance out the previous
flow if C'-C/a&'e. In the region h &0, therefore, P at-
tains values -C/av e in a h interval —v e/a and will
consequently be describable, in the limit e~O, in terms of
a Dirac singularity -(C/a )5(h). Our basic objective is
to determine the exact strength of this singularity. The
detailed calculations by which this information is ob-
tained are reported in Appendix A. They show that the
singular contribution to P is precisely (C/a )5(h). Re-
calling that C is the limit value of P for h —+0+ we can
summarize the result of our analysis by saying that the
conditional probability density P(h, t ~h~ ) of the process
described by Eqs. (9)—(11) is defined for h & 0, and, in this
region, is expressed as

P(h, t ~ho) =P(h, t ~hu)[1+5(h }/a ], (14)

where p is regular for h —+0+. Notice that the Dirac
singularity, although located at the boundary of the h re-
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C'- C/aF

(rap/at+a p —asap/az), =.=O.

The solution of Eq. (20) is well known in the theory of
Markov processes when p is defined over the entire z axis.
In this case, Eq. (20) admits a complete set of eigensolu-
tions decaying exponentially to zero for z~+oc, of the
form

p„(z, t ) =exp( —z /2)H„(z/V'2)exp( nt /r—), (22)

FIG. 1. Schematic representation of the behavior of P(h, t) vs
h around h =0 implied by Eq. (13).

0
=f dh p(h, t ~ho)+( I/a )p(0, t ~ho)

0

and making use of Eq. (15},we obtain

(16)

gion of interest, will fully contribute to any integral over
h which starts from h =0. The function p(h, t~ho} is
governed by the Fokker-Planck equation associated with
Eqs. (10) and (11) in the region h )0,

rBp/Bt —B(h —1)p/Bh —(1/a )8 p/Bh =0 . (15)

The complications discussed in Appendix A, being limit-
ed to an interval -~e/a around h =0, do not afFect this
equation. A specific boundary condition for p is however
implied by Eq. (14) and by the fact that P must be nor-
malized. Actually, taking the time derivative of the equa-
tion

d f„/dz —z df„/dz+A, „f„=O, (26)

which would coincide with the equation for Hermite po-
lynomials if A.„were an integer. The solutions of Eq. (26)
for a generic A, can be expressed in terms of parabolic
cylinder (or Weber) functions D&(z). '3 In fact, two
linearly independent solutions of Eq. (26) are given by
exp(z /4)D& (z) and exp(z /4)D& ( —z). Considering

n n

the asymptotic behavior of D&(z) for z~+oo, it turns
out that only the former solution guarantees an exponen-
tial decay, ofp„ for z —++ oo, and we conclude that

where H„(zl&2) is the Hermite polynomial of order n

The set of eigenfunctions H„(z/&2), n =0, 1, . . . , can
be obtained by a variational principle, involving the ac-
tion integral

et= f dz(df/dz) exp( —z /2) (23)

together with the normalization condition

(f,f)=f dz f (z)exp( —z /2)=1 .

We will show that the effect of the boundary condition
(21}amounts to a simple generalization of these results.

In analogy with Eq. (22), let us look for an eigensolu-
tion of Eq. (20) of the form

p„(z, t ) =exp( z /2) f„(z)ex—p( A.„t/r), —
A,„O, (25)

where the eigenvalue A,„ is not necessarily an integer. By
inserting Eq. (25) in Eq. (20), we obtain the ordinary
differential equation

(re/Bt+azp —Bp/Bh )I, o=0 . f„(z)=exp(z /4)D& (z) . (27)

Our problem is therefore reduced to finding a solution of
Eq. (15) which decays exponentially to zero for h —++ ao

and satisfies the boundary condition (17) at h =0 and the
initial condition p(h, 0~ho) =5(h —ho) at t =0.

