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We variationally determine the conditions for the formation of large singlet bipolarons within

the adiabatic approximation. We find that, in two- and three-dimensional electronic systems with

only a short-range electron-lattice interaction, the only bipolarons are small bipolarons. Further-
more, with only the long-range (Frohlich) electron-lattice interaction characteristic of an ionic
solid, we find the classical result that bipolarons will not form. However, with the presence of
both short- and long-range components of the electron-lattice interaction, we find a nooel domain
within which large bipolarons can be formed. In particular, an exceptionally large ratio of the
static to high-frequency dielectric constants eo and e, respectively, is critical to the formation of
large singlet bipolarons. The remaining conditions for the formation of large singlet bipolarons
are much less stringent for electronic systems of two dimensions than for those of three dimen-
sions. Therefore, with the high-temperature superconductors having eo» e, the notion that their
charge carriers are singlet large bipolarons is a real possibility. Estimating the transition temper-
ature for bipolaronic superconductivity as the temperature- of the Bose-Einstein condensation,
transition temperatures of the order of those found in the high-temperature superconductors are
reasonably obtained. Furthermore, if, as envisioned in the Cu02-based materials, the mass of the
large bipolaron is dominated by the short-range interaction of the carrier occupying oxygen sites
with the surrounding (relatively heavy) cations, there is only a slight dependence of the transition
temperature on isotopic substitutions for the solid s oxygen atoms. Finally, the transition temper-
ature increases linearly with the thickness of the disk-shaped bipolaron (the number of contiguous
Cu02 sheets) until a limiting value is achieved when the bipolaron s shape approaches three
dimensionality. These findings are consistent with the general features of the high-temperature
superconducting materials.

I. INTRODUCTION

The discovery of high-temperature superconductors
'

has increased interest in "novel" mechanisms of supercon-
ductivity. In particular, there has been revived interest in
the notion of bipolaronic superconductivity. ' Bipola-
rons form when, as a result of their interactions with the
surrounding atoms, electrons pair to form a bosonlike en-
tity. The basic idea of bipolaronic superconductivity is
that, with the bipolarons acting as charged bosons, super-
conductivity will result below the temperature of the
Bose-Einstein condensation. Minimally, bipolaronic su-
perconductivity requires that the charge carriers form bi-
polarons and that the bipolarons be mobile (rather than
localized).

The self-trapping of a charge carrier to form a polaron
and the pairing of carriers to form bipolarons result from
the carrier's interactions with the atoms of the solid. Two
types of electron-lattice interactions are generally en-
visioned. The fact that the energy of an electron at some
location within a solid depends on the positions of the
atoms in its immediate vicinity gives rise to a short-range
electron-lattice interaction. ' This short-range electron-
lattice interaction is present in all materials. Additionally,
in ionic materials a carrier interacts with the dipoles of the

solid via a long-range electrostatic interaction. '

With only a short-range electron-lattice interaction,
polarons in two or more dimensions are always
"small. "' ' That is, even in a perfect crystal, the local
states that are combined to produce the Bloch-like small-
polaronic eigenstates describe a carrier that is strongly 10-
calized within the potential well produced by the displace-
ments of the atoms surrounding it from their carrier-free
equilibrium positions. Here, with a "linear" electron-
lattice interaction, atomic displacements about a "local-
ized" carrier lower the system's energy by Et, =A /2k,
~here A is the electron-lattice force between a static car-
rier confined to a single atomic site and the surrounding
atoms, and k is the stifI'ness constant associated with the
atomic displacements.

For a small bipolaron to be energetically stable, the
lowering of the polaronic energy, which results from hav-
ing t~o charges occupy a single site rather than being at
well-separated sites (2 Es —2Et, 2Et, ), must overwhelm
the carriers' mutual. (single-site) Coulomb repulsion
U. ' Thus, small bipolaron formation is generally as-
sociated with significant atomic displacements = (U/
k) '12. As with a small polaron, for a small bipolaron to
move coherently, this atomic-displacement pattern must
tunnel with the paired carriers. ' As a result, the bipola-
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ronic bandwidth is greatly reduced from that characteriz-
ing pure electronic transfer [by a factor of about
exp( —2U/A. coo) even at T =0 K, where coo is the charac-
teristic atomic vibrational frequency]. For a small parti-
cle with such narrow energy bands, even a modest depar-
ture from perfect translational degeneracy should lead to
localization of small bipolarons. ' ' ' ' This conclusion
is supported by the fact that carrier localization rather
than superconductivity is observed in systems (e.g. , the
boron carbides) in which small bipolarons have been
shown to exist. Indeed, it is presumably because of
the strong tendency toward localization that coherent
("bandlike") motion of small polarons, predicted to exist
at low temperatures, ' has not been observed. Thus, it
seems unlikely that real small-bipolaronic systems will ac-
tually be superconducting.

Conversely, with only the long-range electrostatically
based (Frohlich) electron-lattice interaction, polarons are
generally large rather than small. In these instances the
polarons move as quasifree carriers. However, at least in
a classical treatment, large polarons of the same sign al-
ways repel one another. In particular, the atomic dis-
placements induced electrostatically by a pair of charges
separated by the distance r only reduce the effective repul-
sion between the charges from e /e r to e /e'Or, where e
and eo are the high-frequency and static dielectric con-
stants, respectively. That is, these polarization effects will
not produce an attractive interaction. Thus, long-range
electrostatic interactions, by themselves, cannot induce
the pairing of large polarons into bipolarons.

The present state of our knowledge of bipolaron forma-
tion can be succinctly summarized. With only a short-
range electron-lattice interaction in a system of two or
more dimensions, although small bipolarons can be
formed, they tend to be localized rather than mobile.
With only the long-range electrostatic interaction general-
ly utilized in studying large polarons (the Frohlich in-
teraction), polarons are mobile but do not pair to form bi-
polarons.

In the present work, we consider the combined eII'ect of
the short- and long-range electron-lattice interactions on
the formation of a large singlet bipolaron. We find that a
large bipolaron can only be formed in multidimensional
electronic systems if the ratio of the static dielectric con-
stant to the high-frequency dielectric constant is uncom-
monly large: eo/e ))2. In a three-dimensional electronic
system, the formation of a large bipolaron also requires
that the electronic bandwidth lie within a restricted range
of values. Thus, the three-dimensional (BaBiOs-based)
high-temperature (up to about 30 K) superconductors
might support the formation of large bipolarons. Strik-
ingly, we also find that with a two-dimensional electronic
system, as occurs in the ionic Cu02-based superconduc-
tors, large bipolarons may be formed over a very much
wider range of energetic parameters. Since these novel
superconductors are characterized by eo» 2e, it is
reasonable to suspect that the charge carriers in these ma-
terials form large bipolarons.

Specifically, in this paper we consider a singlet pair of
electrons in a deformable continuum with both short- and
long-range electron-lattice interactions. Within the adia-

batic limit, we derive an expression for the ground-state
energy of this system. After simplifying the expressions
for the electrons' kinetic energy and their direct Coulom-
bic repulsion, we minimize the system s energy with
respect to both the spatial extent of the self-trapped elec-
trons R and to the interpolaron separation s. With only a
short-range electron-lattice interaction, we find that the
only bipolarons in systems of two or more dimensions are
small bipolarons. With only the long-range Frohlich in-
teraction, we find that bipolaron formation will not occur.
However, we find that with both the short- and long-range
components of the electron-lattice interaction, a large-
radius bipolaron can be formed.

We note then that, as with large polarons, large bipola-
rons move through a solid as quasifree charged particles.
Thus, we view a finite density of large bipolarons in a solid
as being analogous to a gas of mobile charged bosons.
This circumstance is just that envisioned as producing bi-
polaronic superconductivity. Following other studies, we
estimate the transition temperature for the superconduc-
tivity as the Bose-Einstein condensation temperature.
Taking the density of large bipolarons to be comparable to
the observed carrier density and presuming plausible
values of the bipolaron's mass (=twenty times the mass
of a free electron), we obtain transition temperatures
comparable to those characterizing the high-temperature
superconductors. If the carrier density is raised suf-
ficiently high so as to inhibit the formation of large bipola-
rons, the density of large bipolarons and, therefore, the su-
perconducting transition temperature will decrease with
increasing carrier density. Furthermore, with the holes in
the Cu02-based materials primarily occupying oxygen
sites, the large bipolaron's effective mass is dominated by
the holes' short-range electron-lattice interaction with
acoustic phonons. Then the dependence of the supercon-
ducting transition temperature on the masses of the solid's
atoms enters through the square of the material's sound
velocities. Thus, there may only be a weak dependence of
the transition temperature of the Cu02-based materials
on isotopic substitutions for the solid s oxygen atoms. Fi-
nally, associating a thickening of a quasi-two-dimensional
large bipolaron with the contiguous stacking of Cu02
sheets in the Cu02-based superconductors, we find that
the superconducting transition temperature increases
linearly with the thickness of a disklike large bipolaron.
This increase of the superconducting transition tempera-
ture with the bipolaron's thickness saturates when the
bipolaron's thickness becomes comparable to its diameter.
These expectations for the superconductivity of large bi-
polarons are consistent with observations on the high-
temperature superconductors.

This paper is organized in the following manner. In
Sec. II, we calculate the adiabatic ground-state energy of
two electrons within a deformable medium with a linear
electron-lattice interaction of arbitrary range. We restrict
our considerations to the formation of a singlet bipolaron.
The terms associated with the electronic kinetic energy,
electron-lattice interaction, and direct electron-electron
Coulomb-repulsion are subjected to simplifying assump-
tions concerning electronic polarization, correlation, and
exchange effects. The resulting formula presents the
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ground-state energy in terms of parameters related to the
spatial extent R and separation s of the two self-trapped
electrons. In Sec. III, we determine an explicit formula
for the electron-lattice interaction function for a system in
which the (standard) short- and long-range electron-
lattice interactions coexist. In Sec. IV, this electron-
lattice interaction function is combined with the general
formula for the ground-state energy found in Sec. II to
yield an explicit expression for the ground-state energy in
terms of the size and separation of the two polarons. This
formula is then analyzed to determine the situations in
which small- and large-bipolaron formation is energetical-
ly favorable. In Sec. V, we consider issues related to the
formation of large bipolarons. In particular, we review
our approach, estimate the relevance of our calculation to
real solids, and consider the approximations we employed.
In Sec. VI, we describe a rudimentary theory of the super-
conductivity of large bipolarons. We note that if the
atomic displacements about the bipolaron are primarily of
acoustic character, bipolaronic superconductivity need not
produce a significant isotope dependence of the transition
temperature. In addition, we find a rapid increase of the
transition temperature with the thickening of a disklike
quasi-two-dimensional large bipolaron as might arise from
the contiguous stacking of Cu02 sheets in the Cu02-based
superconductors. These predictions are consistent with
distinctive features observed in the Cu02-based supercon-
ductors. The principal results of these studies and their
relevance to the high-temperature superconductors are
then very succinctly summarized in Sec. VII.

II. THE GROUND-STATE ENERGY WITHIN
THE ADIABATIC APPROXIMATION

To determine the situations in which electrons can pair
to form bipolarons, we study the ground state of two elec-
trons within a deformable continuum. To proceed, we
employ the adiabatic approximation. Within the adiabat-
ic approximation, the electrons are viewed as moving
sufficiently rapidly compared with the motion of the atoms
so that the electrons adjust to the instantaneous positions
of the atoms. That is, the kinetic energy of the arbitrarily
slowly moving atoms may be neglected. In this limit the
ground state corresponds to the minimum of the sum of
electrons' ground-state energy, itself a function of the
atomic positions, and the potential energy of the atoms.