SOLUTION OF THE FOKKER-PLANCK EQUATION

The problem is conveniently discussed by introducing
the new variable

(adf„/dz+ A.„f„), , =0 . (28)

By inserting Eq. (27) in Eq. (28) and making use of the re-
currence relations for parabolic cylinder functions we ar-
rive at the equation

The set of permitted eigenvalues A,„ is obtained by impos-
ing that p„must satisfy the boundary condition (21). In
terms off„,we obtain

z=a(h —1) . (18) (29)

P(z, t)=p(z, t)[1+5(z+a)/a], z ~ —a,
and Eqs. (15) and (17) take the form

rr}p/dt —Bzp/r}z —8 p/Bz =0,

(19)

(20)

The probability density expressed by Eq. (14), when nor-
malized with respect to z, becomes [the dependence on zo
(i.e., ho) is again understood]

which determines the set of eigenvalues of the problem as
a function of a. Notice that A,O=O and X, =1 are always
solutions of Eq. (29), and, according to Eq. (27), the cor-
responding eigenfunctions are simply fo(z)=1 and

f, (z)=z.
It is a remarkable result that the set of eigensolutions

expressed by Eqs. (27) and (29) provides an orthogonal
basis for our problem. Orthogonality holds with respect
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to the scalar product

(f„f ) = f dz f„(z)f (z)exp( —z /2)—a

X [1+5(z+a )/a ], (30) h (h)/a
where the last factor in the integrand is exactly the same
as in Eq. (19). The proof of this statement is given in Ap-
pendix B. On the other hand, completeness derives from
the existence of a variational principle for our problem.
In fact, as shown in Appendix C, the eigenfunctions f„(z)
can be obtained from the action integral

4= f dz (dfldz) exp( —z /2), (31)—a

together with the normalization condition

(f f)—:f dz f (z)exp( —z l2)[1+5(z+a)/a]=1—a

(32)
and, as such, provide a complete set of eigenfunctions.
The coinparison of Eqs. (31) and (32) with Eqs. (23) an
(24) points out the simple generalization by which the
boundary condition at z= —a expressed by Eq. (28) is
added to the Fokker-Planck Equation (20) to obtain our
model. In terms of the basis of eigenfunctions f„(z), the
conditional probability density P(z, t~zo) of interest be-
comes

P(z, t~zo)=exp( —z l2)[1+5(z+a)/a]

X g C„(zo)f„(z)exp( —
A,„t/r) .

n=0
(33)

The coefficients C„(zo ) are obtained by requiring that
P(z, O~zo) =5(z —zo). Exploiting the orthogonality prop-
erties of f„with respect to the scalar product (30), we ob-
tain

C„(zo)=f„(zo)/(f„,f„) .

Equations (33) and (34) solve completely our problem.

DISCUSSION

(34)

Equation (33) determines all the statistical properties of
z(t)=a[h(t) —1], where h(t)=u(t)/(u). The stationary
amplitude probability density of the process corresponds
to the eigenvalue Xo=0 and is thus given, in terms of the
variable h, by the expression (see Fig. 2)

FIG. 2. Stationary amplitude probability density Po(A) vs
normalized DW velocity h =u/(u), as predicted by Eq. (35}.
The Dirac singularity describes the finite probability of finding
the DW at rest.

finite time intervals where u(t)=0. This behavior is at
the origin of the Barkhausen (B) efFect commonly ob-
served in ferromagnetic materials. "' The signal detect-
ed in 8 e6'ect experiments measures in fact the rate of
change of magnetic Aux and is thus basically proportional
to the DW velocity U. The mentioned burstlike events
(often termed B clusters) are actually observed in experi-
ments, and have been considered the essential aspect of 8
noise by many authors. "' ' ' It is worth remarking
that in the model where H, Auctuations are described by
Eq. (5), a power-law divergence of Po(h) for h ~0, in-
stead of a Dirac singularity at h =0, is obtained, which
implies the existence of scaling properties in the time and
amplitude distribution of 8 clusters.

The intermittent behavior of u (t) tends to disappear at
high DW velocities since, according to Eq. (8), a~co
when (u )~~. In this limit u shows only small Iluctua-
tions around (u ), the value u =0 is never reached and a
simple Gaussian process is obtained.