The Hamiltonian of'two electrons placed in a deform-
able continuum is

H = ( —h /2m ) (V +V )

Ed[A(r)] dr~ dr2 y (r~, r2)H, ~y(r~, r2) . (2)

Within Hooke's law, the strain energy associated with de-
forming the continuum is

E,& (k/2a) J' dry (r), (3)

where k is the Hooke's law stiff'ness constant and a is the
interatomic separation.

The ground state of the coupled system is that state for
which the deformation pattern is such as to produce the
lowest energy To ob. tain the ground state, we therefore
minimize E,~+E„with respect to variations of A(r). Us-
ing Eqs. (1)-(3),we readily find the minimization condi-
tion:

A(r) (a/k) dr) dr2
~ y(r), r2) I [Z(r), r) +Z(r2, r)] .

The ground-state energy corresponding to this minimum
is found by inserting the condition of Eq. (4) into Eqs. (2)
and (3). After integrating the kinetic energy terms by
parts, we find the ground-state energy to be

E ~~+ &e —&Int,

where

(5a)

T-(6'/2m) t dr)„dr2[~ V„y(r), r2) ~'

+
I &.,V(ri, r2) I (5b)

The first term of Eq. (1) describes the kinetic energy of
two particles of mass m with coordinates r~ and rq. The
second term is the continuum analog of the electron-
lattice interaction. This term portrays a linear depen-
dence of the potential energy of the two electrons on de-
formations of the deformable continuum. Here, h(r) is
the (dimensionless) deformation variable of the continu-
um at r and Z(r~, r) gives the dependence of the electronic
potential energy at r& on the deformation of the continu-
um at r. The final term of Eq. (1) is the electronically
screened Coulomb repulsion of the two electrons. The
presence of the high-frequency dielectric constant e ac-
counts for the electronic screening of the Coulomb repul-
sion. The electron-lattice interaction provides an explicit
treatment of the screening of the Coulomb interaction
arising from atomic displacements. With the ground-
state electron eigenfunction being given by y(r~, r2), the
electronic energy of the ground state for a given atomic
deformation is

dr[Z(r~, r)+Z(r2, r)]A(r)+e /e
~

r~ —
r2~ .

(1) and

V, „dr~„dr2~ y(r~, r2)
~

(e /e [r~ —r2[ ), (5c)

V;„t-(a/2k) dr~ dry ) y(r~, rq) ~ dr[„dr2 ~ y(r[, r2) [ dr[Z(r~, r)+Z(r2, r)] [Z(r[,r)+Z(r2, r)] .

Here, T represents the kinetic energy of the two electrons, V, describes the Coulomb repulsion between the two electrons
modified by the screening provided by the electronic polarization, and —

V;„& portrays the interaction of the two electrons
with the atomic displacements.
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Exploiting the indistinguishability of the two electrons,
we combine the four terms of the integrand of V;„t to ob-
tain

V;„,=4J dr~„dr2~ y(r~, r2)
~

drI dr2
~ y(r~, r2) ~

I(r~, rI),
where

I(r~, rI ) =(a/2k) „drZ(r~, r)Z(rI, r) . (7)

Carrying out the r2 and r2 integrations of Eq. (6), we then
write

fO

V;„,=4~ dr~P(r~)„drIP(rI)I(r~, rt),
where

the electron-lattice interaction energy is doubled when the
two electrons pair about a common site, when s =0.

At this point, we simplify our expressions for the two
other components of the ground-state energy (the elec-
tronic kinetic energy T and the Coulomb-repulsion energy
V, ) in the same spirit as the simplification of V;„t con-
tained in Eq. (11). In particular, envisioning a singlet bi-
polaron, we write the kinetic energy of the two electrons
as simply twice the kinetic energy of two independent
electrons occupying the same spatial state:

T=2(h'/2m) ' dr)V, y(r) [', (12)

where, as in the Heitler-London approximation, p(r) is
the one-electron wave function associated with one of two
singlet-paired polarons that are separated arbitrarily far
apart:

and

P(r, ) = dr2~ y(r), r2) ~'

P(r~) = dr2
~ y(rI, rz) I'

(9a)
lim y(r~, r2) (2) ' [p(r~+s/2)p(r2 s/2)

oo

+p(r~ —s/2)p(r2+s/2)] . (13)

In addition, we approximate the Coulomb repulsion ener-
gy [Eq. (5c)] by

Thus, the electron-lattice interaction energy [Eq. (8)] de-
pends nonlinearly on only the single-particle probability
distributions P(r~) and P(rI) rather than on the two-
particle probability distribution,

~ y(rl, r2) ~2. Further-
more, the interaction strength, I(r~, rI) as defined in Eq.
(7), of this self-energy term depends quadratically on the
basic electron-lattice interaction Z(r~, r).

To address the question of the pairing of the two elec-
trons, we find it expedient to decompose the electronic
probability distribution into two symmetric parts separat-
ed by the distance

~ s] =s:

P(r) = [p(r+s/2, s)+p(r —s/2, s)]/2, (10)

where each of the two components of the net probability
distribution P(r) is normalized to unity: fdrP(r)
=fdrp(r) =l. Each probability distribution represents
one of the system's two electrons. The dependence of
p(r ~s/2, s) on s permits alteration of the shape of
p(r ~ s/2, s) as the interelectron separation s is varied. Of
course, the arbitrariness of the axis of the distribution pro-
duces an orientational degeneracy.

Inserting Eq. (10) into Eq. (8) and dropping the
superAuous subscripts, we find

V;„,=2 dr dr'[p(r)p(r')+p(r+s/2)

xp (r' —s/2) ] I (r, r'),

where we have combined two sets of equivalent terms. In
addition, we neglected the dependence of the shape of
each of the two peaks of the electron distribution on the
interelectron separation: p(r, s)~p(r). The second
term in the square brackets involves the overlap of the
probability distributions of the two electrons. As such, the
second term vanishes as s ~ and becomes equal to the
first term as s 0. Thus, the s-independent term of Eq.
(11) gives the electron-lattice energy of two polarons that
are infinitely far apart. In addition, Eq. (11) shows that

V, =J dr„~dr'p(r+s/2)p(r' —s/2)(e /e ~
r —r'~ ) .

(14)
These approximations are all within the same spirit.
Namely, these simplifications (1) ignore s-dependent
changes of the electrons' kinetic energy T, (2) neglect the
s-dependence of V;„t arising from polarization of the elec-
tronic distribution, and (3) ignore correlation and polar-
ization effects in the Coulomb repulsion energy V, . The
importance of these approximations will be discussed in
Sec. V.

To address the problem of bipolaron formation, we
must determine the nature of the ground state of the sys-
tem comprising two electrons within a deformable medi-
um. In particular, we wish to determine whether polarons
are formed, whether the polarons are large or small,
whether these polarons find it energetically favorable to
pair into bipolarons, and whether these bipolarons are
large or small. Thus, we must study the energy of the
ground state as a function of both the spatial extent of the
electronic wave functions and the separation between the
electrons. The separation between the electrons already
enters into our expressions for V;„t and V, [Eqs. (11) and
(14)], through their dependence on the parameter s.
Thus, we must introduce an explicit measure of the spatial
extent of the electronic wave functions of the individual
polarons into the problem.

To introduce a parameter related to the spatial extent
of each peak of the electronic distribution, we scale the
sizes of the electronic wave functions and probability dis-
tribution, the p(r+'s/2)'s and the p(r+'s/2)'s, while
maintaining their shapes. In particular, we jointly (I) re-
place the arguments of the p(r+ s/2)'s and the p(r
+ s/2)'s by (r ~ s/2)/R and, to maintain the proper nor-
malizations of these functions, (2) multiply these wave
functions and probability distributions by R ~ and
R ", respectively, where d is the dimensionality of the
electronic wave function. ' Upon carrying out this scaling
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procedure with the expressions for T, V„and V;„, [Eqs.
(12), (14), and (11),respectivelyl, the three contributions
to the ground-state energy become

T =2t/R ~,

V, =v, (s/R)/e R,
and

(is)

V;„t(R,s/R) =2„du du'[p(u)p(u')+p(u+s/2R)

xp(u' —s/2R) ]I(uR, u'R ),
(17)

where

t =(6'/2m)) du(V„y(u) ('

where A is the force associated with the short-range
electron-lattice interaction. The long-range (Coulombic)
component of the electron-lattice interaction describes the
change of the potential energy of an electron at u in an
ionic solid caused by altering an electric dipole at r. This
long-range portion of the electron-lattice interaction is de-
scribed by' '

ZL(u, r) =(Pe'k/x'a) 't'(u —r ( (23)

where p=(1/e —1/ev) with e and eo being the high-
frequency and static dielectric constants. Here, p mea-
sures the strength of the electronic polarizability of the
medium arising from atomic displacements.

We now combine the short- and long-range components
of the electron-lattice interaction

and
Z(u, r) =Zs(u, r)+ZL(u, r) . (24)

v, (s/R) =„du„du'p(u+s/2R)
&&p(u' —s/2R)(e'/(u —u'() . (19)

We note that, manifesting its Coulombic character,
v, (s/R) is proportional to 1/s in the limit of arbitrarily
large s.

It is now our task to find the minima of the ground-state
energy for two electrons in a deformable continuum

E(R,s/R) =2t/R +v, (s/R)/e R —V;«(R,s/R), (20)

with respect to variations of R and s/R. However, to
proceed, we require an explicit expression for V;„,(R,
s/R). We, therefore, must determine the electron-lattice
interaction function, I(u, u'), that enters into our expres-
sion for V;„t(R,s/R) [Eq. (17)].

+pe'/2
l u —u'(, (25)

where we have used the definition of the small-polaron
binding energy with only a short-range electron-lattice
interaction, Eb =A /2k. The first two terms of Eq. (25)
are obtained from r integrations over Dirac 8 functions.
The final term is obtained by noting that in a three-
dimensional isotropic dielectric medium

„dr(u —r( (u' —r( =x /(u —u'( . (26)

We insert Eq. (24) into Eq. (21), use the results contained
in Eqs. (22) and (23), and perform the r intergrations in
order to write the electron-lattice interaction function as

'I

I(u, u') =a'Ebb(u —u')+(2EbPe'a'/z')'t'(u —u'(

III. THE ELECTRON-LATTICE INTERACTION
FUNCTION I(u, u')

In this section we evaluate the electron-lattice interac-
tion function that is defined in Eq. (7). In terms of the no-
tation of Eq. (17), the interaction function is

I(u, u') =(a/2k) drZ(u, r)Z(u', r), (2i)

Zs(u, r) =wan(u —r), (22)

where u and u' are electronic position vectors and r is the
vector defining the location in the deformable continuum
undergoing a dilatation. Thus, the strength and range of
the electron-lattice interaction are determined by the
magnitude and (u —r (dependence of Z(u, r).

The short-range component of the electron-lattice de-
scribes the dependence of the energy of an electron on a
deformation of the deformable continuum in the immedi-
ate vicinity of the electron. Thus, we write the short-
range component of the electron-lattice interaction as'

IV. BIPOLARONIC GROUND STATES

A. Formalism

W'e now determine the conditions under which a large
bipolaron can be formed. In particular, we find the
minimum of the ground-state energy E(R,s/R) that cor-
responds to the formation of a large bipolaron.

To accomplish this, we first find an explicit expression
for V;„,(R,s/R) by incorporating our formula for the
electron-lattice interaction function [Eq. (25)] into the
general expression for V;«(R;s/R) [Eq. (17)]. As a re-
sult of this procedure, we can write V;„t(R,s/R) as the
sum of terms arising from (1) the short-range component
of the electron-lattice interaction, (2) the long-range com-
ponent of the electron-lattice interaction, and (3) the
cross term arising from the combined presence of short-
and long-range components of the electron-lattice interac-
tion

V;„,(R,s/R) =2v;„t (s/R)/R" + v «(s/R)/R+2v;„t (s/R)/R
where

v;„,"(s/R) =(Eba /I' ") du[p (u)+p(u+s/2R)p(u —s/2R)],
v;„t(s/R) =P[v, (G)+ v, (s/R)],

(27)

(2g)

(29)
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and

v;„&(s/R) =(2EtPe a /tt ) '
J dugt du'[p(u)p(u')+p(u+s/2R)p(u' —s/2R)l ~u —u'~

where

aT(s/R) =2[t —vs, (s/R)],

ac (s/R) =Pv, (0) —u, (s/R)/ep,

and

as(s/R) =2v;„;"(s/R) .

(32)

(33)

(34)

In obtaining Eq. (33), we have utilized Eq. (29) and noted
that P=(l/ e—I/eu). It should be observed that the
direct effect of the long-range component of the electron-
lattice interaction on the term associated with the
Coulomb repulsion, the second term of Eq. (33), is just to
increase the dielectric constant associated with the screen-
ing from e to eo. Hence, without the presence of the
long-range component of the electron-lattice interaction,
eo in Eq. (33) is just e . Finally, we note that as is al-
ways positive while aT and u~ may be of either sign.

In anticipation of their subsequent interest to us, we
compare values of aT (s/R ), ac (s/R ), and as (s/R ) at
s/R =0 with those at s/R =~. To accomplish this, we ex-
ploit the fact that the overlap between p(r+s/2R) and
p(r —s/2R) vanishes as s becomes infinite. We also infer
from Eqs. (28) and (29) that v;„& (~) =v;„& (0)/2 and
v;„,(~) =u;„,(0)/2, respectively. Incorporating these re-
lationships into the definitions contained in Eqs.
(32)-(34), we find

aT(~) =2t —v;„i (0) -aT(0)+u;„, (0),
ac.(~) =Pv (0) =ac (0) [(e'p —e )/(eu —2e )],
and

as( ) =ust'(0) =as(o)/&.

(35)

(36)

(37)

We now consider the dependence of the ground-state
energy E(R,s/R) on R and s. Since a solid is composed
of discrete atomistic units, there is a minimum size of the

In obtaining Eq. (27), we have noted that the power of R
arising from the Dirac 8 function depends on the dimen-
sionality d of the electronic probability distribution p(u
+ s/2R). In an electronic system of d dimensions d ~ 3,
the integration over the Dirac 8 function is suppressed in
3 —d dimensions. This procedure introduces the factor of
1/l "in Eq. (28), where l is the characteristic length of
the electronic system perpendicular to the direction(s) in
which the electronic wave function is large. In addition,
Eq. (19) was utilized in obtaining Eq. (29). For future
reference, we note from Eq. (30) that v;„& (s/R )—

u;„& (0)/2 is proportional to 1/s as s becomes arbitrari-
ly large.

Combining Eq. (27) with Eq. (20), we explicitly display
the R dependence of the ground-state energy E(R,s/R):

E(R,s/R) =aT(s/R)/R —ag(s/R)/R as(s/R)/—R",
(31)

E;„(s/R;„)= —(ay+ as) '/4aT . (39)

With the electronic distribution being two dimensional,
d =2, we find from Eq. (31) that

'E(R,s/R) =(aT —as)/R —ac/R. (40)

When (aT —as) and ac are both positive, there is a
finite-radius minimum at R;„=2(aT—as)/ac with the
ground-state energy

E;„(s/R;„)= —ac/4(aT —as) . (41)

With a three-dimensional electronic wave function d =3,
the ground-state electronic energy of Eq. (31) becomes

E(R,s/R) =aT/R —ac/R —as/R (42)

A finite-radius minimum of the ground-state energy at a
positive value of R, the only physically meaningful situa-

I

electronic wave function below which the electron-lattice
interaction saturates. ' One means of incorporating this
saturation effect into our considerations is to set a min-
imum value of R below which curves of E(r,s/R) are dis-
carded as unphysical. ' ' We denote the value of R as
Rs.

We first minimize the ground-state energy E(R,s/R)
with respect to R, the radius characterizing the electronic
distribution functions. A minimum of E(R,s/R) at
R =R, indicates a self-trapped state with the smallest ra-
dius that is compatible with the discreteness of the lattice,
i.e., the formation of two small polarons or a small bipola-
ron. A minimum at R =~ corresponds to the absence of
any self-trapping, i.e., neither two polarons nor a bipola-
ron is formed. A finite-radius minimum corresponds to a
self-trapped state of finite radius, i.e., the formation of ei-
ther two large polarons or a large bipolaron. Since this
paper is directed toward determining the conditions for
the formation of large bipolarons, we shall direct our at-
tention toward only the minima at finite R, R =R;„.
Having obtained the ground-state energy of such minima,
E;„(s/R;„)=E(R;„,s/R;„), we shall ultimately study
the s dependence of these minima in order to ascertain
when they correspond to energetically stable finite-radius
bipolarons. In particular, bipolaron formation will be en-
ergetically stable if the global minimum of E;„(s/R;,)
occurs at s & ~.

We sequentially minimize E(R,s/R) with respect to R
for electronic distributions of one, two, and three dimen-
sions, respectively. With the electronic distribution being
one dimensional, d= 1, E(R,s/R) [Eq. (31)] only has
terms that vary as R ' and R

E(R,s/R) =aT/R —(ac+ as)/R .

If aT and ac+ as are both positive, E(R,s/R) of Eq. (38)
has a single finite radius minim-um with respect to R at
R;„=2aT/(ac+as) with the energy of this minimum
being
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tion, only exists if ac and ar are both positive and ar
& 3agag. In these circumstances, this minimum occurs
at

R;„=(ar/ac) f1 + (1 3asaclar )

with the ground-state energy

1+2(1—3asac/ar) ' '
Em;„(s/Rm;„) —(ac/3ar ) 1+ (1 —3asaclar) I

(43)

(44)

8. Short-range electron-lattice interaction

We now discuss the physical significance of these re-
sults. First consider the situation in which there is only a
short-range component of the electron-lattice interaction.
With the vanishing of the long-range portion of the
electron-lattice interaction, we have [from Eqs. (32) and
(33) with e replacing ep] ar' 2t and ac -—u, (sl
R)/e ~ 0. Since a requirement for a finite-radius state

I

in two- and three-dimensional electronic systems is that
ac&0 [cf. the discussion below Eqs. (40) and (42)1,
finite-radius bipolarons are precluded in two- and three-
dimensional systems with only a short-range electron-
lattice interaction. However, in a one-dimensional elec-
tronic system the requirement for a finite-radius state
ay+ ag & 0 can be met even if ac is negative since ag is
always positive. In particular, in the limit of the two elec-
trons being infinitely far apart s , where ap 0 and
ac+ay is positive, we have two large polarons. This re-
sult agrees with the previously proved existence of a
finite-radius polaron in one-dimensional electronic sys-
tems with only a short-range electron-lattice interac-
tion. ' ' Furthermore, if the electron-lattice interaction
is sufficiently strong to overwhelm the Coulomb repulsion,
a one-dimensional bipolaron can be formed. In particular,
a large (finite-radius) bipolaron with both electrons cen-
tered at the same site, s =0, will be energetically stable if
E;„(0)& E;„(~).Using Eq. (39) with Eqs. (35)-(37)
with only a short-range electron-lattice interaction, this
condition may be rewritten as

Emn(0) Emn(~) =[ac(~)+as(~)] /4ar(~) —[ac(0)+as(0)] /4ar(0)

[[ac(0)+v, (0)/e + as(0)/2] —[ac(0)+as(0)] l/4ar(0) & 0, (45)

where we have recalled that eo should be replaced by e in

the absence of a long-range component of the electron-
lattice interaction. Comparing the squared terms, we

finally find the condition for bipolaron formation in a
one-dimensional electronic material to be that v, (0)/

& as (0)/2 =v;„i' (0). Thus, with only a short-range
component of the electron-lattice interaction, large-radius
bipolarons can be formed in quasi-one-dimensional elec-
tronic systems but not in electronic systems of higher
dimensionality.

C. Long-range electron-lattice interaction

With only a long-range component of the electron-
lattice interaction, a finite-radius state can be formed pro-
vided that ac is positive. In electronic systems of all
dimensionalities, the energy of such a state is E;„(s/
R;„) —ac/4ar regardless of dimensionality since
as 0. Observing [from Eq. (32) with u;„, (s/R) =Ol that
aT is independent of the interelectron separation and
[from Eq. (33) and (19)] that ac decreases as s decreases,
we see that these large polarons always repel one another.
If the polarons are brought sufticiently close together so
that ac vanishes, R~;„tends toward infinity, signifying the
decomposition of the polarons. Thus, we find that bipola-
rons cannot be formed with only a long-range component
of the electron-lattice interaction.

With the independent existence of either a short- or
long-range component of the electron-lattice interaction,
we find that large bipolarons do not exist in systems with
an electronic dimensionality of two or three. We now suc-
cessively discuss the formation of large bipolarons in sys-
tems of d 1, 2, and 3 with both components of the
electron-lattice interaction.

D. Short- and long-range electron lattice
interaction ~ith d

With the electronic charge distribution being one di-
mensional, the energy of a large-radius polaronic state for
a pair of electrons is given by Eq. (39): E;„(s/R;„)
= —(ac+as) /4ar. Pairing is favored and a large bipo-
laron is stabilized if E;„(s/R;„) decreases as the in-

terelectron separation s decreases. As noted previously,
because of the Coulomb repulsion between the two elec-
trons, ac generally decreases as s decreases. However, be-
cause v;„(s/R) increases when the two electrons are
brought suf5ciently close together so that their charge dis-
tributions overlap, as [Eq. (34)] generally increases as s
decreases. If the increase of as as s decreases dominates
the decrease of ac with decreasing s, ac+ as will increase
as s decreases. The cross term between the short- and
long-range electron-lattice interaction produces an addi-
tional effect. As a result of the presence of u;„i(s/R),
ar =2[t —v;„&(s/R)] generally falls as s decreases since
u;„, (s/R ) generally increases as s decreases. Since
E;,(s/R;, ) = —(ac+as) /4ar, we see that bipolaron
formation in a one-dimensional system is facilitated not
only by ac+as increasing with decreasing s, but also by
ar decreasing with decreasing s. Put in more physical
terms, while a large bipolaron is possible in a one-
dimensional electronic system with only a short-range
component of the electron-lattice interaction, the added
presence of a long-range component of the electron-lattice
interaction further assists the formation of a bipolaron. In
particular, the presence of the long-range component of
the electron-lattice interaction assists large bipolaron for-
mation in two ways. First, its presence increases a~ by
enhancing the screening of the Coulomb repulsion (con-
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verting e to ep). Second, through the presence of the
cross term between both components of the electron-
lattice interaction, the eAective kinetic energy aT is re-
duced.