The autocorrelation function R ( b, t ) of h ( t) can be cal-
culated as

R(b, t)= f f dh, dh, (h, —1)(h, —1)Po(h, )P(h„b, tih, ),

Po(h)=IF exp[ —a (h —1) /2][1+5(h)/a ], h ~0 (36)

(35)

where E is a proper normalization constant and the fact
that fo(z) = 1 has been taken into account. A straightfor-
ward integration shows that the mean value of (h —1)
calculated through Eq. (35) is zero, which implies that
the mean DW velocity is just (u ), consistently with the
initial assumptions of our model. The Dirac singularity
in Eq. (35) describes the finite probability of finding the
DW at rest because of the pinning action of the coercive
field. Its presence implies that u(t) exhibits an intermit-
tent behavior in time, with burstlike events separated by

where P and Po are given by Eqs. (33)—(35). This integral
is straightforwardly calculated by noticing that
(h —1) ~ f, (z) and exploiting the orthogonality proper-
ties of the eigenfunctions f„(z). We obtain

R(bt)=((h —1) )exp( Atlr), —(37)

which implies that h fluctuations are characterized by a
Lorentzian spectrum of time constant r [see Eq. (8)]. The
quantity ((h —1) ) measures the intensity of h Auctua-
tions around its average (h ) = 1, and can be calculated
through Eq. (35). We obtain
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exp( —a /2)+(m/2a )' +(+2/a)y( —'„'a /2)
((h —1)')=

exp( —a /2)+aV m. /2[1+4&(a/V'2)]
(38)

where 4&(x ) is the probability integral defined by Eq. (A4)
and

Xy(a;x)= du u 'exp( —u)
0

is the incomplete I function. A simple behavior is ob-
tained in the two limits a « 1 and a )) 1 (see Fig. 3),

(39)

((h —1) ) =(vr/2a )' when a «1 (low (u)), (40)

((h —1) ) = 1/a when a )) 1 (high (u ) ) . (41)

According to our previous considerations, the results
expressed by Eqs. (37)—(41) should be applicable to the
interpretation of B effect fluctuations. It is not the aim of
the present paper to give any accurate comparison be-
tween the present model and B noise experimental re-
sults, but some interesting conclusions can be very simply
obtained from the fact, already discussed in previous pa-
pers, ' that the time constant ~ is proportional to the
differential premeability p of the portion of the hysteresis
loop wher'e DW motion is considered. This implies, on
the one hand, that B noise cutoff frequency is expected to
be proportional to I/p [Eq. (37)]. On the other hand, 8
noise intensity should be, depending on the average DW
velocity (u ), proportional to p'i [low (u ), Eqs. (8) and
(40)] or to p [high (u ), Eqs. (8) and (41)] and the spec-
trum maximum, which is proportional to r((h —1) ),
should correspondingly be proportional to p or to p .
These predictions are in fact in good agreement with
literature results, ' ' although the lack of accurate infor-
mation on ( u ) introduces inevitably some arbitrarity in
the comparison between theory and experiments.

CONCLUSION

The common aim of this paper and of Ref. 3 is to de-
velop a proper theoretical frame for the description of
DW motion in ferromagnetic systems. The main
difficulty opposing this task is represented by the peculiar
role played by the DW coercive field H„which
represents on the one hand a threshold for DW move-
ment and exhibits, on the other hand, stochastic Auctua-
tions when the DW is in - motion. This leads to a
Langevin equation for the DW velocity U having a com-
plex structure around U =0. The corresponding Fokker-
Planck equation can, however, be rigorously solved in
terms of a complete set of orthogonal eigenfunctions. In
particular, in the case of the model discussed in this pa-
per, the properties of these eigenfunctions and the varia-
tional principle associated with them point out that our
Langevin approach to DW motion is quite a simple gen-
eralization of the standard Langevin model considered in
the theory of Markov processes. We believe that impor-
tant information on DW dynamics will be obtained by
comparing the predictions of the present model and of
that of Ref. 3 with the results of Barkhausen effect exper-
iments. This comparison will be the subject of specific
forthcoming papers.
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APPENDIX A

i03

A
PV

I

V

Following the order-of-magnitude analysis given in the
text, we shall look for a solution of Eq. (13) which, in an
interval -&e/a around h =0, has the structure ex-
pressed by the equation

P(h, t) =Q(h, t )e(e—h )+[C(t)+6(h, t)]e(h —e),
I" I

& +e/a, (Al)

where b, (h, t) is a correction term -C. According to the
discussion given in the text, Q —C /a &e so that, when we
consider Eq. (13) for h &0, erBP/Bt-Cv'e/a. All terms
of Eq. (13) having a weaker dependence on e must there-
fore balance out. When Eq. (Al) is substituted in Eq.
(13), we find in fact several terms -C, whose sum must
be equal to zero. This gives the equation [dependencies
on t are understood, C' represents Q (h =0)]

04

FIG. 3. Intensity of normalized DW velocity Auctuations vs
dimensionless parameter a defined by Eq. (8), as predicted by
Eq. (38). The asymptotic behavior for a ((1 and a )&1 is given
by Eqs. (40) and (41).