E. Short- and long-range electron-lattice
interaction with d 2

With a two-dimensional electronic distribution, a
large-radius polaronic state can be formed with E;„(s/
Rm;„) = —'ac/4(aT —as) [Eq. (41)], if a~ and aT —as
are both positive. With only a short-range component of
the electron-lattice interaction, large-radius states cannot
form since then ac is negative [cf. Eq. (33) with P =0 and
ep e ]. With only a long-range component of the
electron-lattice interaction, bipolarons cannot form since
E;„(s/R;„) then rises with decreasing s. This behavior
occurs in this instance because the total s dependence of
E~;„(s/R;„) arises from the decreasing of ac with de-
creasing s caused by the Coulomb repulsion of the two
electrons [cf. Eq. (33)]. However, with the combined
presence of short- and long-range components of the
electron-lattice interaction, large-radius bipolarons may
be formed. In particular, then ac can be positive and the
decrease of aT —aq as s decreases may be sufhcient to
drive the minimum of E~;„(s/R;„)to be at s & ~.

To determine the conditions under which a large-radius
bipolaron will form, we consider the s dependence of the
ground-state energy E;„(s/R). We first observe that as
two carriers are brought together from infinite separation,
they initially repel one another, thereby opposing bipola-
ron formation. This feature is deduced by observing that

I

the dominant s-dependence of E;„(s/R;„) when s is ar-
bitrarily large is that of a, (s/Rm;„). In particular, due to
the s dependence of v, (s/R;„) caused by the electron-
electron repulsion, ac(s/R;„) falls from its limiting value
at infinity as 1/s [cf. the discussion below Eq. (19)]. The
other terms in the expression for E~;„(s/Rm;„) [Eq. (41)]
fall off more rapidly with increasing s. In particular, due
to the s dependence of v;„i (s/Rm;„), aT(s/Rm;„) falls from
its value at infinit as 1/s . In addition, the decline of
as(s/Rmin) =2uPn'i (s/R~, „) with increasing s, caused by
the declining overlap between the separated electrons as s
increases, is presumably faster than algebraic. As a re-
sult, in the limit of very large s, the s dependence of ap
dominates the s dependence of the ground-state energy
E;„(s/R;„) and produces the long-range (large s) in-
terelectron repulsion.

Despite the fact that E;„(s/R;„) rises as s is de-
creased from infinity, there may be a minimum of
E;„(s/R;„)at a sufficiently small value of s. To investi-
gate the possibility of a large bipolaron associated with
s =0, we compare E;„(0) with E;„(~). If
E;„(0)&E;„(~),it is energetically favorable to bind
two large polarons to form a large bipolaron with both
electrons being centered at the same site. Using Eq. (41),
we write this energetic condition as

[ac(0)/ac(~)] & [aT(0) —as(0)]/[aT(~) —as(~)] .

(46)

Employing relations between the values of these functions
at s =0 and at s =~, Eqs. (35)-(37), the inequality of
Eq. (46) is reexpressed as

f(ep —2e )/(e'p e' )] & [aT(~) —v;„i (0) —2as(~)]/[aT(~) —as(~)l =1 —[u;„i (0)+as(~)l/[aT( ) —as(~)] .

(47)

Rearranging the terms of Eq. (47), the energetic require-
ment for the formation of large bipolarons in two-di-
mensional electronic systems becomes

[usL(0) +as(~)/[aT(~) —as(~)1
&1 —[(ep —2e )/(ep —e )]'. (48)

respect to two well-separated, s = , large polarons:

1 & [v;.i (0)+as(~) I/[aT(~) —as(~)1

& 1 —[(Ep 2e~)/(Ep e'~)]

with

(49a)

We recall, from below Eq. (40), that the existence of a
large-radius state in a two-dimensional electronic system
requires that aT —a~ &0 and a~ &0. In particular, the
existence of a large-radius state at s =0 requires that

aT(0) —as(0) =aT(~) —v;„, (0) —2as(

and ep & 2e [cf. Eqs. (35)-(37)]. Using the requirement
that aT(~) —as(~) & 0 if there are to be large polarons
at s =~, we reexpress the two conditions for a s =0
large-radius state as

1 & [u;„,(0)+as( )]/[aT(~) —as(~)]
and ep & 2e . Incorporating the first requirement into Eq.
(48), we obtain the conditions under which a large bipola-
ron with s =0 can exist and be energetically stable with

E'p ) 2E'ao . (49b)

To understand the physical significance of Eqs. (49a)
and (49b), we first note that elimination of the long-range
portion of the electron-lattice interaction corresponds to
the replacement of ep by e . Hence, we confirm from Eqs.
(49a) and (49b) that the s=0 large-bipolaron cannot
form without the presence of the long-range portion of the
electron-lattice interaction. Furthermore, since v;, i (0)
and as(~) both vanish with the elimination of the short-
range component of the electron-lattice interaction, we see
from Eq. (49a) that a sufficiently large short-range com-
ponent of the electron-lattice interaction is a requirement
for the large-radius bipolaron. In other words, it is only
with the combined presence of both the short- and long-
range components of the electron-lattice interaction that
large bipolarons with s =0 can be stable. Finally, we note
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that when ep & 2e, the reduction of the potential energy
arising from two electrons of "radius" R centered at the
same site s 0, forming large polarons, —2(e—cp ')v, (0)/R, exceeds the potential energy of the (un-
screened) Coulomb repulsion of the two electrons,
v, (0)/e R; that is, —(e ' —2ep ')v, (0)/R (0. Thus,
there cannot be a large-radius bipolaron with both elec-
trons sharing a common centroid unless ep ~ 2e

To better appreciate the constraints imposed by the
conditions for large bipolaron formation, it is useful to re-
write Eq. (49a) in terms of more fundamental physical
quantities. To this end, we use Eqs. (3S) and (37) to
rewrite aT(~) and as(~) of Eq. (49a) in terms of
v;„i (0) and v;, i (0). After some algebra, we obtain

I+(ep —2e )'/2e (2ep —3e )

& t/lv (0)+v ' (0)] & 1, (so)

with so~ 2e . Here we see that the requirements for
large-bipolaron formation contained in Eq. (SO) restrict
the permitted values of the ratio of the single-carrier elec-
tronic kinetic energy t to a combination of electron-lattice
coupling energies, v;„i(0)+vs; (0). As will be demon-
strated later, the numerator and denominator of this ratio
are frequently of the same order of magnitude. Thus, a
regime in which large bipolarons can be formed in a two-
dimensional electronic system is conceivable if the ratio of
static- to high-frequency dielectric constants is sufficiently
large, ep » 2e . In the Cu02-based superconducting
solids, the static dielectric constants are very large while
the high-frequency dielectric constants are modest, Ep

&&2e . For example, the static dielectric constants re-
ported for a single crystal of insulating La2Cu04 are
about 50 with values of 85 and 22 for directions parallel
and perpendicular to the CuO planes, respectively. In
addition, the high-frequency dielectric constant in the
Cu02-based superconducting materials is typically only
between 3 and 5. These experimental results suggest
that the regime for two-dimensional bipolaron formation
may be exceptionally large in the Cu02-based supercon-
ducting materials.

We now investigate the s dependence of E;„(s/
R;„)= —ac/4aT. The net s dependence of E;„(s/
R;„) results from the s dependences of ac and aT.
Reflecting the Coulombic repulsion of charges of like sign,
ac(~) —ac(s) cx:1/s as s ~. In addition, as in the
two-dimensional situation, aT(~) —aT (s) a- s as
s . Thus, the s dependence of ag dominates that of
aT in the limit of arbitrarily large s. As a result, at arbi-
trarily large values of s, E;„(s/R;„) rises as s decreases
indicating a long-range interelectronic repulsion.

Despite the initial increase of the energy of two pola-
rons as they are brought toward each other from infinite
separation, they may ultimately find it energetically favor-
able to pair to form a bipolaron. To investigate this possi-
bility, we compare the energy for s 0 with that for
s =~. If E;„(0)& E;„(~),it is energetically favorable
for two large polarons to coalesce into a large bipolaron
that has both carriers centered at the same site. With
E;„(s/R;„)= —ac/4aT, the energetic stability of such a
bipolaron requires that

lac(0)/ac( )l' & aT(0)/aT( ) . (sl)

Exploiting the relationships between a T (0), aT (~ ),
ac(0), and ac(~) contained in Eqs. (35) and (37), the
energetic requirement for bipolaron formation, Eq. (51) is
rewritten as

1 & vPi (0)/aT(~) & 1 —[(t.p —2m~)/(Ep E~)] (s3)

We now use Eq. (35) to replace aT(~) in Eq. (53) with
quantities that are physically more meaningful. Specif-
ically, after some algebra, we convert Eq. (53) to

v;.g(0)/aT(~) & 1 —t(ep —2~-)/(ep —e )]'. (52)

We now recall from below Eq. (42) that a large-radius
state only exists if aT and ap are positive. Using Eqs.
(35) and (36), we observe that these requirements for the
s =0 and s = —~ situations stipulate that 1 & v;„, (0)/
aT(~), aT(~) &0, and cp&2e . Writing the first of
these condition along with Eq. (52), we have

F. Short and long-range electron-lattice
interaction with d ~3

We now consider whether stable large bipolarons may
be formed in three-dimensional electronic systems. With
a three-dimensional electronic distribution, a large-radius
state can be formed with the energy E;,(s/R;„) given
by Eq. (44) if ac&0, aT &0, and aT & 3asac. For a
bipolaron to be formed, there must be a minimum of
E;„(s/R;„) with respect to s at a value of s less than
infinity. The expression for E~;„(s/Rm;„) given by Eq.
(44) is especially complex. However, we can simplify the
analysis of the s dependence of E;„(s/R;„) by noting
from Eq. (44) that E;„(s/R;„) only decreases from—ac/4aT to —ac/3aT as as is increased from 0 to its
maximum value, aT/3ac. In particular, we exploit the
weak dependence of E;„(s/R;„) on the value of as in
approximating Em;„(s/R;„) by —ac/4aT, its value of
s-0

1+ (ep 2E~) /2E~(2E'p 3Eoo) & t/v;„i (0) & 1, (s4)

3v;, t (0)v, (0)(ep —2E )
vent 0 & 1+

2k+i(0)] 'ape
(ss)

Combining the relations of Eqs. (54) and (55), we find
that the formation of a large-radius bipolaron in an elec-
tronically three-dimensional system requires that

with eo» 2e
In a three-dimensional electronic system the formation

of a large bipolaron is constrained by yet another condi-
tion. In particular, in a three-dimensional electronic sys-
tem, a large-radius bipolaron must be dynamically stable
against collapse into a small-radius state (corresponding
to a small bipolaron or to two separated small polarons).
From above Eq. (43), we recall that this requirement is
that aT(0) & 3as(0)ac(0). With Eqs. (32)-(34), this
condition may be reexpressed as
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1+ (eo —2c ) /2c~(2eo —3e~) & t/vent (0) & 1+ [3v;„I (0)v, (0)(eo —2e~)/2[v;„t(0)l eoEmk (56)

We compare the requirements for forming an energeti-
cally favorable large bipolaron in a three-dimensional
electronic system, Eq. (56), with that for forming a large
bipolaron in a two-dimensional electronic system Eq.
(50). The limitations on the electronic parameter t are
more restrictive for a three-dimensional electronic system
than for a two-dimensional electronic system. In particu-
lar, the difference between the upper and lower limits of
Eq. (56) is smaller than the corresponding difference in

Eq. (50). In addition, the denominator of the central term
of the two inequalities of the three-dimensional restric-
tions [Eq. (56)] is smaller than that for the central term
of the two-dimensional restrictions [Eq. (50)l.

V. SUMMARY AND DISCUSSION OF THE
FORMATION OF A LARGE BIPOLARON

The discovery of "very high-temperature superconduc-
tors" has rekindled interest in "novel" mechanisms for su-
perconductivity. In particular, one might wonder if these
materials are manifesting the long-sought-for bipolaronic
superconductivity predicted for mobile bipolarons.

Nonetheless, it has been uncertain if mobile bipolarons
can form in the two- and three-dimensional electronic sys-
tems that characterize these superconductors. In particu-
lar, small bipolarons, bipolarons for which the spatial ex-
tent of the wave function is less than or comparable to an
interatomic separation, are generally found to be localized
rather than mobile. This is not surprising since the large
atomic displacements required for binding two electrons
into a sma11 bipolaron also produce a huge enhancement
of the efI'ective mass of a small bipolaron. With the very
small sizes and very large eA'ective masses characteristic
of small bipolarons, and even small polarons, these car-
riers are readily localized by even the modest disorder of a
typical crystal. Thus, for bipolarons to result in bipola-
ronic superconductivity they must be large. That is, these
bipolarons should extend over multiple sites.

Here, we investigate the conditions under which large
singlet bipolarons can be formed. In particular, we study
the adiabatic ground state of two electrons within a de-
formable medium. Within the adiabatic approach, the
electrons are presumed to move sufficiently rapidly so as
to adjust to the instantaneous positions of the atoms of the
solid. Although we envision the electrons to be within a
three-dimensional deformable medium, we consider the
electronic states to be either one, two, or three dimension-
al. This model encompasses a situation that is roughly
analogous to that of the Cu02-based superconducting ma-
terials. In particular, in these solids the carriers (holes)
are presumed to reside within the CuO2 sheets. There-
fore, if the width of contiguous Cu02 sheets is sufficiently
small compared to the large bipolaron's diameter, the
electronic system may be regarded as having a two-
dimensional character. Furthermore, the large (»10)
static dielectric constants both parallel and perpendicular
to the Cu02 sheets indicate that atoms may be

significantly displaced in all three directions. In addition,
with displaceable ions present through the solid, the
Cu02-based materials may be approximated as a three-
dimensional deformable medium.

As is common, we consider a linear electron-lattice in-
teraction. That is, the energy of an electron is presumed
to depend linearly on the displacements of the atoms of
the solid from their carrier-free equilibrium positions,
Furthermore, the electron-lattice interaction is composed
of two components. The short-range component of the
electron-lattice interaction described a linear dependence
of an electron's energy on the displacements of the atoms
it overlaps. The 1ong-range component of the electron-
lattice interaction describes the linear dependence of the
energy of an electron that arises from its Coulombic in-
teractions with small displacements of the anions and cat-
ions of an ionic solid from their carrier-free equilibrium
positions. The strain energy of the carrier-free lattice is
presumed to obey Hooke's law.

To make our general expressions for the adiabatic ener-
gy amenable to analytic analysis, we ignore the eA'ects of
electronic polarization and correlation on the electron-
lattice interaction energy, the two-electron electronic ki-
netic energy and the interelectron Coulombic repulsion
[Eqs. (11), (12), and (14), respectivelyl. %'e then employ
a variational scheme. This procedure enables us to de-
scribe the energy of the adiabatic ground state in terms of
the (dimensionless) radius of the wave functions of the
two equivalent electrons R and the interelectron separa-
tion s. We then examine large-radius minima of the ener-
gy to determine the conditions under which they corre-
spond to the formation of a large singlet bipolaron that is
energetically stable with respect to decomposition into two
separate large polarons.

With only the presence of the classical long-range
(Frohlich) electron-lattice interaction, we regain the clas-
sical result that bipolarons are always energetica1ly unsta-
ble with respect to decomposition into separate large pola-
rons. In other words, the presence of the two electrons
classically induces displacements of the anions and cations
of an ionic solid that reduce the effective Coulomb in-
teraction between electrons separated by the distance r
from e /e' r to e /d'or, where e and eo are the high- .

frequency and static dielectric constants, respectively.
However, despite the screening provided by the atomic
displacernents, the two electrons do not experience an at-
traction for one another, since the dielectric constant
remains positive.

With only the short-range component of the electron-
lattice interaction, a large bipolaron can only be produced
in a one-dimensional electronic system. Only small bipo-
larons can be formed in two- and three-dimensional sys-
tems with only a short-range component of their electron-
lattice interaction. In particular, small bipolarons will be
energetically stable in two- and three-dimensional elec-
tronic systems if the energy of the two electrons paired at
a site —4Eb+U is less than that of two well-separated
small polarons —2Eb. ' Here, Eb is the small-polaron
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binding energy and U is the on-site Coulomb repulsion be-
tween the two electrons.

With the combined presence of both the long- and
short-range components of the electron-lattice interaction,
large singlet bipolarons can exist in one-, two-, and three-
dimensional electronic systems. The mechanism via
which bipolaron formation is fostered by the collateral
presence of both components of the electron-lattice in-
teraction differs in systems of different electronic dimen-
sionality. Specifically, in one-dimensional electronic sys-
tems, the addition of the long-range portion of the
electron-lattice interaction to the short-range component
facilitates bipolaron formation by providing additional
screening of the Coulomb repulsion of the two electrons.
In two-dimensional electronic systems, the presence of the
long-range component of the electron-lattice interaction is
necessary for the formation of a large-radius ground state
(e.g. , large polarons or large bipolarons). In addition, the
short-range component of the electron-lattice interaction
is required to produce the attractive interaction between
large polarons that leads to the formation of a large bipo-
laron. In three-dimensional electronic systems, as in two-
dimensional electronic systems, the presence of the long-
range component of the electron-lattice interaction is
essential to the formation of a large-radius ground state.
However, it is only the "cross term" involving the product
of the coupling constants associated with the long- and
short-range components of the electron-lattice interaction
that produces the attraction that can cause the formation
of a large bipolaron. These cross terms arise with two
components of the electron-lattice interaction because the
polaronic energy depends on the square of the electron-
lattice interaction [cf. Eq. (7)].

The requirements for forming a large singlet bipolaron
become increasingly stringent as the dimensionality of the
electronic state increases. In a one-dimensional electronic
system, polarons and bipolarons are generally large. In
two-dimensional electronic systems, a large bipolaron is
only possible if (1) the material's atoms are sufficiently
displaceable, eo& 2e, and (2) the electronic parameters
related to the electronic bandwidth and the two com-
ponents of the electron-lattice interaction fall within a
specified range [cf. Eq. (50)]. In passing from a two-
dimensional electronic system to a three-dimensional elec-
tronic system, v;„&(0)+v~~P(0) is replaced by u~i(0) in
the energy ratio contained in the condition for the forma-
tion of large bipolarons [compare Eqs. (50) and (56)]. As
a result, the upper bound on r, arising from requiring sta-
bility of the large bipolaron against decomposition into
two separate large polarons, is smaller for a three-
dimensional e1ectronic system than for a two-dimensional
electronic system. In particular, with v;„1 (0)»u;„&(0),
the upper limit on an electron's kinetic energy t for the
formation of large bipolarons is considerably smaller in a
three-dimensional electronic system than in a two-
dimensional electronic system.

To appreciate the relative difficulty of forming large
singlet bipolarons in electronic systems of two and three
dimensions, first note that the range of electronic parame-
ters within which large bipolaron formation can occur is
determined by the values of the static and high-frequency

dielectric constants. In particular, for the formation of
large bipolarons with s 0, it is necessary that eo& 2e .
In addition, in a quasi-two-dimensional electronic system,
large-bipolaron formation is only possible when a dimen-
sionless function of various electronic parameters lies be-
tween 1 and I+f, where f (eo —2c ) /2e (2@0—3c )
[see Eq. (50)]. Here, f is about unity for eo/e 6 and is
about 2 for eo/e 10. The electronic quantities of Eq.
(50) [defined in Eqs. (18), (28), and (30), respectively)
may be estimated as t = 6 /2mL, v;„1 (0) = 2Eba i/L,
and v;„, (0) =2(2EbPe /x a)'i a /L, where L is the
characteristic size of the bipolaron. With these estimates,
the ratio of energies that determines whether a large bipo-
laron will form in a two-dimensional electronic system is

t/lv;„i (0)+u;„&(0)l=J/[2[Eb+(2Eqpe /n a)' lj,
where we have recognized J( ii /2ma ) as the electron-
ic transfer energy of tight-binding theory. For simplicity,
we have set i a. Typically Eb is several tenths of an elec-
tron volt and 2pe /n a & 0. 1 eV&&Eb. Then, with the ra-
tio of electronic parameters (= J/2Eb ) being constrained
to lie between 1 and 1+f, the overall electronic band-
width W (W=2zJ, where z is the number of nearest
neighbors) is limited by the approximate relation
16Eb & W & 16Eb (1+f) for a two-dimensional square
array of sites (z 4). These conditions are frequently
satisfied with typical estimates of it parameters. In this
sense, this limitation seems to pose little practical restric-
tion on the width of the electron energy band for a two-
dimensional electronic system. However, the situation is
quite different for a three-dimensional electronic system.
In a three dimension-al electronic system, the ratio of
electronic energies that is constrained to be less than 1+f
is r/v;„, (0)=J/[2(2Ebpe /x a) 'i ]. Because of the rela-
tively small value of the denominator of this ratio, the
width of a three-dimensional electronic energy band is
generally constrained to be moderately narrow, e.g. , &4
eV. In addition, the lower bound on t that is contained in
Eq. (56) can pose another serious limitation on the value
of r. Thus, these considerations suggest that the forma-
tion of large bipolarons is more likely in a two-
dimensional electronic system than in a three-dimensional
electronic system. In particular, for a two-dimensional
electronic system the principal requirement is only that
the system be ionic with eo being significantly larger than
2e . However, in a three-dimensional electronic system,
the formation of a large bipolaron also requires moderate-
ly narrow electronic energy bands and appropriate values
of v~;3(0), v, (0), and v;„& (0) as indicated in Eq. (56).

We have studied the large-radius minimum of the
ground-state adiabatic energy in order to ascertain the
conditions under which a large bipolaron is stable against
decomposition into two separated large polarons. When,
as in one- and two-dimensional electronic systems, there is
only one minimum of the adiabatic ground-state energy,
this procedure is adequate to determine when large bipo-
larons are energetically stable. However, in a three-
dimensional electronic system, a small polaron or small-
bipolaron minimum can coexist with the large-radius
minimum. Noting that a small polaron or a small bipola-
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ron minimum corresponds to R being at its saturation
value R, the minimum physically allowed value of R, we
express the energies, E(R,s/R), corresponding to two
small polarons and to a small bipolaron as E(R„~) and
E(R„O), respectively. Thus, for the large bipolaron to be
the stable state, its energy E~;„(0) must be lower than
E(R„~) and E(R„O). These conditions impose addi-
tional restrictions on the formation of large bipolarons in
three-dimensional electronic systems that do not apply to
systems of lower electronic dimensionality. There is no
unambiguous way of choosing R„ the cutoff value of R in
a continuum model below which the continuum approach
fails. Thus, within the framework of the present calcula-
tions, we can only note that, in a three-dimensional elec-
tronic system, the establishment of the stability of a
large-radius bipolaron against decomposition into sepa-
rate large polarons does not guarantee the energetic sta-
bility of the large-radius bipolaron with respect to forming
either a small bipolaron or two separated small polarons.