—eBQ/Bh+F(h)+G(h)=0, h &e,
where

F(h) =eC'(a/&4ne)exp( —a h /4e)+(C/2)

X [1+@(ah /&4e) ],
N(x)=(2/v'm. )f du exp( —u ),

0

(A2)

(A3)

(A4)
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and

G(h)=(a/&4sre) I dh'exp[ —a (h —h') /4e]h(h') .

(A5)

As previously mentioned, we are basically interested in
the integral b Q of Q, which, in the limit e—+0, gives the
strength of the Dirac singularity at h =0. b,Q can be cal-
culated from Eq. (A2), exploiting the fact that

b, Q = —f dh (h —e)BQ/Bh = —I dh h BQ/c)h .

APPENDIX B

Let us consider the scalar product given by Eq. (30),
and let us multiply it by A,„.We obtain

X„(f„,f )=A,„f dz f„(z)f (z)exp( —z /2)—a

+[(A,„la)f„(z)f (z)exp( —z /2)],

(B1)

Equation (26) implies that

A,„exp( —z l2)f„=—d[exp( z /2—)df„ ldz]/dz,

Multiplying Eq. (A2) by h and working out some known
integrals, we obtain

AQ=C'v'e/av'sr+C/2a —(I/e) J dh hG(h) .
while Eq. (28) shows that

[(X„la )f„(z)], ,= (df„ ldz —),—

(B2)

(B3)

(A7)

The last term of Eq. (A7) can be evaluated by considering
the behavior of Eq. (13) in the region h & e. Here P-C,
so that erdP/dt -eC, but several terms -C are again ob-
tained when Eq. (Al) is substituted in Eq. (13). Equating
their sum to zero, we obtain

—C —b, (h)+F(h)+G(h)=0, h &e . (A8)

Let us multiply Eq. (A8) by h and integrate from e to
+ ao. It can be checked from Eq. (A5) that

f dhhb, (h)= I dh hG(h) .

Exploiting this relation and working out the integral con-
taining F(h ) we obtain

f dh hG(h)=e(C'&e/a&a. —C/2a ) . (A10)

From Eqs. (A7) and (A10), we therefore obtain

bQ=C/a (A 1 1)

This result implies that, in the limit e—+0, the behavior of
P(h, t) around h =0 can be described by the singular
term (C/a )5(h), where C is the limit for h~0+ of
P(h, t) in the region h &0.

Inserting Eqs. (B2) and (B3) in Eq. (Bl) and integrating
by parts, we obtain

A,„(f„,f ) = f dz(df„/dz )(df Idz )exp( —z l2) .—a

(B4)

The right-hand side of Eq. (B4) no longer contains A,„and
is symmetric in n and m. This implies that the same re-
sult is also obtained when we multiply by A, instead of

A,„(f„,f )=A, (f„,f ),
which shows that (f„,f ) =0 whenever A, „&A,

APPENDIX C

Let us consider the variation

5[X—A(f,f )]=0,
where 4 and (f,f) are given by Eqs. (31) and (32), and A.

is a Lagrange multiplier. By following the usual pro-
cedure with an integration by parts, and taking into ac-
count that 5f is by no means constrained to be equal to
zero at z= —a, we obtain

—I dz 5f Id[exp( z l2)(df ldz)]jdz—+'it. exp( z /2)f I
—

I5f [df /d—z+(A/a)f ]exp( —z /2)I, , =0 .—a
(C2)

By imposing that both the integral and the contribution at z = —a must be zero for an arbitrary variation 5f, we obtain
a differential equation for f (z) equivalent to Eq. (26) and a boundary condition at z = —a coincident with Eq. (28).
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