Despite two polarons finding it energetically favorable
to pair into a singlet bipolaron, we find that two polarons
always repel one another in the limit of large interelectron
separations. This iong-range repulsion occurs because the
I/s Coulomb repulsion is the dominant force at large sep-
arations, as s . Thus, even when a bipolaron is ener-
getically stable with respect to two widely separated pola-
rons, with decreasing interelectron separation s the energy
of the two-electron system rises before it falls. In other
words, we find a barrier to the formation of bipo!arons

With only a short-range component of the electron-
lattice interaction, large-radius self-trapped states in elec-
tronic systems of two and three dimensions will not
form. ' ' ' However, we have shown herein that a
large-radius self-trapped state can exist with the presence
of both short- and long-range components of the electron-
lattice interaction. Thus, the long-range component of the
electron-lattice interaction plays a critical role in the for-
mation of such states. Nonetheless, the short-range por-
tion of the electron-lattice interaction can provide the
dominant contribution to the deformational energy of
such a state. To show this feature, we compare the defor-
mational energies associated with the short- and long-
range components of the electron-lattice interaction for a
two-dimensional (s =0) large bipolaron. From Eq. (27),
we see that these deformational energies are 2v;„& (0)/R
and u;„t(0)/R, respectively. We also note, from the text
below Eq. (40), that the value of R at the large-radius
minimum is 2[ar(0) —as(0)]/ac(0). Therefore, the ra-
tio of the deformational energies of the short- to long-
range components of the electron-lattice interaction for a
large-radius state is

";. (0),(0)/[, (0) —a, (0)1;„,(0) .

Recalling from Eqs. (29) and (32)—(34) that v;„t (0)
2(e ep )u (0), ac(0) =(e 2ep ')v, (0), ar(0)

=2t, and as 2v;„t (0), we find that this ratio of defor-
mational energies will exceed unity if u;„'t (0) &4t/5,
where we have taken t..o)) e . Using the estimation pro-
cedure employed in an earlier paragraph of this section,
this condition becomes Eb(a/1) & W/20, where 8' is the
two-dimensional electronic bandwidth. Performing an

analogous estimate for a three-dimensional system yields
the condition that Eb[v, (0)/e l & 2(W/12), where W is
now the width of a three-dimensional electronic band.
This condition is expected to be less likely to be fulfilled
than that for the quasi-two-dimensional electronic system.
Thus, we find that with an electronic band of modest
width and a short-range component of the electron-lattice
interaction of typical size, the short rang-e component of
the electron-lattice interaction can provide the dominant
contribution to the deformational energy of the quasi
t~o-dimensional large-radius bipolaron.

We have determined conditions for the formation of
large singlet bipolarons in deformable systems whose elec-
tronic distributions are one, two, and three dimensional
within the adiabatic approximation. However, we
neglected electron exchange and correlation effects in ob-
taining Eqs. (12) and (14). These directly enter into the
kinetic energy and Coulomb terms. In addition, we as-
sumed that the shape of the probability distribution
p(r —s/2) does not change as s is varied. Thus, the ad-
justment of the wave function of one electron induced by
the presence of the other has been ignored. Each of these
electronic effects tends to reduce the effective Coulomb
repulsion between the electrons. ' Therefore, their in-
clusion in the theory would make the formation of large
bipolarons more likely. Our conditions for large bipolaron
formation are therefore overly restrictive. Indeed, our cal-
culation yields the classical result that bipolarons cannot
be formed with only the long-range component of the
electron-lattice interaction. However, some variational
calculations indicate that, with some inclusion of correla-
tion and exchange effects, large bipolarons (often weakly
bound) may be formed over some (usually very limited)
domain of parameters with onl~ the long-range com-
ponent of the electron-lattice interaction. Al-
though polarization, correlation and exchange effects will
not alter the R dependences of the basic physical quanti-
ties of the theory, displayed in Eq. (31), these effects can
alter the s dependence of the parameters of the theory and
thereby introduce additional situations in which there can
be pairing.

In Sec. IV of this paper, we find that, with only a short-
range electron-lattice interaction, no large-radius polarons
or bipolarons are possible in two- or three-dimensional
electronic systems. The proof of this feature can be gen-
eralized so as to not involve the simplifications contained
in Eqs. (11), (12), and (14). In particular, we adopt a
universal scaling procedure' in which all distances [r~
and r2 of Eq. (5)] are scaled together with a single scaling
parameter, designated as R', rather than with the two
scaling parameters R and s used in the body of the paper.
Then, with only a short-range component of the electron-
lattice interaction, the general expression for the ground-
state adiabatic energy, given in Eq. (5) and subsidiary
equations, can be used to find the ground-state energy as a
function of R'. This energy is of the form E(R')
= T/R' —u;„t /R'"+uc/R', where T, u;„t, and vc are all
positive. Since this energy has no minima at finite R' for
d ~ 2, we conclude that, within the adiabatic regime,
large polarons or bipolarons are not possible in electronic
systems of two or three dimensions when there is only a
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short-range component of the electron-lattice interaction.
The fundamental physics of the formation of a large

singlet bipolaron is independent of the approximations of
this paper. In particular, an essential finding is that, with
ther combined presence of the long-range (Frohlich) com-
ponent of the electron-lattice interaction and the short-
range component of the electron-lattice interaction,
large-radius bipolarons can be formed in electronic sys-
tems of one, two, and three dimensions. The long-range
portion of the electron-lattice interaction is necessary to
ensure that a large-radius polaron state exists in two- and
three-dimensional electronic systems. The additional
presence of the short-range portion of the electron-lattice
interaction is necessary to modify the effective kinetic en-
ergy so as to provide the interpolaron attraction that binds
a pair of large polarons into a large bipolaron. The for-
mation of a large bipolaron requires having an ionic sys-
tem for which eo is significantly greater than 2e . In ad-
dition, bipolaron formation imposes restrictions on the
system's electronic parameters. For a three-dimensional
electronic system, these additional restrictions can be
severe. Minimally, moderately narrow electronic energy
bands are required for the formation of three-dimensional
large bipolarons. However, in a two-dimensional electron-
ic system, the analogous restrictions are generally much
milder. Indeed, ionic materials for which eo»2e with
two-dimensional electronic systems are prime candidates
for the formation of large bipolarons. In light of this
finding, the question of whether large singlet bipolarons
can exist in the Cu02-based high-temperature supercon-
ductors is answered affirmatively. Indeed, all the high-
temperature superconducting materials have the unusual
feature of satisfying the requirement that eo)) 2e .

VI. BIPOLARONIC SUPERCONDUCTIVITY

To address the superconductivity of large bipolarons,
we must first consider how a large bipolaron moves. Since

I

the radius of a large bipolaron is much larger than the lat-
tice constant, we treat the solid through which the carrier
moves as though it were a continuum. Furthermore, we
address the motion of the large bipolaron within the adia-
batic or strong-coupling limit. This step is justified by
noting that the coupling constant for the short-range com-
ponent of the electron-lattice interaction (e.g. , Eb/@AD,
where c0D is the Debye frequency) is typically sufficiently
large compared with unity so as to correspond to the
strong-coupling regime. 3 In addition, because of the
large difFerence between the static and high-frequency
dielectric constants in the novel superconductors,
the coupling constant of the long-range portion of the
electron-lattice interaction is also large. In particular,
with such values of the dielectric constants, a, the cou-
pling constant that is often used to discuss the long-range
portion of the electron-lattice interaction, is typically
much greater than unity. For example, we find a = 5 for
a carrier with an electronic effective mass equal to the
free-electron mass and an optical phonon temperature
even as high as 900 K.

Within the adiabatic regime the electronic carriers in-
stantaneously adjust to the positions of the solid's atoms
and thereby follow the atomic motions. Therefore, a bipo-
laron, can only move if the atoms surrounding it alter their
positions. Since the motion of a carrier is contingent on
the motion of atoms, the effective mass of the adiabatic
large bipolaron is related to the atomic masses and the
displacements the atoms must execute so that the elec-
tronic carrier can move. In particular, with a bipolaron
that moves a distance br in a time bt, we define the mass
tensor of the bipolaron Mpp through its kinetic energy,
(Br/bt'M»'8'r/Bt)/2. The bipolaron only moves a dis-
tance Br if the solid undergoes an appropriate change of
its atomic displacement pattern bd(u), where u is a posi-
tion vector within the deformable continuum. Neglecting
the mass of the bipolaron's two electrons in comparison
with the atomic masses, we write that

(br/bt ' ~BP br/bt ) =p ~ du+ (bx, /bt )p (b'x,'lb't )Q[8d (u)/Bx, ] [Bd; (u)/de'I .
J j i

(s7)

~» =p„"du&lad, (u)/ax, ] [ed, (u)/ax, ]

=pJ"dug[Bd; (u)/Buj] [Bd;(u)/Bu~] .
f

(s8)

The second equality results from taking the change of the
atomic displacement at a point u associated with moving

where d; is a component of the atomic displacement pat-
tern vector d(u) and xj is a component of r, the position
vector denoting the bipolaron's location. The density p is
a generalization of the solid's density. Specifically, the
mass that enters into this density is the reduced mass ap-
propriate to the atomic displacements d(r) that are being
considered. We now express the bipolaron's effective-
mass tensor as

the bipolaron a distance Br to equal the difference between
the atomic displacement patterns at positions u and
u —Br Aone-dim. ensional version of Eq. (58) has also
been derived by field-theoretic means.

We now determine the mass of our large bipolaron.
Specifically, we observe that as a result of the long-range
component of the electron-lattice interaction, the bipola-
ron is associated with optic-type atomic displacements
beyond the spatial extent of the electronic distribution, at
u &Rqp, where Rap is the "radius" of the bipolaron.
These atomic displacements involve altering the distance
between the anions and cations of an ionic solid. In addi-
tion, the short-range component of the electron-lattice in-
teraction generally produces both optic- and acoustic-type
atomic displacements within the region of the electronic
distribution, at u & Rgp. We now consider the effect of
these three types of atomic displacements on the mass of
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Map'"' CL (cooa) (pe /a)(a/Rap) (59)

the large bipolaron.
The long-range component of the electron-lattice in-

teraction is associated with relative displacements of the
anions and cations of an ionic solid. In this situation, the
atomic displacements parameter d(u) refers to the rela-
tive displacements of anions and cations located about the
position u from their carrier-free equilibrium positions.
At a sufficiently large distance away from the center of
the bipolaron, the atomic displacement pattern becomes
radial with the magnitude d(u). In terms of the model of
the long-range component of the electron-lattice interac-
tion that we employ in Eq. (23), d(u) =ah(u). To deter-
mine d(u), we insert the long-range electron-lattice in-
teraction function of Eq. (23) into the general expression
for the deformation variable h, (u) given by Eq. (4). Since
we are focusing our attention on the atomic displacement
pattern outside of the region in which the two electrons
are confined, we make the standard approximation of
regarding the atomic displacement pattern as being that
which would surround point charges. That is, we treat the
electronic wave function that occurs in Eq. (4) as only be-
ing nonzero at the origin of our coordinate system. We
then find that d 2a(pe a/n k)'~ u . We insert this
result into Eq. (58) and integrate over the region outside
the domain of the electronic charge distribution of the
large bipolaron. In particular, we characterize a bipola-
ron of electronic dimensionality d by a length Riip in d
directions and by the length l transverse to the bipolarons
longer direction(s), I &R&p. This procedure yields the
eff'ective mass of the bipolaron arising from the long-range
(LR) optic-type electron-lattice interaction:

for d 3, where eo is the characteristic optic-mode fre-
quency. For one- and two-dimensional electronic systems
in the limit that I «Riip, the factor (a/Riip) in Eq. (59)
should be replaced by (a/I) . This dimensionality depen-
dence occurs because the u integration is dominated by
the smallest permitted value of u. There is uncertainty
and ambiguity in assigning values to the physical parame-
ters that enter into the expressions for the various contri-
butions to the bipolaron's effective mass, such as Eq. (59).
Therefore, in describing these contributions we shall con-
sistently ignore all numerical constants and just display
the dependence of the various contributions on physical
quantities. Finally, we note that, despite different nota-
tion, the result contained in Eq. (59) for d =3 is the
known result for the "strong-coupling" limit of the
Frohlich large polaron.

We now determine the contribution to the bipolaron's
effective mass arising from short-range optic-type atomic
deformations. We consider the situation in which each
optic-type atomic displacement is independent of the oth-
ers. This circumstance corresponds to the model de-
scribed by Eq. (22) in which the optic-type atomic dis-
placements may be described by a scalar deformation pa-
rameter, d(u) =ah(u). ' Inserting Eq. (22) into Eq. (4)
and carrying out the integration over the Dirac 6 function,
we find that d(u) =2a (A,~,/k)P(u), where P(u) is the
electronic probability distribution defined in Eq. (9). Es-
timating the integral that remains after inserting this re-
sult into Eq. (58), we find that the component of the
bipolaron's effective mass associated with short-range
optic-type atomic displacements depends on whether the
bipolaron's motion is parallel or perpendicular to a longer
direction of the bipolaron. Specifically, we find that

and

Miip'~'(parallel) cx: (cooa) (Ef, ') (a/Rap) + (a/l) for d=l, 2, 3

Map' '(perpendicular) cx: (cooa) (Eb ')(a/Rap) (a/1) for d =1,2, (60b)

where EP' A,zi/2k. For a three-dimensional electronic
system, the effective mass is given by Eq. (60a) with
d 3. For electronic systems of one and two dimensions,
the adiabatic effective mass of the bipolaron is anisotropic.
The effective mass is smaller for motion parallel to a
direction in which the bipolaron is extended [Eq. (60a)]
than for the motion transverse to directions of the
bipolaron's greatest spatial extent [Eq. (60b)]. In partic-
ular, the effective mass is inversely proportional to the
volume of the large bipolaron, Riip/, and inversely
proportional to the square of the distance characterizing
the relevant motion: Rqp for parallel motion and l for
transverse motion. The fact that the mass of the adiabatic
bipolaron is inversely proportional to the volume of the
bipolaron's state is a general feature of polaron theory
with a short-range electron-electron-lattice interaction.
It has its origin in the nonlinearity of self-trapping.
Specifically, the distortion that traps the electronic carrier
is proportional to the probability distribution of the car-
rier, Eq. (4).

We now determine the atomic displacement pattern

arising from short-range (SR) acoustic-type atomic dis-
placements. We first observe that the deformation param-
eter for acoustic-type atomic displacements is the strain of
the system, Bd(u)/8u. Within our continuum model, the
scalar dilatation h(u) replaces the strain tensor as the de-
formation parameter for the short-range interaction be-
tween electrons and the acoustic phonons. Therefore,
after using the short-range component of the electron-
lattice interaction of Eq. (22) in Eq. (4) to find that
A(u) 2a (A„/ k)P(u), we replace 8d(u)/Bu in Eq.
(58) by d, (u). Carrying out the integration of Eq. (58)
then yields

MsR, ~~ ~ c
—2(E ~c) (a/Rap) "(a/I) 3 —d (61)

where Eb'=A„/2k and c, is the speed of sound. With
d =1 and l =a, this result agrees with the result obtained
in Ref. (35) for the one-dimensional case.

For a quasi-two-dimensional electronic system, d=2,
we observe from Eq. (61) that the acoustic component of
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the bipolaron's mass varies inversely as the thickness of
the disklike bipolaron i where i (R ap. This feature man-
ifests the dependence of the large bipolaron's mass on its
size. As the size of the large bipolaron is increased, the
severity of the atomic displacements with which it is asso-
ciated decreases. As a result, the eff'ective mass of the
large bipolaron decreases.

It is important to recognize that the mass of the solid's
atoms only affects the adiabatic motion of a polaron or bi-
polaron through the frequencies of the vibrations that are
associated with the atomic distortions that self-trap the
carrier. In particular, the energies that enter into the ex-
pressions for the bipolaron's effective mass [Eqs. (59)-
(61)] are determined in a static, albeit deformed, solid.
Therefore, these energies are independent of the masses of
the system's atoms. Thus, the acoustic component of the
bipolaron's effective mass only garners a dependence on
the masses of the solid's atoms through the dependence of
the acoustic component of the bipolaron's effective mass
on the speed of sound c,. Similarly, the optic components
of the bipolaron's effective mass only depend upon the
masses of the atoms of the solid through the dependence
of the optical frequency coo on the masses of the solid's
atoms.

As might be expected from the fact that its motion is
contingent on the motion of the atoms of the solid, the adi-
abatic mass of a large polaron or bipolaron is generally
much greater than the mass of a free electron.
Nonetheless, it is well known empirically that large pola-
rons move with moderate mobilities. ' Indeed, barring
exceptionally narrow vibrational dispersion, general
theoretical considerations imply that a large polaron or bi-
polaron will move through a solid as almost a free parti-
cle. In particular, Schuttler and Holstein explicitly
show that a massive large acoustic polaron suffers little
effective scattering as it moves through a solid. This be-
havior occurs because a large polaron is most effectively
scattered by phonons of a wavelength close to the
polaron's characteristic length, Rap»a. Thus, a large
acoustic polaron only interacts with long wavelength
acoustic phonons. Since long wavelength acoustic pho-
nons have small energies and momenta, they cannot
effectively scatter a massive large polaron. In other
words, phonons are reflected off the large polaron with the
large polaron experiencing little change of momentum.
As a result, the large polaron moves with relatively high
mobility. In fact, the mobility of a large acoustic polaron
can be similar in magnitude and temperature dependence
to that produced by the scattering of a free electron by
acoustic phonons. 5 To establish this result, Schiittler and
Holstein show that the scattering time for the large pola-
ron ~ is proportional to the polaron mass, Mp. Therefore,
the mobility of the large polaron p =ez/Mp is indepen-
dent of Mpt Thus, we see that an acoustic large polaron
or large bipolaron is a massive entity that nearly moves as
a free particle. In particular, with the two spins of its
electrons paired, we view an acoustic large bipolaron as a
charged free boson.

Employing the simplest version of the theory of the su-
perconductivity of charged bosons (bipolarons), the su-
perconducting transition temperature is the temperature

of the Bose-Einstein condensation with the particle mass
being the mass of the large bipolaron. The temperature
of the Bose-Einstein condensation temperature is T,

A 6 de�/Mapke, where A is a numerical constant and
dap is the density of large (mobile) bipolarons. For an
isotropic three-dimensional system, A =3.31. Of
course, we have no a priori detailed knowledge of the
magnitude of the effective mass of a large bipolaron. The
effective mass of a large bipolaron must therefore be de-
duced from experiment. However, at this point, we can
consider the consequences if the mass of the large bipola-
ron were greater but of the same order of magnitude of
those determined for large strongly coupled polarons: 10
to 200 times the mass of an electron. For example,
with a density of bipolarons comparable to the carrier
density at the highest transition temperatures in the
Cu02-based materials, 10 ' cm, and a mass of the bi-
polaron of 20 times the electron mass, one obtains
T, = 130 K. Therefore, we see that rather high supercon-
ducting transition temperatures result from plausible
values of the effective mass and density of bipolarons.

The formula for the superconducting transition temper-
ature given in the preceding paragraph is that of the
Bose-Einstein condensation temperature in an isotropic
system. We now address the effects of electronic anisotro-
py on the transition temperature. This is a critical issue
since the Bose-Einstein condensation temperature van-
ishes for strict one- or two-dimensional systems. General-
ly, electronic anisotropy can affect the shape, effective
mass, and scattering of a large bipolarqn. %'ithin the adi-
abatic approximation employed throughout this work, we
have already observed that electronic anisotropy deter-
mines the shape of a large bipolaron. A quasi-one-di-
mensional bipolaron is cigar shaped, a quasi-two-dimen-
sional bipolaron is disklike, and a three-dimensional bipo-
laron is a spheroid. We have also seen in Eqs. (59)-(61)
that, although the shape of the bipolaron affects the mag-
nitude of its effective mass, only those components of the
adiabatic effective mass that are associated with optic
phonons become anisotropic for an anisotropic electronic
system. The component of the bipolaron's effective mass
arising from a carrier's short-range interaction with
acoustic phonons remains isotropic even with an aniso-
tropic electronic system. Thus, if the predominant contri-
bution to the bipolaron's effective mass is associated with
the (deformational-potential-like) short-range acoustic
component of the electron-lattice interaction, its eff'ective
mass remains isotropic even in an anisotropic electronic
system. In this circumstance, the formula for the super-
conducting transition temperature may be applied even to
anisotropic electronic systems. Finally, we observe that
these conclusions are only valid within the adiabatic re-
gime. In the limit that the electronic transfer energy in
the "hard" direction(s) becomes sufficiently small, the
adiabatic approach will fail for motion in the "hard"
direction(s). Then, ultimately the carrier s eflective mass
must become highly anisotropic and the transition tem-
perature falls toward zero. Finally, we note that even with
an isotropic eff'ective mass, the scattering, and hence the
normal-state motion, of a large-bipolaron with an aniso-
tropic shape will be anisotropic.
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The transition temperature depends critically on the
density of large bipolarons. Hence, we must consider how
the density of large bipolarons depends upon the overall
carrier density. In particular, even if it is energetically
favorable for two carriers to pair to form a large bipola-
ron, the formation of large bipolarons becomes destabi-
lized as the carrier density becomes sufficiently high. This
destabilization arises from two sources. First, the
atomic-displacement patterns surrounding different bipo-
larons begin to interfere with one another when the carrier
density becomes too large. Depending on the geometry,
the atomic displacements associated with diff'erent car-
riers interfere constructively or destructively with one
another. For example, Fig. 8 of Ref. 19 contains an illus-
tration of the interference of the deformation patterns
about two small polarons. If the bipolarons primarily
compete to displace the same atoms in different directions,
the energy of the bipolarons is raised as they are brought
toward one another. Concomitantly, the effective mass
ascribed to a single bipolaron will be reduced. In particu-
lar, with bipolarons within the Cu02 sheets in the Cu02-
based superconductors, bipolaronic atomic displacements
parallel to the Cu02 sheets will interfere destructively
with one another. When there is sufficient overlap be-
tween such bipolarons, these bipolarons will be destabi-
lized with respect to forming a collection of nonpolaronic
carriers. Screening of the long-range (Coulombic) com-
ponent of the electron-lattice interaction by mobile large
bipolarons provides a second reason to expect the destabil-
ization of large bipolarons at sufficiently high densities.
Thus, a simple qualitative picture of the dependence of the
density of bipolarons, and, therefore, the superconducting
transition temperature, on the carrier density emerges. At
sufficiently low carrier densities the superconducting tran-
sition temperature rises with the carrier density as carriers
predominantly form large bipolarons. However, as the
carrier density becomes sufficiently large that the bipola-
rons lose stability, the density of bipolarons, and, hence,
the superconducting transition temperature, will fall with
increasing carrier density.

We now consider the effect on T, of a change of the
mass of some of the solid's atoms brought about by isotro-
pic substitution. The transition temperature will only be
affected by such isotopic changes through a change in the
effective mass of the large bipolaron. If the predominant
atomic displacements induced by the presence of the elec-
tronic carriers involve the light atoms, then the electron-
lattice interaction mainly involves the optic modes. In this
situation, the dependence of the transition temperature on
isotopic substitution will refIect the change of the optic
phonon frequency with isotopic substitution. For exam-
ple, an isotopic change of the oxygen atoms in the Cu02-
based materials should then produce a significant shift of
Map (proportional to the shift of coo). However, if the
predominant atomic displacements induced by the pres-
ence of the carrier involve displacing heavy atoms, then
the electron-lattice interaction primarily involves
acoustic-type atomic displacements. In this case, the
change of the mass of the large bipolaron will only arise
through shifting the speed of sound c,. Then, an isotopic
substitution for the solid's light atom (e.g. , the oxygen

atoms were linked by comparable stiffness constants, then
an isotopic substitution for the system's oxygen atoms
would only alter the superconducting transition tempera-
ture by the fractional amount that the isotopic substitu-
tion alters the material's density. Furthermore, if the
large static dielectric constants of the Cu02-based materi-
als were associated with loosely bound oxygen atoms out-
side of the Cu02 sheets, isotopic changes of these atoms
would have a reduced eff'ect on the sound velocity at finite
frequencies and hence on Mqp'".

We have seen [Eqs. (59)-(61)] that the mass of an iso-
lated large bipolaron falls as the volume of the bipolaron
is increased. Since the superconducting transition temper-
ature is inversely proportional to the mass of the bipola-
ron, increasing the size of the bipolaron increases the su-
perconducting transition temperature. We envision the
large bipolaron in the Cu02-based superconducting ma-
terials to have a quasi-two-dimensional (disklike) mor-
phology. This picture is consistent with the large bipola-
ron being contained primarily within the Cu02 sheets of
these solids. Combining these sheets so as to make a
thicker bipolaron decreases the bipolaron's mass and
thereby increases the superconducting transition tempera-
ture. Therefore, the superconducting transition tempera-
ture rises with the number of contiguous sheets. In fact,
as indicated by Eqs. (59)-(61), the transition tempera-
ture for bipolaronic superconductivity in a solid that is
electronically quasi-two-dimensional can be greatly
enhanced by combining sheets so as to form thicker bipo-
larons. - As the shape of the bipolaron becomes more like a
spheroid than a disk, the effect of adding more sheets
slows and ultimately saturates when the bipolaron's thick-
ness becomes comparable to its diameter. Therefore, the
onset of saturation can provide a very rough estimate of
the bipolaron's radius. Finally, if the number of contigu-
ous sheets becomes sufficiently great so that the polaron is
truly three dimensional, the conditions for the formation
of a large bipolaron become the more stringent conditions
that characterize a three-dimensional system. In this
case, a large bipolaron may no longer form. Therefore, as
the number of contiguous Cu02 sheets increases the su-
perconducting transition temperature should increase.
The increase of the transition temperature with the num-
ber of contiguous Cu02 sheets should saturate when the
bipolaron's thickness approaches its diameter. With a
further increase in the number of contiguous Cu02 sheets,
the transition temperature should either remain nearly
constant or fall to zero depending on whether or not the
three-dimensional large bipolaron is stable. The super-
conducting transition temperature of the CuO2-based su-
perconductors has been observed to rise to a saturation
value with increasing the number of contiguously stacked
Cu02 sheets. ' Thus, these observations are consistent
with the predicted effect of the thickening of disklike bipo-
larons on the transition temperature for bipolaronic super-
conductivity.

Two striking predictions emerge from our theory if the
predominant contribution to the effective mass of the
large bipolaron were to be the acoustic component. First,
the superconducting transition temperature can be only
weakly dependent on isotopic substitutions for the solid's
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oxygen atoms. Second, thickening of disklike large bipo-
larons would increase the transition temperature with the
number of contiguous equivalent CuOz sheets until the
bipolaron's thickness l becomes comparable to the in-
plane bipolaronic diameter, 2Rap. Botli of these features
have been observed experimentally.

With regard to the dominance of the acoustic com-
ponent of the bipolaron's eA'ective mass, we note that the
very high-temperature superconducting materials present
us with an unusual situation. In most transition-metal ox-
ides the charge carriers reside on the (heavy) cation sites.
This circumstance suggests that the short-range electron-
lattice interaction in these instances is associated with
displacing the (relatively light) oxygen atoms adjacent to
the cation. With this being the case, the short-range
electron-lattice interaction in such circumstances is pri-
marily of optic character. The situation in the Cu02-
based system appears to be reversed. In particular, a hole
is thought to primarily reside on bonding orbitals of the
oxygen atoms rather than on the cations. ' Thus, we
might envision a strong s'hort-range electron-lattice in-
teraction to be associated with the displacements of the
(relatively heavy) copper-atom neighbors about an oxygen
site. In such a situation, the short-range electron-lattice
interaction is of acoustic character. This feature provides
some rationale for presuming that the short-range elec-
tron-lattice interaction of a large bipolaron in the Cu02-
based materials has primarily an acoustic character.

VII. SUMMARY OF RESULTS AND
DISCUSSION OF EXPERIMENTS

In summary, we have found that large singlet bipola-
rons can be formed in ionic solids when the combined
presence of the short- and long-range components of the
electron-lattice interaction is considered. A necessary
condition for this occurrence is that the static dielectric
constant greatly exceeds the high-frequency dielectric
constant. For materials that are three-dimensional elec-
tronically, the remaining conditions for the formation of
large bipolarons generally restrict their formation to ionic
solids with narrow electronic bands and appropriate
values of the electron-lattice coupling constants [Eq.
(56)]. However, the limitations on the electronic band-
width are considerably less restrictive in systems that are
electronically two dimensional. Since these conditions are
conceivably met in the high-temperature superconducting
materials, we consider the formation of large bipolarons a
real possibility in these solids. With its large size and
large mass, an acoustic bipolaron moves through a solid as
a classical particle. Treating these large singlet bipola-
rons as charged bosons results in bipolaronic superconduc-
tivity with the superconducting transition temperature be-
ing roughly the temperature of the Bose-Einstein conden-
sation of a gas of large bipolarons. The adiabatic mass of
the large bipolaron is typically a small fraction of the
mass of a nucleon. Masses of such magnitudes result in

transition temperatures comparable to those observed in
the high-temperature superconductors. Furthermore, for
acoustic bipolarons, isotopic changes in the solid at most
aA'ect the mass of the bipolaron through a change of the
solid's density. In this circumstance, there is only a very
weak dependence of the transition temperature on isotopic
changes of the solid's atoms. Finally, we find that the
thickening of a quasi-two-dimensional large bipolaron
produces a large increase of the superconducting transi-
tion temperature.

We now summarize the relevance of the considerations
of this paper to the recently discovered high-temperature
superconductivity. The high-temperature superconduc-
tors have (1) dielectric constants that satisfy the require-
ment that e0»2e (Refs. 28, 29, and 34) and (2) elec-
tronic-energy bands that are narrow to moderate in width.
In addition, the Cu02-based superconductors possess the
electronic quasi-two-dimensionality that fosters the for-
mation of large bipolarons. Furthermore, the low carrier
densities (=10 ' elementary charges per cm in the
Cu02-based materials) in the superconducting ma-
terials are consistent with a gas of mobile large bipolarons
centered at less than 10% of the sites. Thus, the high-
temperature superconductors generally meet the require-
ments for the formation of a collection of large bipolarons.

Recent experiments provide evidence that charge car-
riers in the insulating parents of the Cu02-based super-
conductors form large polarons or large bipolarons. In
particular, with the optically induced generation of charge
carriers in La2Cu04 and YBa2Cui0625, additional in-
frared absorption bands develop. These bands are asso-
ciated with carrier-induced atomic displacements. The
masses of the carriers, large polarons or bipolarons, are
roughly estimated to be at least an order of magnitude
greater than the free-el'ectron mass. Furthermore, the
mass deduced for YBa2Cu306 25 is found to be about half
that found for La2Cu04. Thus, materials whose carriers
have smaller effective masses have higher superconducting
transition temperatures. The smaller carrier masses in the
Cu02-based materials with contiguous Cu02 sheets and
the inverse correlation of these masses with the supercon-
ducting transition temperatures are in accord with the
predictions of this paper. Finally, it is striking to note that
a photoinduced change in the infrared absorption is not
observed in La2Ni04, a material that, while structurally
and electronically similar to La2Cu04, does not display
superconductivity. This fact is consistent with the hy-
pothesis that the formation of large polarons or large bi-
polarons in the insulating parents of the superconducting
materials is related to the carrier-laden materials becom-
ing superconductors.

Refiectivity studies of samples of YBa2Cu307 z that
have a sufficient carrier density (=0.6X10 ' cm ) so as
to be superconducting also indicate large effective masses
and long conductivity relaxation times. Furthermore,
these measurements suggest that the energies of the exci-
tations that dress the carriers are several hundredths of an
eV, comparable to phonon energies. Doubling the mass
and halving the carrier density determined in this study so
as to account for a collection of bipolarons rather than
singly charged carriers, the temperature of the Bose-
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Einstein condensation (57 K) is found to be comparable to
the observed superconducting transition temperature in
these samples (50 K). Thus, these results are also con-
sistent with the expectations of bipolaronic superconduc-
tivity.

Furthermore, distinctive features of having large-
bipolaronic superconductivity are observed in the CuOz-
based superconductors. First, the very weak dependence
of the superconducting transition temperatures of the
Cu02-based superconductors on isotopic substitutions for
oxygen is consistent with predictions of our treatment of
the superconductivity associated with large bipolarons if
the carriers primarily reside on light (oxygen) atoms.
Furthermore, the strong dependence of the superconduct-
ing transition temperature in the BaBi03 system on iso-
topic substitutions for oxygen atoms ' also follows from
our model if the carriers in this system are centered on the
(heavy) cations rather than on the light (oxygen) atoms.
Second, the striking increase of the superconducting tran-
sition temperatures of the CuOz-based superconductors
with the addition of continuous CuOz sheets is consistent
with the effect of thickening quasi-two-dimensional large

bipolarons. Third, as described in Sec. VI of this paper,
the observed increase and eventual decline of the super-
conducting transition temperature with carrier density is
also expected of the superconductivity of large bipolarons.
Fourth, the observed values of the superconducting transi-
tion temperature emerge from our formula with plausible,
albeit uncertain, values of the physical parameters.

Thus, although this work ignores many of the complexi-
ties of the real materials, such as their magnetic interac-
tions, we feel that the picture of large-bipolaronic super-
conductivity is a cogent model that provides a plausible
explanation for a number of the distinctive features of the
novel high-temperature superconductors. As such, the bi-
polaronic superconductivity of 1arge bipolarons is a real
possibility.
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